
Advanced Experiments for Learning Qualitative Compartment Models

Wei Pang and George M. Coghill
Department of Computing Science

University of Aberdeen
Scotland, United Kingdom, AB24 3UE

Abstract
In this paper, the learning of qualitative two-
compartment metabolic models is studied under the
conditions of different types and numbers of hidden
variables. For each condition, all the experiments, each
of which takes one of the subsets of the complete quali-
tative states as training data, are tested one by one. In or-
der to conduct the experiments more efficiently, a back-
tracking algorithm with forward checking is introduced
to search out all the well-posed qualitative models as
candidate solutions. Then these candidate solutions are
verified by a fuzzy qualitative engine JMorven to find
the target models. Finally the learning reliability and
kernel set under different conditions is calculated and
analyzed.

1. Introduction
Qualitative Model Learning (QML), as a branch of system
identification, plays an important role in the fields of biol-
ogy and physics. It involves extracting the qualitative struc-
tures (namely Qualitative Differential Equations, QDEs) of
systems from given qualitative data, which are often incom-
plete and imprecise. So it can be viewed as the inverse of
Qualitative Simulation (such as QSIM (Kuipers 1994)).

Some related research in this field has been done during
the last two decades, such as GENMODEL (Hau & Coiera
1993), MISQ (Richards, Kraan, & Kuipers 1992), QSI (Say
& Kuru 1996) and more recently, QSI-ILP (Coghill et al.
2004). All these systems are based on QSIM represen-
tation. However, the above systems have different limi-
tations. GENMODEL can not introduce hidden variables
and perform dimensional analysis. QSI often generate over-
constrained models. None of these systems except QSI-ILP
performs systematical experiments which include conditions
of all the subsets of complete data. None of these systems
have analyzed the influence of different hidden variables on
the learning reliability of the system.

2. Model Representation
2.1 JMorven
In this paper, a more flexible qualitative reasoning engine,
JMorven (Bruce & Coghill 2005), is used to represent and

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Figure 1: Two-Compartment Metabolic Models

QDE JMorven Differential Plane 0
f12=M+(c1) func (dt 0 f12) (dt 0 c1)
fo=M+(c2) func (dt 0 fo) (dt 0 c2)
q1=u - f12 sub(dt 0 q1)(dt 0 u)(dt 0 f12)
q2=f12-fo sub(dt 0 q2)(dt 0 f12)(dt 0 fo)
c1’=M+(q1) func(dt1 c1) (dt0 q1)
c2’=M+(q2) func(dt1 c2) (dt0 q2)

Table 1: QDE and JMorven Description for CM2

verify qualitative models. JMorven, a Java implementation
of the Morven framework (Coghill 1996), possesses all the
benefits of QSIM and introduces many new features. The
introduction of differential planes (Wiegand 1991) and vec-
tor envisionment (Morgan 1988) make it possible to reason
about more than two derivatives. By introducing fuzzy the-
ory, JMorven uses fuzzy quantity spaces to specify the vari-
ables, and can perform fuzzy vector envisionment (Coghill
1996), which enables it to deal with fuzzy qualitative data.
In addition, the utilization of parallel techniques makes
JMorven more efficient. All the above advantages make
JMorven a better choice as a model representation and veri-
fication component in our work.

2.2 Compartmental Models of Metabolic Systems
Metabolic systems are often modeled by two-compartment
models (See Figure 1). In the two-compartment model, if
input u and output fo do not exist, the model becomes a cou-
pled closed system, denoted as model CM1 in this paper.
CM2 is defined in a similar way. Table 1 shows QDE and
JMorven representation (0th differential plane) for CM2.

The “func” symbol in Table 1 denotes the Function con-

Increase Mappings
neg neg
zer zer
pos pos

Decrease Mappings
neg pos
zer zer
pos neg

Table 2: Increase and Decrease mappings

Quantity Name a b alpha beta
neg -100 -1 0.5 0.5
zer -1 1 0.5 0.5
pos 1 100 0.5 0.5

Table 3: Quantity Space

straint in JMorven. JMorven extends the M+ and M- con-
straint in QSIM by introducing a more general function con-
straint, in which two variables can have arbitrary mappings.

In order to simplify the problem and compare our work
with previous research, some assumptions, similar to those
in (Coghill et al. 2004), are imposed upon the models. That
is, the compartment models in our work are linear systems
with constant coefficients in the functional relationships.
The fuzzy quantity space of any variable includes only three
values: negative, zero and positive. One reasonable quan-
tity space is shown in Table 3. The meanings of the vari-
ables “a”,“b”,“alpha” and “beta” are described in (Shen &
Leitch 1993). For all the observed variables, only the zero
derivative (magnitude) and the first derivative can be mea-
sured qualitatively. All the function relationships have the
corresponding value (zer, zer), and there are only two kinds
of function mappings as shown in Table 2. The models can
be causally ordered, and are in canonical form as described
in (Iwasaki & Simon 1986). For simplicity and clarity, the
rest of this paper will refer to Inc and Dec as the function
constraints which have the increase and decrease mappings
in Table 2.

