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Abstract 
We present a prototype of AICronus, an argumentation 
system that automates a challenging reasoning process used 
by experts in cosmogenic isotope dating. The architecture of 
the system is described and preliminary results are 
discussed. 

1. Introduction   
Scientific reasoning is a complex process, alternately 

requiring flashes of insight and tedious analysis. This 
dichotomy is evident in the process of determining an age 
for a landform using cosmogenic isotope dating. Experts in 
the field of cosmogenic geochronology frequently spend 
months on repetitive mathematical tasks, until they have 
gathered enough information to suddenly understand the 
data. The AICronus project is aimed at understanding and 
automating this process. 

Automating this reasoning process is challenging because 
the science of cosmogenic isotope dating is quite new. 
There is only a relatively small number of completed, 
detailed analyses to draw knowledge from. Therefore, it is 
necessary to build a knowledge base through interaction 
with experts. Unfortunately, it is often difficult for experts 
to clearly articulate how and why they come to specific 
conclusions. We have been working with experts in this 
field for more than two years, but our knowledge base is 
still very incomplete. Complicating the difficulty of 
acquiring the knowledge used by experts, the reactions that 
produce cosmogenic isotopes are not fully understood, 
leading to incompletely understood theories about them. 
As a result, most expert analysis relies on heuristics that 
are sometimes imprecise and frequently contradictory. Any 
system that automates the geological timeline construction 
process, then, must be able to handle both contradiction 
and uncertain heuristics gracefully. 

AICronus addresses these issues through the use of a 
nonmonotonic logic called argumentation. Argumentation 
uses symbolic logic, so that rules acquired from experts 
can be directly input into the system. In addition, the 
system’s reasoning can be presented to the user in a legible 

                                                 
 

format, facilitating engagement and speeding further 
knowledge engineering. In the argumentation architecture 
used by AICronus, conclusions can receive partial support 
(modeling uncertain heuristics) and support for a 
conclusion can be defeated by contrasting evidence or rules 
(handling contradiction gracefully).  

This paper presents the prototype version of the 
AICronus system along with some preliminary results, 
which show significant initial success in accurately 
modeling the reasoning process of isotope dating experts.  
Section 2 details the process of constructing a chronology 
for a landform using cosmogenic isotope dating. Section 3 
discusses the particular challenges that arise in attempting 
to automate parts of this process. Section 4 demonstrates 
how argumentation addresses these challenges. Section 5 
discusses the AICronus architecture in more detail. Section 
6 walks through a concrete example of the working system. 
Section 7 discusses future work for the AICronus system, 
and section 8 covers related work. 

2. Cosmogenic Isotope Dating 
Cosmogenic isotope dating is a method for computing 

the age of a landform using cosmogenic isotope 
measurements of samples taken from that landform. Other 
methods for landform dating rely heavily on heuristic 
examination of features such as lichen growth (Bradwell 
2001) or on dating materials associated with the lanform 
such as fossils (Noller, Sowers, and Lettis 2000). 
Cosmogenic isotope dating is more consistent and less 
subject to influence from the preconceptions of individual 
geologists. 

This dating procedure is based on the knowledge that 
cosmic ray particles hit the earth at a fairly constant rate. 
When these particles come into contact with certain target 
elements, they can change them into cosmogenic isotopes 
(e.g. Chlorine-36 or Aluminum-26). The creation of these 
isotopes happens at a calculable rate. Most types of cosmic 
rays penetrate only a few meters, so the radioactive 
isotopes are generated almost exclusively at the surface. 
This knowledge enables a geologist to determine how long 
a particular sample has been at the surface based on the 
number of radioactive atoms present, the sample’s 
chemistry, and other factors. The mathematics involved are 



quite complicated, and are handled by a different system 
being developed by the iCronus project at CU Boulder 
(Anderson and Bradley 2006). 

For many landforms, the length of time a sample has 
been at the surface is actually a measure of the age of the 
landform (e.g. moraines, which are formed by glaciers 
carving boulders from deep underground and eventually 
depositing them, along with soil, as the glacier retreats). 
Other landforms are formed over a longer period of time, 
or from rock that was at the surface prior to the landform’s 
formation. In these cases the length of time that samples 
have been at the surface can provide other information 
(e.g. how long the landform took to form) but will not give 
the actual age of the landform. Currently, cosmogenic 
isotope dating is used primarily to estimate ages of 
suddenly-created landforms. 