2.3 One and a Half Differential Plane
The concept of differential plane in qualitative context was
first proposed in (Wiegand 1991). The zeroth differential
plane constains the constraints, which can construct a model
used for numerical simulation. The constraints in a higher
differential plane are obtained by differentiating the corre-
sponding constraints in the preceding differential plane.

Based on the assumptions in previous section, a JMor-
ven representation with “one and a half” differential planes
is adopted to represent the models. Here “one and a half”
means only the constraints in the 0th differential plane and
part of the constraints in the 1st differential plane can be
used to represent the model. In the 1st differential plane,
the constraints which contain the 2nd derivative of a variable
can not be used, because only the information about zero and
first derivative of a variable are available. This form is equiv-
alent to QSIM description for the purpose of comparison.
Notice that M+ and M- are implemented by two function
constraints in different differential planes: the correspond-
ing values can be obtained from the mappings of the cor-

Differential Plane 0

C1: Inc (dt 0 f12)(dt 0 c1)
C2: Inc (dt 0 fo)(dt 0 c2)
C3: sub (dt 0 q1)(dt 0 u) (dt 0 f12)
C4: sub (dt 0 q2)(dt 0 f12)(dt 0 fo)
C5: Inc (dt 1 c1)(dt0 q1)
C6: Inc (dt 1 c2)(dt0 q2)

Differential Plane 1

C7: Inc (dt 1 f12)(dt 1 c1)
C8: Inc (dt 1 fo) (dt 1 c2)
C9: sub(dt 1 q1)(dt 1 u)(dt 1 f12)
C10:sub(dt 1 q2)(dt 1 f12)(dt 1 fo)

Table 4: JMorven Model for CM2

responding function constraint in the 0th differential plane,
and the function constraints in the 1st differential plane de-
termine the monotonically increasing or decreasing relation
between two variables.

For example, the CM2 model is described in Table 4. In
this description, Constraint C1 in the 0th differential plane
and C7 in the 1st differential plane are equivalent to the con-
straint M+(c1 f12) in QSIM (Note the position difference).
The following two constraints in the 1st differential plane
are abandoned for the above mentioned reason:

C11: Inc (dt 2 c1)(dt1 q1)
C12: Inc (dt 2 c2)(dt1 q2)

3. Background Knowledge
Before introducing the algorithm, some preliminary knowl-
edge has to be described in detail. The constraints involved
in this section are only in the 0th differential plane.

3.0 Some Concepts about Qualitative Modeling
The state variables in a causally ordered system are the vari-
ables that are directly effected by the integration operation,
and is usually the output of the integrator.(Wiegand 1991)
Simply speaking, in a model with canonical form, only the
state variable can have first derivative. The magnitude of a
state variable can not appear on the left side of any equation
in the model. The exogenous variables are those variables
determined from outside the model. All the non-exogenous
variables are also called system variables.

In an experiment, the hidden variables are the unmeasured
variables which lose both range and dimensional informa-
tion. The number of hidden variables is often unknown, but
it is reasonable to specify a maximum number of possible
hidden variables. If the maximum number is less than the
number of actual hidden variables, only “shallow” models
will be induced; otherwise, unnecessarilly “deep” models
may be found.

The model size in this paper is referred to as the number
of the constraints in the model. The specification of model

size is another factor that can influence the learning of the
models.

3.1 Inconsistent Constraints
An inconsistent constraint is a constraint that is inconsistent
with the training data and consequently fails to pass the con-
sistency check. The consistency check module we employed
here is the same as the one in JMorven, which uses the fuzzy
interval algebraic operations. For example, constraint X=Y-
Z is an inconsistent constraint when current training data
include the following qualitative state: (X,Y,Z)=(pos, neg,
pos),The quantities of “pos” and “neg” are taken from ta-
ble 3.

3.2 Conflict Constraints
Two qualitative constraints C1 and C2 are conflicting if
they are logically or dimensionally inconsistent, or redun-
dant so that a simpler qualitative constraint can be derived
from these two constraints by algebraic operations. We use
C1 ./ C2 to represent that C1 and C2 are conflicting. The
details about conflict constraints will be illustrated by sec-
tion 3.2.1 ∼ 3.2.4.

3.2.1 Conflict between two function constraints
Two function constraints C1 and C2 are conflicting if they

satisfy any of the following two conditions:

• a. Logical Conflict: They have the same vari-
able/derivatives in the corresponding positions of the con-
straints but they have different function mappings, i.e.,
one is Inc and the other is Dec

• b. Redundancy: They have the same variable/derivatives
and same function mappings but the variables/ derivatives
appear in different positions of the constraints.

In condition a, these two constraints are actually logically
inconsistent, because in a physical or biological system, the
relation between two variables can not have different map-
pings. For example, the following two constraints are con-
flicting:

C3.1: Inc (dt 1 X) (dt0 Y)
C3.2: Dec (dt 1 X) (dt0 Y)

C3.1 means the first derivative of variable X and zero
derivative of Y has increasing relationship, but C3.2 means
these two variables has decreasing relation, this is contradic-
tory in logic.