The process of cosmogenic isotope dating begins with an 
expert taking samples of surface rock—generally thin 
chips from several boulders—from a single landform. 
Significant expertise is needed to choose good samples: 
sample boulders should not be excessively weathered, 
should show no signs of having been rolled or turned, 
should usually be of similar composition to the 
surrounding surface, etc. In many cases it will only be 
possible to take a small number of samples that meet these 
requirements. Experts also record as much data as possible 
about the location and status of the samples, including the 
sizes of the boulders they are collected from, the amount of 
visible sky, and the sample’s exact location. 

After collection, the expert sends the samples to an 
accelerator mass spectrometry (AMS) lab that measures 
the chemical properties of the samples. This includes the 
chemical composition and the percentage of certain 
isotopes (e.g. Chlorine-36 compared to overall Chlorine). 
The lab’s services are extremely costly, further limiting the 
number of samples for which data are available. Based on 
these measurements, information about where the sample 
was taken, and a large amount of background knowledge, 
the expert calculates preliminary (or “apparent”) ages for 

the samples. The background knowledge involved includes 
data about changes in cosmic ray intensity, changes in sea 
level (which affects cosmic ray intensity at particular alti-
tudes), and information about the production rates of the 
isotope in question from other isotopes (Gosse and Phillips 
2001). For many of these background data, multiple 
measurements are available and will yield different results. 
Handling these calculations and organizing the background 
data is the task of the iCronus project (Anderson and 
Bradley 2006). 

Next, the expert compares the preliminary individual 
ages. If all the apparent sample ages for a single landform 
are the same, within the margins of error introduced by the 
AMS analysis, that age is assigned to the landform and the 
process is complete (the expected distribution is a 
Gaussian, the typical expectation for events affected by 
random errors). However, this happy situation rarely 
occurs. It is more usual for preliminary age measurements 
for different samples to differ by as much as 10,000 years 
(Shanahan and Zreda 2000). In this case, the expert 
attempts to explain the divergence so that s/he can assign a 
single age to the landform. The AICronus system is 
designed to assist with this explanation. 

Sometimes there is no good explanation, or there are sev-
eral explanations that cover the data equally well. Often the 
result of this first round of analysis is the conclusion that 
more samples are needed. In this situation, experts often 
reason from the existing data to guide further sampling–for 
instance, when it is not possible to determine whether 
erosion or inheritance caused a spread in ages, experts may 
take a soil sample or sample a landform at depth to obtain 
more information. This reasoning is not captured by the 
prototype version of AICronus described here; ideas for 
adding it to the deployed version are discussed in Section 
7. Figure 1 illustrates this cyclic process. 

3. Automation Challenges 
Most explanations for spread in apparent ages come from 

a short list of about fifteen geologic processes that affect 
the preliminary exposure times of samples from a single 
landform. For example, erosion gradually exposes new 
surfaces, causing some samples to have apparent ages 
much younger than the age of the landform. A “process” 
called inheritance affects samples that were exposed before 
the landform in question was formed, giving them apparent 
ages older than the age of the landform. Other processes 
include cover by snow or vegetation, gradual formation 
such as from soil deposits, or earthquakes, which may 
suddenly expose large amounts of rock at the surface. 
Multiple processes may act on a single landform. Finally, 
possibilities like lab error and mis-sampling must also be 
taken into account.  

Although we need only consider explanations from 
among a relatively small number of processes, the 
complexities of how these processes affect the data—
especially when multiple processes are involved—make 
this task far from simple. Data are noisy and frequently 

Figure 1: The process of assigning a landform's age.



cannot be trusted (experts may have mis-identified the type 
of landform they are considering, for example), and the 
manifestation of one process may be quite similar to the 
manifestations of other processes. 

Many processes that affect apparent ages of samples give 
the apparent age distribution a characteristic shape. When 
no geologic process has affected the samples, random 
errors in measurement are expected to produce a Gaussian 
distribution, with the true age of the landform equal to the 
peak of the curve. Matrix erosion of a moraine, which 
gradually exposes new boulders as the top soil of the 
moraine erodes, looks something like a skewed bell curve 
with the peak towards the older end of the scale. On the 
other hand, inheritance usually involves a simple uniform 
distribution over an age range. Figure 2 shows some exam-
ples of these distributions. Unfortunately, it is difficult to 
diagnose the process that affected a particular landform 
from the distribution of apparent ages because we rarely 
have enough samples to see the distribution shape. Instead, 
experts usually perform this diagnosis using heuristics 
about how various types of landforms are formed and how 
each process affects different landforms. Other heuristics 
are applied to the apparent distribution of the small number 
of samples: experts label three samples that are 
approximately evenly spaced erosion—not inheritance, as 
we would expect based on the a priori knowledge of 
sample distributions. The experts we are working with 
have not yet been able to explain this apparent 
contradiction. 