In condition b, these two constraints are in fact the same
constraint. Considering the following two constraints:

C3.3: Inc (dt 0 X) (dt0 Y)
C3.4: Inc (dt 0 Y) (dt0 X)

C3.3 and C3.4 actually describe the same relation if the
causal ordering is ignored. It will be redundant if both of
them appear in one model, and also the system cannot be
causally ordered. So C3.3 and C3.4 are conflicting con-
straints.

3.2.2 Conflict between subtract constraints
The detection of a conflict between two subtract con-

straints is more complicated than that in function constraints.

After generalization, the following seven conditions are
listed without considering the dimensional consistency:

a: a=b-c , c=b-x (x can be any variables in the system)
b: a=b-c, d=b-c (a, d can be any variables in the system)
c: a=b-c, d=c-b (a, d can be any variables in the system)
d: a=b-c, b=a-x (x can be any variables in the system)
e: a=b-c , c=a-b
f: a=b-c , b=c-x (x can be any variables in the system)
g: a=b-c , c=x-a (x can be any variables in the system)
The constraints in the above conditions are either contra-

dictory or can be replaced by a simpler constraint.
Apart from the above conditions, the dimensional conflict

may occur between two subtract constraints when there ex-
ist variables with undefined dimension, such as hidden vari-
ables. The following condition is an instance of dimensional
conflict:

h: Hid0=a-b, c=Hid0-d
Suppose both of these two constraints are dimensionally

consistent individually, and the dimension of a and b is dif-
ferent from that of c and d. Hid0 is a hidden variable with
undefined dimension. The conflict occurs because Hid0 can
only have one dimension, either the same as a and b, or c
and d.

3.2.3 Conflict Set of a Constraint
After the preprocessing phase of the algorithm, which we

will introduce later, a candidate constraint set is obtained,
denoted as FCS. The conflict set for a constraint C1 is de-
fined as:

ConflictSet(C1) = {Ci|Ci ∈ FCS, C1 ./ Ci}
As we have introduced before, this conflict relation is binary
which only involves two constraint.

3.2.4 Conflict involved more than two constraints
The conflict may involve more than two constraints, for

example,
Inc(Hid0, Hid1), Hid0=a-b, a=Hid1-d.

Here the hidden variables Hid0 and Hid1 have the same
dimension derived from the second and third constraint, re-
sulting in no physical meaning for the first function con-
straint. Because the corresponding equation for the first con-
straint is:

Hid0= k* Hid1
In this equation, k must have a dimension if we make the

assumption that there is no gain or amplifier in the system
under study. So the dimension of Hid0 and Hid1 can not be
the same.

3.3 Defining Constraints and Search Space
Partition
3.3.1 Defining Constraint

The defining constraint for a variable with specified
derivative (or variable/derivative for short) is the constraint
in which the variable/derivative appears in the leftmost po-
sition.

For instance, constraint sub (dt1 X) (dt0 Y) (dt0 Z) is one
defining constraint for the first derivative of variable X. All
derivatives of an exogenous variable and zero derivative of a
state variable do not have defining constraints.

3.3.2 Referring Constraint
The referring constraint of a variable/derivative is the con-

straint in which the variable/derivative appears in any posi-
tion except the leftmost position.

For example, Sub(dt0 Y)(dt0 X)(dt0 Z) is a referring con-
straint for both zero derivative of variable X and zero deriva-
tive of variable Z.

3.3.3 Dependency Set of a Constraint
For a certain variable/derivative, all its referring con-

straints depend on its defining constraints in causal ordering
context. If constraint C1 depend on C2, then this relation is
denoted as follows:

C1 → C2

Suppose the candidate constraint set is FCS, the depen-
dency set for a constraint C1 is defined as:

Dependency(C1) = {Ci|Ci ∈ FCS, C1 → Ci}
For example, constraint sub (dt0 X)(dt0 Y)(dt0 Z), the de-

pendency set of this constraint may contain the following
constraints:

Inc (dt0 Y)(dt0 A)
Dec (dt0 Z)(dt0 B)
In a causally ordered model, a constraint can not appear

before any of its dependency constraints, because only after
the defining constraint of a variable/derivative appears, can
other constraints refers to this variable/derivative.

Theorem 3.1
Based on all the assumptions we have made upon the

models, in the 0th differential plane, a well-posed model de-
fined in (Coghill et al. 2004) must include one and only one
defining constraint for each of the system variables (zero or
first derivative).

Proof: Suppose X is a non-exogenous variable in the
model. If X is a state variable, according to the definition of
state variable, there must be a defining constraint for the first
derivative of X. If X is not a state variable, and the model
does not include any defining constraint for the zero deriva-
tive of X, then no referring constraints for X can be included
in the model, resulting in the exclusion of X from the model.
This is contradictory considering the completeness principle
of well-posed models, stating that the model must include
all the system variables. So a well-posed model must in-
clude at least one defining constraint for each of the system
variables.

On the other hand, if a model includes more than one
defining constraint for the same variable, it also can not be
causally ordered. Consequently Theorem 3.1 is sound.

Corollary 3.1
The model size of a target model equals to the number of

system variables (including hidden variables) in the model.

4. Algorithm Description
First we introduce the preprocessing phase of the algorithm,
this includes four modules: Constraint Generation, Con-
straint Filtering, Pre-Calculation and Constraint Set Parti-
tion.

4.1 Constraint Generation
Constraint generation is similar to GENMODEL (Hau &
Coiera 1993) except that it performs an additional dimen-
sional check(Bhaskhar & Nigam 1990). In this phase, given
all the observed variables, maximum number of possible
hidden variables, maximum number of derivatives for each
variable (2 in our problem), range and dimension (if avail-
able) for each derivative, and all possible constraint types (
Subtract, Inc and Dec in this paper), the constraint generator
will generate all the possible constraints, denoted as Initial
Candidate Constraint Set (ICCS).

4.2 Constraint Filtering
Second, all the constraints in ICCS will be checked for con-
sistency by the constraint filter. The inconsistent constraints
defined in Section 3.1 will be filtered out. After this phase,
a filtered constraint set (FCS) is obtained. Given complete
behaviors of the systems, FCS will have the minimum size;
otherwise, the size of FCS may be very large.

4.3 Calculation of Conflict Set and Dependency Set
In this phase, for each constraint in FCS, we calculate the
conflict set (Section 3.2.3) and dependency set (Section
3.3.3) and store the result into two matrixes: ConflictMatrix
and DependencyMatrix. They will be used for later back-
tracking search algorithm.

4.4 Constraint Set Partition
FCS is divided into several subsets, each of these subsets
contains all the defining constraints for the same variable.
If Si is the subset containing the defining constraints for a
hidden variable, an “empty” constraint φ is appended on this
subset: Si = Si

⋃
{φ}. DS is a set that takes each of these

subsets as an element, denoted as DS= {Sn} (n=1 to N) N
is the number of variables (including hidden variables). For
any two elements in DS, |Si| ≤ |Sj| if i ≤ j. For example,
in the CM2 model, a subset for variable f12 may contain the
following constraints:

Inc(dt0 f12) (dt0 c1)
Dec(dt1 f12) (dt0 c2)
Sub (dt0 f12) (dt0 fo)(dt0 u)

4.5 Backtracking Algorithm
The basic idea of the algorithm is for each subset Si in DS,
selecting only one constraint, thus to construct a model, then
checking the validity of this model. The correctness of this
selection is guaranteed by Theorem 3.1.

For efficiency reasons, a backtracking tree search algo-
rithm is adopted. The algorithm continuously adds con-
straints from different subsets in DS, once a new constraint
from a subset is added, the current partial model will be
checked for validity by model checking algorithms. If this
partial model fails to pass the check, we will abandon it,
backtrack to previous node, and select the next node, in or-
der to avoid searching hopeless nodes.

Notice that for each Si which contains the defining con-
straints for a hidden variable, there is also an “empty” con-
straint φ in it. The current partial model will not change

if an “empty” constraint is added upon it. The empty con-
straint introduced here is to deal with the redundant hidden
variables. When the number of maximum possible hidden
variables is greater than that of the hidden variables the sys-
tem actually has, some generated hidden variables can not
be introduced to the system. For example, a system has two
hidden variables, but the maximum number of possible hid-
den variables is 3, resulting in the generation of three subsets
in DS for these three hidden variable. The target model in
fact choose constraints from only two of these subsets; for
another subset, the target model will select the empty con-
straint.

An auxiliary forward checking method (Russell & Norvig
2003) is also performed; that is, when a new constraint is
added, all the constraints in FCS that are conflicting with
this new constraint will be ignored in the later search pro-
cess. In order to prune more sub-trees, the exploration order
of the subsets in DS is determined by the number of legal
constraints in these subsets: the subset which has the mini-
mum number of legal constraints will be explored first. The
legal constraints are all the constraints in FCS that do not
conflict with any constraint in the current partial model.

4.6 Pseudo Code of The Tree Search Algorithm
Step1: Preprocessing

Step 1-1: Constraint Generation, get ICCS
Step 1-2: Constraint Filtering, get FCS
Step 1-3: Calculating Conflict Set and Dependency Set,

get ConflictMatrix and DependencyMatrix.
Step 1-4: Partition FCS, get DS

specify model size ModelSize
Step2: Backtracking Search

Begin
PartialModel=null; // current partial model.
ExploredSubset=empty;
// record the subsets that have been explored;
LegalSet:= FCS;

Backtracking FC(PartialModel, ExploredSubset,
LegalSet)

End
The Function Backtracking FC is defined as follows:

Backtracking FC (PartialModel, ExploredSubset,
LegalSet)

a. if size of PartialModel ≥ ModelSize
then return; // the exit of the recursion

b. Select a subset Si ∈ DS-ExploredSubset,
St. min(|Si

⋂
LegalSet|)

c. if Si

⋂
LegalSet == ∅ return;