Choosing which geologic process is responsible for the 
data is complicated by the fact that there is generally some 
evidence both for and against several processes, a major 
challenge for automatic analysis. From our observation of 
experts in this field, it appears that a standard approach to 
this problem is to select one process and look for evidence 
both for and against that process. If it is possible to gather 
enough evidence in favor of a process and not possible to 
gather a similar or greater amount of evidence against the 

process, then it is considered a good candidate for 
explaining the data.  

4. Solution: Argumentation 
The specific task of AICronus is to assist with the analy-

sis of apparent sample ages and help determine what pro-
cesses are good candidates to explain the spread in 
apparent ages. As just mentioned, many of the heuristics 
that experts use in this process are vague and sometimes 
contradictory. For example, matrix erosion is expected to 
produce a skewed bell curve of initial sample ages. In 
practice, however, experts usually assign matrix erosion to 
cases that have a uniform distribution (Shanahan and Zreda 
2000). To further complicate matters, inheritance is the 
process expected to produce a uniform distribution! 
Contradictions may also arise when input observations are 
incorrect in some way, for example when samples are 
entered as members of one landform but have actually 
come from two different landforms (Desilets and Zreda 
2006). Heuristics like “this is a moraine, so inheritance is 
more likely” are also common and are clearly not absolute; 
we do not always conclude inheritance when the landform 
is a moraine. Therefore AICronus must gracefully handle 
both contradiction and partial support. 

In addition to these technical issues, experts are unlikely 
to agree with any conclusions made by AICronus unless 
they understand the reasoning behind those conclusions. 
Thus it is also critical to the usefulness of AICronus that it 
be capable of convincingly presenting the reasons for its 
conclusions. This capability provides the additional benefit 
that students of geology can examine the reasoning and 
heuristics that are used in selecting a process. 

Argumentation systems are a good solution here. They 
provide the functionality needed for AICronus to be useful  
to both experts and students in cosmogenic isotope dating. 
They are capable of handling contradictory rules and input 
data, partial support for conclusions, and can report their 
reasoning in a clear and understandable way (Krause, 
Ambler, Elvang-Gøransson, and Fox 1995) (Doyle 1983). 
In fact, the reasoning used in argumentation appears to 
closely match the flexibility and methodology that experts 
in the field actually use in their analyses. 

The argumentation framework used by AICronus is 
based on the Logic of Argumentation introduced by Krause 
et. al. (Krause, Ambler, Elvang-Gøransson, and Fox 1995). 
Unlike in traditional first-order logic systems, rules, input 
data, and “proofs” in argumentation systems may all be 
considered defeasible. Proofs in classical logic correspond 
to arguments in these systems—an argument is a reason for 
believing some conclusion, but contradictory arguments 
may also be formed. 

Krause et. al. implement an argumentation system as an 
extension to a limited form of first order logic, where rules 
and data are labeled with a confidence level used to 
determine which of two arguments is stronger. As 
arguments are built, the confidences propagate to their 
conclusions using some system of combination (defined as 

Figure 2: Apparent-age distributions (number of samples 
vs. apparent age) produced by various processes. 



appropriate to individual problems). Arguments are labled 
with the rules and data used to form them. The logic is 
limited because the ‘not’ operator is not implemented and 
disjunction is handled only implicitly by defining multiple 
rules that can apply to the same conclusion. 

The confidence values in AICronus are in the range [-1, 
1], and are currently combined using several different 
functions, selected by which rule is being used. Negative 
confidence in some literal is interpreted as confidence in 
the negation of that literal (zero confidence implies the 
system knows nothing about a term). Conclusions 
generated by the system are labeled with the arguments for 
and against them, so that as new information is discovered, 
the arguments about a conclusion can be examined and 
possibly defeated. An argument can be defeated in two 
ways: a stronger argument can be found against the 
conclusion of the argument (rebuttal), or arguments can be 
found against the evidence used in the defeated argument 
(undercutting). 

AICronus treats the arguments for and against a particu-
lar conclusion like grains of sand on a scale. Stronger 
arguments, formed using rules and data with higher con-
fidence levels, add more weight to their side of the balance. 
However, a large enough number of poor arguments on 
one side of the scale can overpower a single good 
argument on the other side. Unlike a balance loaded with 
sand, additional “weight” is added in a system of 
decreasing returns: two poor arguments of the same quality 
have less weight than one argument of twice their quality. 
That is, if a single argument has a confidence of 0.8, it will 
defeat two combined, rebutting arguments, each with a 
confidence of 0.4 (but it will be defeated by three such 
arguments). Undercutting is handled by reducing the 
degree of confidence in the undercut argument. 

5. Constructing Arguments 
AICronus takes as input all available data about a set of 

samples, along with information about the site where they 
were collected. This includes both qualitative data (e.g. the 
type of landform and the color of the boulder the sample 
was taken from) and quantitative data (e.g. the calculated 
apparent sample ages and the elevation of the landform). 

Information about nearby landforms may also be included 
in the input, since the ages of these landforms may imply 
strict upper or lower bounds on the age of the landform in 
question (e.g. moraines must decrease in age as the eleva-
tion in a single valley increases because of the way they 
are formed). 

AICronus generates a list of processes that may have 
affected the landform, with more-common processes (as 
specified by experts) higher on the list. Arguments for and 
against each process on the list are generated via backward 
chaining, building an argument tree. Once a process has 
been found for which the “pro” evidence significantly 
outweighs the “con” evidence, the system stops and reports 
its results to the user. These results include all of the 
processes so far considered and the complete arguments for 
and against each process. Processes with the most 
convincing arguments are listed first. The user can choose 
to generate arguments for more processes if s/he finds the 
presented results insufficiently convincing. 

5.1. Arguments 
Rules in AICronus have a standard first-order logic struc-

ture, where a rule is written in the form A=>C.  A may be a 
single literal or the conjunction of several literals. An 
argument is a collection of trees, with rules from the 
system’s database forming the nodes of the trees. Rules in 
child nodes have the same variable in their conclusions as 
one of the literals on the antecedent side of the parent 
node’s implication. At the root of each tree is a single rule 
that allows AICronus to argue about whether some 
particular process is responsible for the observed data. The 
leaves of the trees are drawn from the observations entered 
by the user.  

Figure 3 shows an example collection of argument trees 
in AICronus which might read: “Erosion is a likely 
explanation because moraines are likely to erode and this 
landform is a moraine. However, there is no visual 
evidence of erosion such as a flat crest or weathering, 
making erosion a less convincing conclusion.” The total 
confidence in the argument is determined by the total 
confidence in the trees that argue for the root process 
versus the total confidence in the trees that argue against 
the root process. 

5.2. Rules 
AICrounus rules have a number of parts. Rules are 

implicitly built around the classic implication structure 
from first-order logic. In addition, they contain guards to 
indicate when a rule is applicable, and instructions for how 
to obtain a confidence for the conclusion of the rule from 
the confidences in its premises. Figure 4 shows an example 
of an AICronus rule in with its parts labeled. Each of these 
parts is discussed in more detail below. 

Conclusions and Antecedents These two fields define 
the implication that is the main part of the rule. In a 
classical first-order logic system, when the antecedents of 
an implication are true, we can conclude the conclusion 

Figure 3: An example AICronus argument. At the top is the 
conclusion being argued about. Beneath is a collection of trees 
arguing about this conclusion.  Rules are shown in boxes and 
entered observations in ovals. 



with absolute confidence. In AICronus, when there are 
arguments supporting the premises in a rule, they can be 
used, along with the rule, to form an argument for the 
rule’s conclusion. Unlike in a classical system, this 
argument may eventually be overturned, possibly causing 
us to conclude the negation of the conclusion. 

When combining antecedents with a rule to form an 
argument, the backwards-chaining engine makes no 
distinction between evidence for the premises and evidence 
against them. Antecedents with a negative confidence 
rating are treated identically to those with a positive 
confidence, although frequently (as in the example) this 
case will generate an argument against the rule’s 
conclusion.  

The rule in Figure 4 encodes the fact that when matrix 
erosion is the selected explanation for a spread in sample 
ages, we will choose the oldest sample age as the correct 
age for the entire landform. It is important to make sure 
that this age will be compatible with any restrictions on 
this landform’s age due to known ages of surrounding 
landforms. In addition, our experts use a heuristic that 
tends to reject the choice of a single sample’s age for the 
age of the landform when it is distant from the other 
samples. Arguing for whether the chosen age is a “good-
final-choice” addresses both of these issues. Each of the 
antecedants is labeled with a type to tell the engine how to 
handle it. These types are discussed in more detail in 
section 5.3. 

Guards The guards on an AICronus rule prevent the 
system from building arguments using rules that are not 
applicable to the current case. For example, AICronus has 
a rule that snow cover is more likely if samples appear 
younger at higher elevations. However, elevations are 
recorded for all samples, even when they were collected at 
essentially the same elevation. Obviously the rule only 
makes sense when we are dealing with elevation ranges 
large enough to have different levels of snow cover. 
Therefore the guard on the rule states that it is only 
applicable when the elevations of the samples have a large 
enough range. 