// no legal constraint, exit.
d. ExploredSubset:=ExploredSubset+Si;
e.For each constraint C1 ∈ Si

⋂
LegalSet

Begin
CS C1:=Conflict Set of C1;
LegalSet:= LegalSet- CS C1;
PartialModel:=PartialModel+ C1;
if CheckPartialModel(PartialModel)==true then

Begin
if size of PartialModel < ModelSize

Backtracking FC(PartialModel,

ExploredSubset,LegalSet)
Else

CheckCompleteModel(PartialModel);
End // if CheckPartialModel()==true

LegalSet:= LegalSet + CS C1;
//Restore the legalSet

PartialModel:=PartialModel- C1;
End //for each constraint

f. ExploredSubset:=ExploredSubset- Si;
//restore exploredSubset

End Function

4.7 Model Checking Algorithm
The model checking algorithm is divided into two parts,
every time a new constraint is added into the current par-
tial model, the partial model checking function (CheckPar-
tialModel() in pseudo code) will be performed on the current
partial model. This checking algorithm will quickly check
whether this partial model is consistent. There are two sub-
modules in this function:

1. Contradictory Check: Checking whether current partial
model contains conflict constraints based on the ConflictMa-
trix.

2. Dimensional Consistency Check: Checking the situ-
ation in section 3.2.4, in which the conflict involves more
than two constraints.

Another model checking module, CheckComplete-
Model(), checks the other properties of well-posed models,
as stated in (Coghill et al. 2004), including model language,
model connection, model completeness, singularity, con-
nection, causal ordering and model coverage, will be only
performed on “full models” which attain the pre-specified
model size.

The causal ordering check is based on the Dependency-
Matrix. The JMorven package is tailored and slightly modi-
fied as an embedded module to support the model coverage
test. Because of the relatively expensive computational cost
of JMorven simulation, the model coverage test is arranged
in the final stage, only well-posed models which pass all the
other model checking modules are allowed to be simulated
by JMorven.

5. Experimental Results
Using the above efficient algorithm, the learning of CM1
and CM2 models are throughout tested. We focus on the
influence of hidden variables and incomplete training data
on the learning reliability.

5.1 Experimental Methodology
For each model, We will start from the easiest experiment,
which is given maximum number of variables and complete
data. If it succeeds, we will conduct more difficult experi-
ments, categorized by the following conditions: losing non-
derivative variables, partial or not specifying the state vari-
ables, and losing the derivative variables.

For each of the above conditions, first complete training
data, obtained from JMorven’s complete envisionment, will
be provided. If our algorithm can find the target model, the

Experiment Hidden Known State Success
ID Variable Variable
CM1-E1 qx c1, c2 Yes
CM1-E2 qx, f12 c1,c2 Yes
CM1-E3.a qx,c1 c2 No
CM1-E3.b qx,c1 c2 No
CM1-E4.a qx,c1 c2,Hidden No
CM1-E4.b qx,c1 c2,Hidden Yes *
CM1-E5 qx, f12,f21 c1,c2 Yes
CM1-E6 qx,f12, c1 c2,Hidden No
CM1-E7 qx None Yes
CM1-E8 qx,f12 None No

* under additional domain-specific knowledge

Table 5: Experimental Conditions for CM1

experiment will be tested by providing all the elements in the
power set of the training data, and get the learning reliability
from these result.

For CM1, there are 6 qualitative states, so there will be 26

=64 experiments in each different condition, the computa-
tion cost is tolerable. For CM2 there are 14 qualitative states
in the complete envisionment, as shown in Appendix B. So
there will be 214 =16,384 experiments. This will be very
computational expensive.

In order to accelerate the calculation, we take the follow-
ing approach: instead of finding the well-posed models for
different training data in each experiment separately, we will
first search all the well-posed models only once, discarding
the training data. Then in each experiment, the set of well-
posed models will be narrowed by different training data. So
the search for well-posed models are only executed once and
the results are used 2n times (n is the number of qualitative
states). This approach can be done easily by modifying the
original tree search algorithm:

a. First disabling the constraint filtering function (step 1-
2) in the preprocessing phase and the coverage test in the
CheckCompleteModel() function. After searching, all the
well-posed models found in the algorithm will be stored for
later use.

b. Then for each experiment with different training data,
all the previously found well-posed models which contain
the inconsistent constraints will be filtered out.

c. Finally the remaining well-posed models will be tested
for coverage by JMorven one by one, and the final results
are obtained.

5.2 Experiments for CM1
The target model and complete envisionment obtained from
JMorven are shown in Appendix A. Table 5 shows the set of
experiments under different conditions.

Table 6 shows the performance of the search algorithm
discarding the training data. The learning reliability of suc-
cessful ones is shown in Figure 2. The same learning curve
is obtained in CM1-E1,E2,E5 and E7. CM1-E4.b has differ-
ent curve which will be explained later.

CM1-E1 is the easiest one, which has only one hidden
variable qx and fully specified state variables. There exists

Experiment Search Well-posed Running Time
ID Space Models (Milli-sec)
CM1-E1 614,061 2,520 13,496
CM1-E2 961,875 5,176 28,271
CM1-E3.a 2,975,625 1,672 64,732
CM1-E3.b 2,975,625 23,136 59,450
CM1-E4.a 1071,225 8,192 34,367
CM1-E4.b 1,071,225 5,848 31,421
CM1-E5 1,975,509 7,128 37,672
CM1-E6 1,358,127 7,336 57,295
CM1-E7 2,736,741 34,272 52,046
CM1-E8 6,281,875 80,616 99,322

Table 6: Performance for learning CM1

Figure 2: Learning Reliability of CM1 Experiment 1,2,5 and
7.

a kernel set which is defined in (Coghill et al. 2004). The
elements in the kernel set are all pairs:

(1,2) (1,3) (1,5) (2,3) (2,4)
The number in the pairs stands for the State ID in the com-

plete envisionment, which is shown in Appendix A. This
means for learning CM1, the above pairs and all subsets in-
cluding these pairs can successfully learn the right model.
CM1-E2 removes variable f12 and CM1-E5 removes both
f12 and f21. The same learning curve and kernel set as CM1-
E1 are obtained. In CM1-E7, no state variables are specified,
but only qx is hidden variable, we also can successfully learn
the model and get the same learning curve and kernel set as
CM1-E1. In addition, in CM1-E7 we found another kind of
“correct” model:

Sub (dt0 Hid0) (dt0 c2) (dt0 c1)
Inc (dt0 c1) (f12)
Inc (dt0 c2) (f21)
Inc (dt1 f12) (Hid0)
Dec (dt1 f21) (Hid0)
This model can cover exactly the complete data, but it

has different physical meaning: it is a flow-based system,
in which it is the change of flow that causes the change of
the concentration. On the contrary, the target model is a
concentration-based system. The algorithm can not discrim-
inate these two models because of missing state variable in-
formation.

In CM1-E3.a, the state variable c1 becomes hidden vari-
able. Given complete data, 24 models which can cover ex-
actly the complete data are found, of which only one is
equivalent to target model. 112 over-generalized models
which can cover not only the complete data but some other
data are also found.

In CM1-E4.a, we make it easier than CM1-E3 by “telling”
the system that there is a hidden variable and this hidden
variable is a state variable. We found 8 over-generalized
models and the target model. Then we go into the details of
the non-target models in the result, and find out that all the
over-generalized models have the following two constraints
(or symmetric constraints in which the positions of Hid0 and
Hid1 are swapped):

C5.1 Inc (dt1 Hid1) (dt0 Hid0)
C5.2 Dec (dt0 Hid0) (dt0 Hid1)
Hid0 and Hid1 are two hidden variables. We can add

additional hypothesis upon the model to filter out the over-
generalized models which contain the above two constraints.
One possible hypothesis is that there is no hidden relation in
the target model.

Another hypothesis can be no “redundant” hidden vari-
ables in the model. Hid0 is a redundant hidden variable be-
cause we can induce the following constraint from C5.1 and
C5.2:

C5.3 Dec (dt1 Hid1) (dt0 Hid1)
Hid0 becomes logically “redundant”, although Hid0 may

have physical meaning in a real system. In CM1-E4.b we
add this hypothesis and the experiment is successful. But we
got different result from other successful experiments. The
kernel set becomes smaller and is a subset of CM1-E1’s:

(1,3) (2,3)
The learning reliability decreases as shown in Figure 2.

Experiment Hidden Known State Success
ID Variable Variable
CM2-E1 q1,q2 c1, c2 Yes
CM2-E2 Q1,q2 None Yes
CM2-E3 q1,q2,f12 c1,c2 Yes
CM2-E4 q1,q2,f12 None No
CM2-E5 q1,q2,f12,fo c1,c2 Yes
CM2-E6 q1, q2,c1 c2,Hidden Yes
CM2-E7 q1, q2,c1,f12 c2,Hidden No

* No Model Connection Check

Table 7: Experimental Conditions for CM2

Experiment Search Well-posed Running Time
ID Space Models (Milli-sec)
CM2-E1 29,430,625 14,748 416,471
CM2-E2 216,825,625 657,785 1,660,930
CM2-E3.a 52,521,875 12,216 667,982
CM2-E3.b 52,521,875 41,784 517,114
CM2-E4 669,921,875 954,754 3,804,080
CM2-E5 113,358,609 10,080 1,172,365
CM2-E6 3,051,209 47,696 1,009,223
CM2-E7 95,918,823 38,748 1,709,191

Table 8: Performance for learning CM2 (No training data is
provided)

Based on CM1-E4.b, in CM1-E6, f12 becomes hidden
variable. In this experiment, the envisionment only includes
5 qualitative states. 808 models are found in this experi-
ment. A detailed investigation in these models indicates that
no simple hypothesis can be added upon the problem domain
to discriminate the target model from the others.