In Figure 4, the guard states that the rule is only 
applicable when the landform under consideration is a 

moraine. This is because matrix erosion is a process 
specific to moraines, and it would not make sense for the 
system to consider it as a possible conclusion on a 
landform that is not a moraine. 

Confidence Combinations We intend to produce a 
standardized methodology to combine argument 
confidences into consistently meaningful values. 
Unfortunately, we currently have an insufficient number of 
cases to generalize confidence. To allow for rapid feedback 
and prototyping, confidence combinations are handled 
somewhat individually until we can determine the correct 
unified method. We add new combination methods to the 
system as we add rules for which none of the current 
methods seem adequate, so the list of combinations types is 
expanding. Our current methods for confidence 
combination include: 
• Scalar combinations: this method uses a linear 

combination to combine the confidences in the 
antecedents into a confidence in the rule’s implicant. 
These combinations are used in rules where all the 
antecedents are directly related to the conclusion. For 
example, moraines are formed with a pointed crest 
which flattens as they erode: A flattened moraine crest is 
evidence for matrix erosion, and an unflattened crest is 
evidence against it. Selectors (such as in Figure 4) are a 
special case of scalar combinations where all weights 
but one are 0. 

•  Asymmetric scalars: this combination is like simple 
scalars, except the linear combination coefficients 
change based on whether the confidence in the 
antecedent is positive or negative. These are used in 
cases where the antecedent is more useful in drawing 
conclusions one way than another. For instance, we may 
be interested in whether one sample came from a 
different landform than the rest. If the samples were 
collected from the bedrock of the area, we can be very 
certain that they came from the same landform. 
However, we cannot be confident of a different origin 
simply because the samples were not taken from 
bedrock. 

• And-like combinations: if the confidence of every 
antecedent is positive, a constant confidence is assigned 
to the implicant of this rule. If any antecedent’s 
confidence is negative, then the confidence is the 
negative of the constant. For example, if all samples 
entered have similar ages, we can conclude no process is 
needed to explain the data. Otherwise, we need to look 
for some process to explain our observations. 

•  Combination combinations: some rules use a compo-
sition of the other combinations (e.g. a scalar combi-
nation, instead of a constant, as the confidence value for 
an and-like combination). For instance, we can guess 
that a location is not cold enough for very much snow, at 
least in recent geological time, if it is both near the 
equator and at a relatively low elevation. Our confidence 
in the likelihood that the area does not get cold enough 

Figure 4: An example AICronus rule with individual parts 
labeled. 
 



for significant snowfall goes up as we move closer to the 
equator and to even lower elevations. 

It is apparent from this list of combination mechanisms 
that most combinations include some scaling factors. 
Selecting the correct weights for these scaling factors is 
problematic from both a theoretical and practical 
standpoint (Doyle 1983). We have addressed this problem 
initially by using only a small set of actual values for 
weights corresponding to English phrases used by experts 
to describe how convincing they find the evidence in each 
rule (such as “very convincing,” “somewhat convincing,” 
“minor evidence,” etc.). We have assigned each of these 
phrases a weight value. Numeric weights are used in the 
AICronus prototype solely for convenience purposes, and 
may be changed to symbolic confidence values when we 
begin to use a more-uniform system of confidence 
combination. We believe one of the strengths of 
argumentation is that it allows the system—and its users—
to focus on the reasoning behind a conclusion rather than 
the specific value assigned by the system, so that the 
somewhat ad hoc choice of values is not a major weakness. 

5.3. Evidence 
The data AICronus uses to draw its conclusions are 

referred to as evidence. The antecedents in a rule’s impli-
cation are patterns for evidence—they indicate what 
evidence will be needed to satisfy the rule. The actual data 
that causes AICronus to conclude something about the 
antecedent is the evidence. The system has four different 
kinds of evidence: observations, simple calculations, 
complex calculations, and arguments. The distinction 
between these types of evidence is inspired by the PRET 
(Stolle and Bradley 1996) system. The separation allows 
less computationally intensive rules to be considered first. 

Observations Observations are direct uses of the data 
entered by the user. Usually an observation is some binary 
involving the data, for example checking that all samples 
have apparent ages less than a certain value. Because the 
user’s observations are generally assumed to be noisy, a 
piece of observational evidence has more confidence if the 
relation is stronger. For an antecedent like “elevation < 
10000 ft.”, we will be more confident that the condition 
has been met with an elevation value of 7000 ft. than a 
value of 9999 ft. Observations may also take the form of a 
quantifier such as for-all or there-exists. These are handled 
by selecting the highest (for there-exists) or lowest (for for-
all) individual confidence value among the quantified 
entities.  

Simple Calculations Simple calculations are generally 
calculations of simple statistical properties of entered data. 
They are used for the purpose of generating the 
calculation’s results and all simple calculations have a 
confidence value of 1. A simple calculation might find the 
mean of all apparent sample ages so that another part of the 
rule can check that all apparent sample ages fall within a 
certain distance of this mean. 

Simulations More-complex calculations are called “sim-
ulations” because they usually are. Simulations have 
varying confidence values based on their results. They are 
implemented as procedures called by the engine examining 
the rules, allowing them to be as complex as necessary. An 
example simulation tries different levels of erosion, 
looking for the rate that best explains the distribution of the 
apparent sample ages. The simulation returns this erosion 
rate (which can then be checked to confirm, e.g., that it is 
reasonable for the climate of the sampling area) and a 
confidence value indicating how well the returned rate 
reduces the spread in the calculated ages. 

Arguments Sometimes the antecedents of a rule cannot 
be directly gleaned from the input data. In this case it may 
be necessary to build a sub-argument for an antecedent and 
to use the sub-argument as evidence. For example, we 
know that snow cover is much less likely in areas that are 
not cold. The system can build a sub-argument for whether 
the sampling area is cold as part of an overall argument 
about snow cover. 

6. AICronus in Action 
Although still in a prototype stage, AICronus is able to 

produce answers and arguments similar to those produced 
by experts. Here is an example set of input data created for 
the purpose of communicating with experts about their 
reasoning about specific examples. 

Landform Type: Moraine 
Flat Crest 
 

Sample Age 
(yrs) 

Error 
(yrs) 

Chemistry 

1 95000 5000 A 
2 100000 6000 A 
3 105000 4000 A 
4 110000 4500 A 
5 115000 5500 A 

 
Two experts, shown this set of input data, concluded that 

the process affecting the data was almost certainly matrix 
erosion, primarily because of the distribution of apparent 
ages but also because the landform is a relatively old 
moraine with a flat crest. AICronus considered inheritance, 
but rejected it because the errors were too small and 
because all the sample appeared to have the same origin, 
making different inheritance levels for different samples 
unlikely. 

Here is AICronus’s actual output, given this input set: 
 
argument for conclusion matrix erosion: 
total confidence: 0.87 
  evidence for erosion: 
    age is approximately linear 
    landform is relatively old (>100000 yrs) 
    visual erosion observed 
     argument for conclusion visual-erosion: 



     total confidence: 0.6 
       evidence for visual-erosion: 
         flat crest 
       evidence against visual-erosion: 
         (none) 
    consistent with other landforms in area 
     argument for conclusion consistent-age: 
     total confidence: 1 
      evidence for consistent-age: 
        no other landforms known 
      evidence against consistent-age: 
        (none) 
    landform is a moraine 
  evidence against erosion: 
     (none) 
 
argument for conclusion inheritance: 
total confidence: 0.37 
  evidence for inheritance: 
    consistent with other landforms in area 
     argument for conclusion consistent-age: 
     total confidence: 1 
     evidence for consistent-age: 
       no other landforms known 
     evidence against consistent-age: 
       (none) 
    removal of older samples allows “no 

process” 
    landform is a moraine 
    does not violate max theoretical inher-

itance 
  evidence against inheritance: 
    small error values (<10000 yrs) 
    samples have same origin 
     argument for conclusion same-origin 
     total confidence: 0.5 
     evidence for same-origin: 
       all samples have same chemistry 
       not taken from bedrock 
     evidence against same-origin: 
       landform is a moraine 

 
Because AICronus rules are already built around the idea 

of arguments, producing an English argument from a set of 
rules is relatively simple. The system simply needs to print 
a representation of all the argument trees for all the 
conclusions it considered. Since the trees already contain 
both the rules and the evidence that allowed the system to 
use each rule, simply translating each rule and its evidence 
into English produces a complete and coherent argument. 

Although both inheritance and erosion have positive con-
fidence values, the system’s confidence in erosion is much 
higher. This exactly matches the judgement of the experts 
who were shown these data. Moreover, AICronus’s 
arguments about the possible processes closely match the 
arguments given by the experts in each case. Despite the 
difficulties inherent in the field of cosmogenic isotope 
dating, AICronus already shows significant promise in 

understanding and automating the reasoning used by 
experts. 

7. Future Work 
AICronus is a work in progress. We plan a number of 

improvements over the next several years. The most 
critical of these improvements is expanding the system’s 
knowledge base. We are in the process of using this 
prototype version to solicit feedback and new knowledge 
from experts. In addition, we are working on integrating 
this system with the iCronus project (Anderson and 
Bradley 2006) so input data need not be entered by hand 
and output arguments can be presented visually rather than 
via the current command-line interface. Our current 
interface requires the user to enter a complete set of 
samples as Scheme code—an obvious drawback for many 
users. We expect the system to go into regular use by 
geologists once these improvements are complete. 