Finally, the last CM1-E8 is based on and harder than
CM1-E7 in the sense of hiding both qx and f12 and not
specifying any state variables. In this experiment, our algo-
rithm finds 380 models under complete data, of which only
12 models are equivalent to target models.

5.3 Experiments for CM2
The target model of CM2 has been given in the previous
section, this model is equivalent to the cascaded tanks model
in (Coghill et al. 2004) and the set of experiments under
different conditions are listed in Table 7. Suppose the inflow
u={pos, zer} , there are 14 qualitative states in the complete
envisionment, shown in Appendix B.

Like the experiment for CM1, the performance of the
search algorithm are listed in Table 8. The learning relia-
bility is illustrated in Figure 3.

The kernel set of the easiest situation CM2-E1 is
(0,2,5) (0,2,7) (0,2,11) (0,2,13) (0,4,5) (0,4,7) (0,4,11)

(0,4,13)
The result is the same as that obtained in (Coghill et al.

2004).
In CM2-E2, all the conditions are the same as CM2-E1

except the state variables are not specified. Similarly as
CM1-E7, we found two different kinds of models that can

Figure 3: Learning Reliability of CM1 Experiment 1,2,5 and
7.

cover exactly the complete data: one is the target model and
the other is shown as follows:

Inc (dt0 c2) (dt0 fo)
Inc (dt0 f12) (dt0 c1)
Sub (dt0 Hid1) (dt0 c1)(dt0 c2)
Sub (dt0 Hid0) (dt0 u) (dt0 f12)
Inc (dt1 c1) (dt0 hid0)
Inc (dt1 fo) (dt0 Hid1)
In this model, c1 is correctly identified as state variable,

while fo is wrongly treated as state variable. This model
can be seen as a “mixture” of concentration-based and flow-
based system. The kernel set found in CM2-E2 is smaller
than that in CM2-E1:

(0,2,5) (0,2,7) (0,2,11) (0,2,13) (0,4,7)
(0,4,5,6) (0,4,6,11) (0,4,6,13)
In this kernel set, to become an element of the kernel set,

(0,4,5), (0,4,11) and (0,4,13) must be accompanied by an
additional state 6. The learning reliability also slightly de-
creases, as shown in Figure 3.

In CM2-E3, f12 becomes hidden variable, we can still
learn the target model in this experiment. Then based on
CM2-E3, in CM2-E4 we do not specify state variables,
resulting in an unsuccessful experiment. Again based on
CM2-E3, in CM2-E5 fo becomes hidden variable, this ex-
periment is similar to CM1-E5, only state variables are
known, all the other variables become hidden ones. The
target model is successfully learned in this experiment. In
CM2-E6, the state variable c1 becomes hidden variable, but
one hidden variable is specified as state variable. In this
experiment, we succeed in descriminating the target model
from other well-posed models. Based on CM2-E6,in CM2-
E7, f12 is removed, and we find there exist non-target mod-
els in the learning result. In all the successful experiments
except CM2-E2, the kernel set and learning reliability are

the same.
Some initial conclusion can be drawn from the above ex-

periments:
1. The state variables which have more than one deriva-

tive in the 0th differential plane are very important for learn-
ing, learning task will become difficult if some of them be-
come hidden variables (CM1-E3, CM1-E4, CM1-E6, CM2-
E6, CM2-E7).

2. If a learning task can not be successfully accomplished,
we can add more domain specific information to guide the
learning (CM1-E4.b). It is still possible to learn the tar-
get models. But the kernel set and learning reliability may
change.

3. The specification of state variables is also a factor
which can influence the learning. Partially or not specify-
ing the state variables will result in a large search space and
may lead to failed experiments (CM1-E3,E4,E8 and CM2
E4, E7).

4. Given the right model size, number of hidden vari-
ables, and fully specifying the state variables, the non-state
variable has the least influence on learning (CM1-E1, E2, E5
and CM2-E1, E3, E5).

5. If state variables are not specified, too many hidden
variables can lead to unsuccessful learning (CM1-E7, E8
and CM2-E2, E4).

6. Conclusions and Future Work
The work presented in this paper continues the previous
work in (Coghill, Garrett, & King 2004) and (Coghill et al.
2004). The contributions of our work are:

First, a more flexible model representation JMorven is
adopted. This is not only an alternative representation
method, but also has the potential ability to deal with fuzzy
data and reason about more than two derivatives.

Second, an problem-specific backtracking tree search al-
gorithm is proposed, which can find out all the well-posed
models efficiently.

Third, the learning of qualitative models under the condi-
tions of different hidden variables and specified state vari-
ables are systematically tested and the influence of the hid-
den and state variables are analyzed.

Last, for speeding up the experiment and avoiding re-
peated calculation, the same routine work for searching the
well-posed models is performed only once in each condition,
and the result can be used by all the experiments.

Future work will involve the following aspects: First, the
precision of the model can be improved by adding more
quantities in the quantity space. The learning task will be-
come more challenging. Second, more complex qualitative
models, which have more training data and system variables,
can be analyzed. Another direction is using the evolutionary
computation to learn the qualitative models with huge size,
in the field of which traditional methods do not perform well.