We are considering other improvements to make the 
system more user-friendly. These include removing the 
numeric confidence values in the output and presenting 
arguments in a more natural prose form. Currently the 
system does not provide any assistance for going back to 
collect more samples to distinguish between processes that 
appear to have equally good arguments. We are 
considering an approach similar to (McIlraith and Reiter 
1992) for implementing this functionality. 

Other future projects include allowing the user to engage 
in an argument with the system to update the knowledge 
base over time based on user input. We also hope to apply 
this framework to problems in other fields. As discussed 
above, the major strength of the argumentation framework 
is that it copes well with uncertain and contradictory 
information. These features often appear in new or rapidly 
changing scientific fields. Although we expect that the rule 
and argument structures of AICronus will translate well 
between fields, areas with more conclusions might require 
a more performance-aware engine. Other fields might also 
require us to consider new types of evidence. 

8. Related Work 
Many diagnostic systems solve problems similar to the 

one solved by AICronus, in which there is some normal, 
expected behavior (in isotope dating, all samples of the 
same apparent age) and the causes of divergences from this 
behavior (e.g. a geologic process) must be diagnosed. 
However, the predominant paradigm in medical diagnosis 
is to build a complete model of a system and to use that 
model to make predictions about malfunctions (Lucas 
1997), (Struss 2004). This methodology is not suited to our 
particular domain because complete models of most 
geologic processes simply do not exist. In addition, model-
based systems are not as suited to handling contradiction. 

Diagnosis systems that handle contradiction do exist, for 
example (Doyle 1983), (Santos 1991), (Cem Say 1999) and 



(Gaines 1996). However, all of these systems use 
“absolute” rules. It is not possible to express the idea that 
some data may only partially support a conclusion. Instead, 
the conditions under which the rule does not provide 
support are explicitly encoded in the system. AICronus 
needs to include rules for partial support of conclusions in 
order to accurately reflect the reasoning process used by 
experts. For instance, experts are more likely to accept 
(and require more evidence to reject) an “inheritance” 
conclusion for a moraine than for other landform types. 
Trying to model this behavior without an ability to express 
partial support would be extremely difficult. On the other 
hand, all of these systems are capable of presenting their 
reasoning to the user to help convince experts of initially 
rejected conclusions, an important feature of AICronus. 
(Santos 1991) is also capable of presenting alternative 
conclusions to the user so that if the user does not agree 
with a particular conclusion the tool is likely to still be 
useful (another AICronus feature). 

Several authors have discussed the virtues of presenting 
the reasoning behind a system’s conclusions in the form of 
trees or arguments, including (Boy and Gruber 1990) 
(Bouwer and Bredeweg 2002) and (Gaines 1996). (Puyol-
Gruart, Godo, and Sierra 1992) points out that even when a 
particular conclusion cannot be reached by a reasoning 
system, it is likely that presenting what the system has 
managed to determine will be useful to the user. AICronus 
handles this situation by reporting its complete arguments, 
even in cases where the absolute values of the confidences 
are quite small. 

Case-based reasoning (Kolodner 1993), (Cunningham, 
Bonzano, and Smyth 1995), and (Clark 1989) presents a 
way to sidestep the issues of partial support and 
contradiction by presenting intact the reasoning of experts 
on previous cases that are similar to the current problem 
instance. Unfortunately, case-based reasoning is unsuitable 
to AICronus because the field of cosmogenic isotope 
dating is still very new and relatively small. As a result, 
there are too few already-analyzed cases to cover all of the 
possible variables in selecting a responsible process. 
(Surma and Vanhoof 1995) offers a solution to this 
objection by using rules for “normal” cases and case-based 
reasoning for cases that are exceptional in some way. 
Unfortunately, the problem being solved by AICronus has 
so many variables to address that it is difficult to classify 
any case as “normal.” 

(Turner 1992) uses schemas—abstracted cases—to 
perform diagnosis by considering particular symptoms. 
When a symptom is unique to a particular type of disease, 
the system considers diagnosing that disease. If the symp-
toms expected for that disease are observed, then it is 
considered a correct diagnosis. This architecture is not 
suitable for isotope dating because it fails to handle 
contradiction well. In addition, schemas are difficult to 
extract because it is difficult to determine what is typical 
for any process. 

Several kinds of defeasible reasoning besides argumenta-
tion have been put forth by various authors. These include 

circumscription (McCarthy 1980), (McCarthy 1986), 
default reasoning (Reiter 1980), (Doyle 1983), and other 
forms of nonmonotonic reasoning (Pereira, Alferes, and 
Apar’icio 1991), (Gaines 1996). Circumscription allows 
the definition of normal situations and the cases that can 
circumscribe them. It requires the definition of specific 
aspects that are abnormal only in abnormal situations, so 
that it is necessary to create a large number of “aspect” 
variables to express all of the possible abnormal situations. 
Default reasoning uses rules with default conclusions and 
then defines specific exceptions where they do not apply. 
This is similar to the “guards” on AICronus rules which 
prevent them being used to build arguments in some situ-
ations. The nonmonotonic logic defined in (Pereira, 
Alferes, and Apar’icio 1991) assigns a likelihood to 
various rules so that they can normally, sometimes, or 
exceptionally apply. Rules have conditions stating 
specifically when they do apply. (Gaines 1996) uses a tree 
structure for rules with default conclusions at the root and 
repeated refinements or rejections of the initial 
conclusion(s) as the tree is descended. 

While all of these logics are excellent choices for solving 
many different problems, they all require some explicit 
definition of when particular rules are defeated. The heu-
ristics used by our experts are insufficiently complete for 
these explicit definitions. Also, all of these nonmonotonic 
logics use defeat of specific rules rather than attacking 
conclusions. AICronus rules are not bound in a strict 
fashion to conclusions; a rule may be in support of a 
conclusion (but turn out to be unimportant in light of other 
rules or conclusions) or against one (but be negated by the 
presence of higher-confidence results elsewhere). 
(Etherington, Kraus, and Perlis 1991) describes other 
problems with various nonmonotonic logics. 

There is a large body of work on different kinds of argu-
mentation systems. Most of this work grapples with the 
question of when it is appropriate to declare a particular 
argument defeated, with different authors reaching various 
conclusions. Most authors (Dung 1995), (Pollock 1994), 
(Vreeswijk 1991), (Farley 1997), and (Prakken 1996) 
consider only absolute defeat of arguments. Little work on 
partial support and defeat has been done, although the 
Logic of Argumentation introduced by Krause et. al. 
(Krause, Ambler, Elvang-Gøransson, and Fox 1995), on 
which the AICronus framework is based, does partially 
address these issues. 

Few results exist for applying argumentation to specific 
problems. Most practical systems are aimed at communi-
cation-based applications, especially communication 
between agents (Parsons, Sierra, and Jennings 1998). The 
idea of argumentation as a form of communication has also 
been explored by (Prakken 1996), (Farley 1997) and 
(Vreeswijk 1993), who cast the construction of arguments 
as a form of dialectics. In these systems, two agents 
repeatedly try to form arguments for a given conclusion, 
and then defeat those arguments. (Prakken 1996) allows 
defeat to take the form of defeating particular rules, rather 
than only the more-traditional undercutting and rebuttal. 



This defeat is analogous to the attachment of confidence 
values to specific AICronus rules; rules with greater confi-
dence can defeat rules with smaller absolute confidences. 
(Farley 1997) allows the user to globally alter the relative 
strength of arguments. Three modes are allowed, where a 
conclusion is made if some argument for it exists, a 
conclusion is accepted if  there are more arguments for it 
than against it, and a strict mode where a conclusion is 
believed only if there is an argument for it and all 
arguments against it are defeated. The second mode in 
particular is similar to the mechanism used by AICronus, 
except that the strengths of the arguments in (Farley 1997) 
are not determined by which rules are used to form them—
all defeasible rules have the same believability. 

9. Conclusion 
Although still in its prototype stage, AICronus is a prom-

ising model for the process of cosmogenic isotope dating. 
Using a logic of argumentation, we have generated pre-
liminary results that closely parallel the reasoning and 
explanations of experts in the field. We expect that once 
the knowledge base for the system is complete AICronus 
will be able to reach insightful conclusions more quickly 
and consistently than experts under certain circumstances. 
In particular we expect this benefit in cases where 
superficially contradictory evidence disguises an extremely 
typical manifestation of some process. 

We expect that AICronus will be a significant 
advancement for the field of cosmogenic isotope dating. 
Among other things, creating AICronus forces experts to 
make explicit many implicit rules and assumptions, 
allowing the easier identification of faulty or missing 
assumptions. These assumptions can then be used 
consistently between different experts. New knowledge 
about cosmogenic isotope dating can be written in an 
unambiguous form, allowing easier communication of new 
knowledge. Finally, we hope that AICronus will increase 
the speed of discovery of new knowledge about the ancient 
Earth.   
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