References
Bhaskhar, R., and Nigam, A. 1990. Qualitative physics
using dimensional analysis. Artificial Intelligence 45:73–
111.

Bruce, A. M., and Coghill, G. M. 2005. Parallel fuzzy qual-
itative reasoning. In Proceedings of the 19th International
Workshop on Qualitative Reasoning, 110–116.
Coghill, G. M.; Garrett, S. M.; Srinivasan, A.; and King,
R. D. 2004. Qualitative system identification from imper-
fect data. Technique Report AUCS/TR0501, Department
of Computing Science, University of Aberdeen.
Coghill, G. M.; Garrett, S.; and King, R. D. 2004. Learning
qualitative metabolic models. In European Conference on
Artificial Intelligence (ECAI’04), 445–449.
Coghill, G. M. 1996. Mycroft: A Framework for Constraint
based Fuzzy Qualitative Reasoning. Ph.D. Dissertation,
Heriot-Watt University.
Hau, D. T., and Coiera, E. W. 1993. Learning qualitative
models of dynamic systems. Machine Learning 26:177–
211.
Iwasaki, Y., and Simon, H. A. 1986. Causality in device
behavior. Artificial Intelligence 29:3–32.
Kuipers, B. 1994. Qualitative Reasoning: Modeling and
Simulation with Incomplete Knowledge. Cambridge, MA:
MIT Press.
Morgan, A. 1988. Qualitative behaviour of Dynamic Phys-
ical Systems. Ph.D. Dissertation, University of Cambridge.
Richards, B. L.; Kraan, I.; and Kuipers, B. 1992. Auto-
matic abduction of qualitative models. In National Confer-
ence on Artificial Intelligence, 723–728.
Russell, S. J., and Norvig, P. 2003. Artificial Intelligence:
A Modern Approach 2nd Edition. Prentice Hall. chapter 5,
142–146.
Say, A. C., and Kuru, S. 1996. Qualitative system identifi-
cation: deriving structure from behavior. Artificial Intelli-
gence 83:75–141.
Shen, Q., and Leitch, R. 1993. Fuzzy qualitative simula-
tion. IEEE Transactions on Systems, Man, and Cybernetics
23(4):1038–1061.
Wiegand, M. 1991. Constructive Qualitative Simulation of
Continuous Dynamic Systems. Ph.D. Dissertation, Heriot-
Watt university.

Appendix A
The JMorven Model for CM1:

Differential Plane 0

C1: Inc (dt 0 f12)(dt 0 c1)
C2: Inc (dt 0 f21)(dt 0 c2)
C3: sub (dt 0 qx)(dt 0 f12) (dt 0 f21)
C4: Inc (dt 1 c1)(dt0 qx)
C5: Dec (dt 1 c2)(dt0 qx)

Differential Plane 1

C6: Inc (dt 1 f12)(dt 1 c1)
C7: Inc (dt 1 f21)(dt 1 c2)
C8: sub(dt 1 qx)(dt 1 f12)(dt 1 f21)

Complete Fuzzy Vector Envisionment for CM1. c1={pos,
neg} means that the zero derivative of c1 is “positive” while
the first derivative of c1 is “negative”.

State c1 c2 f12 f21
ID
0 {zer , zer} {zer , zer} {zer , zer} {zer , zer}
1 {zer , pos} {pos , neg} {zer , pos} {pos , neg}
2 {pos , neg} {zer , pos} {pos , neg} {zer , pos}
3 {pos , zer} {pos , zer} {pos , zer} {pos , zer}
4 {pos , pos} {pos , neg} {pos , pos} {pos , neg}
5 {pos , neg} {pos , pos} {pos , neg} {pos , pos}

Appendix B
Compete Envisionment for CM2, supposing inflow u={pos,
zer}

State c1 c2 f12 fo
ID
0 {zer , pos} {zer , zer} {zer , pos} {zer , zer}
1 {zer , pos} {pos , neg} {zer , pos} {pos , neg}
2 {pos , zer} {zer , pos} {pos , zer} {zer , pos}
3 {pos , pos} {zer , pos} {pos , pos} {zer , pos}
4 {pos , neg} {zer , pos} {pos , neg} {zer , pos}
5 {pos , zer} {pos , zer} {pos , zer} {pos , zer}
6 {pos , zer} {pos , pos} {pos , zer} {pos , pos}
7 {pos , zer} {pos , neg} {pos , zer} {pos , neg}
8 {pos , pos} {pos , zer} {pos , pos} {pos , zer}
9 {pos , pos} {pos , pos} {pos , pos} {pos , pos}
10 {pos , pos} {pos , neg} {pos , pos} {pos , neg}
11 {pos , neg} {pos , zer} {pos , neg} {pos , zer}
12 {pos , neg} {pos , pos} {pos , neg} {pos , pos}
13 {pos , neg} {pos , neg} {pos , neg} {pos , neg}

