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Abstract 
It is known that sound and complete qualitative simulators do not exist; that is, there exist inputs 
which lead to ineradicable spurious behaviors, proving whose inconsistency is an undecidable 
task, and thus any sound qualitative simulator has to include them in its output. In this paper, we 
ask whether the next best thing, that is, a single sound qualitative simulator which detects and 
eliminates all provably inconsistent predictions, is possible, and obtain a negative answer. We 
prove that, for any sound qualitative simulator Q, which possesses two other reasonable properties 
that we define, there exists an input model which causes Q to predict a spurious prediction that can 
in fact be eliminated easily by many other qualitative simulators. Our result is a qualitative 
simulation version of Gödel’s celebrated Incompleteness Theorem. We also show that, even when 
one restricts attention to models without self-reference, there exist infinitely many provably 
inconsistent inputs, which require so much time for a consistency check that such a simulator has 
to start printing out the spurious behaviors beginning with their initial states if it has a practical 
upper bound on its runtime. 

 
 

1. Introduction 

It is known [4] that sound and complete qualitative simulators do not exist; that is, 
there exist inputs which lead to ineradicable spurious behaviors, proving whose 
inconsistency is an undecidable task, and thus any sound qualitative simulator has to 
include them in its output. In this paper, we ask whether the next best thing, that is, a 
single sound qualitative simulator which detects and eliminates all provably inconsistent 
predictions, is possible, and obtain a negative answer. We prove that, for any sound 
qualitative simulator Q, which possesses two other reasonable properties that we define, 
there exists an input model which causes Q to predict a spurious prediction that can in 
fact be eliminated easily by many other qualitative simulators. Our result is a qualitative 
simulation version of Gödel’s celebrated Incompleteness Theorem. We also show that, 
even when one restricts attention to models without self-reference, there exist infinitely 
many provably inconsistent inputs, which require so much time for a consistency check 
that such a simulator has to start printing out the spurious behaviors beginning with their 
initial states if it has a practical upper bound on its runtime. 

 

2. Background 

In the following, we make use of the terminology of QSIM [2], which is a state-of-
the-art qualitative simulation methodology, although it should be noted that the results 
that we will be proving are valid for all reasoners whose input-output vocabularies are 
rich enough to support the representational techniques that will be used in our proofs. 



This section starts by clarifying some of the additional terminology to be used in the rest 
of the paper. We then list a number of previously proven facts that will be utilized in our 
arguments. 
 

2.1 Terminology 
 

Qualitative simulator input: Qualitative simulators take a system model and a 
description of the initial system state as input. The model consists of one or more 
operating region descriptions and definitions of possible transitions between operating 
regions. Each operating region description contains variable-related definitions such as 
quantity spaces and legal ranges, and constraints that hold between the variables in that 
region. In this paper, the initial state description is always assumed to contain a complete 
assignment of qualitative values to all the variables of the initial operating region. When 
some control switches and parameters of the simulation need to be set to values other 
than their defaults (e.g. when the user wants QSIM to create no new landmarks for some 
variables during simulation,) the description of these settings is also part of the input. In 
the following discussion, the term qualitative simulator input denotes a single string 
encoding all the information mentioned above. 

 
Soundness: A qualitative simulator is sound if it is guaranteed that, for any ODE and 

initial state that matches the simulator’s input, there will be a behavior in its output which 
matches the ODE’s solution. QSIM, for instance, is known to have the soundness 
property [2]. 

 
Completeness: A complete qualitative simulator would come with a guarantee that 

every behavior in its output corresponds to the solution of at least one ODE matching its 
input. 

 
The output of a sound and complete qualitative simulator, if such a thing could exist, 

would thus contain a tree of qualitative states rooted at the initial state, such that all paths 
starting from the root and ending at a leaf (for finite branches) or containing an infinite 
sequence of states correspond to a solution of an ODE matching the input, and all such 
solutions would match such a path. 

 
Consistent input: An input is consistent if and only if it could cause the prediction of 

at least one behavior on a hypothetical sound and complete qualitative simulator. 
Note that good qualitative simulators are supposed to produce an empty tree in 

response to an inconsistent input. 
 
We now define two more desirable properties for qualitative simulators, indeed, for 

almost any program. 
 
Steadfastness: A steadfast qualitative simulator is one which does not retract any part 

of its output that it has already printed. In particular, once a steadfast qualitative simulator 
has printed the root of the behavior tree, corresponding to the initial system state, its 
output is guaranteed to contain at least one behavior prediction starting from that state. 



The motivation behind our explicit definition of this very reasonable and easily 
realizable property is the interesting fact that implementations of QSIM which start 
printing out the behavior tree before the simulation is over, (this is inevitable for inputs 
that cause trees which are either infinite, or finite but so big that running the simulation to 
completion is not an option,) are not steadfast; since inconsistency can propagate 
backward from the leaves to the root, QSIM may decide to prune a branch of the 
behavior tree after adding arbitrarily many states to it [2]. This is a result of the rule 
which states that all states, except the quiescent states and the transition states (which 
satisfy the operating region transition or termination conditions), should have at least one 
consistent successor in order to be consistent. A state which has no consistent successor 
state is also inconsistent even if it passes all other filters. So a state which has been added 
to the behavior tree may be labeled much later as inconsistent, if all of its successor states 
have been labeled inconsistent. Therefore, there are inputs which QSIM may announce as 
inconsistent only after building and then destroying a large tree rooted at them. If the 
simulator does not keep such a tree in memory, but instead starts to print it out before the 
end of the simulation, the later announcement that the input was, after all, inconsistent 
constitutes a violation of steadfastness as defined above. 

 
Responsiveness: A responsive qualitative simulator starts printing a nonempty output 

within a finite amount of time after it starts running. 
Note that a responsive qualitative simulator should produce an output even if the 

input is inconsistent. In such a case, the simulator should print a statement to the effect 
that the simulation result is an empty tree. 

 
A responsive and steadfast qualitative simulator announces its final verdict about the 

input (i.e. either reports an inconsistency or prints the initial state as the root of the 
behavior tree, meaning that it has deemed the input consistent) in finite time. In the 
discussion below, we refer to this announcement as the response of the qualitative 
simulator to its input. 
 

2.2 Facts 
 

2.2.1 Exact Representation of Integers in Qualitative Simulator Inputs  
For any integer z, there exists a set of QSIM variable quantity spaces and constraints, 

from which z’s equality to a particular variable in that set can be unambiguously deduced 
[6]. This can be achieved easily by encoding the required value with addition and 
multiplication constraints. For example, if we want to express that a variable has value 5, 
then we can use following structure where all the variables are defined to be constant and 
ONE is initialized to a positive finite value: 

ONE = ONE × ONE 
TWO = ONE + ONE 
THREE = TWO + ONE 
FOUR = THREE + ONE 
FIVE = FOUR + ONE 

Here, it is obvious that ONE equals 1, and so FIVE is 5. 
 



2.2.2 Computationally Universal Qualitative Simulators Exist  
The unlimited register machine (URM), which is equivalent in power to the Turing 

machine (TM) model, is one of the many mathematical idealizations of computers [1]. A 
URM has finitely many registers which can store nonnegative integers. There is no upper 
limit for the value contained in a register. Every URM has a program which contains an 
ordered list of instructions (Table 1) to be performed on the registers. When an 
instruction (other than a jump) is executed, the next instruction to be executed is the one 
right after the current one. Table 2 contains the description of a simple URM, which gets 
two integers as input in registers 1 and 2, and gives the sum of these numbers as its 
output in register 1. 
 

URM Instructions 
)( jrinc  increments the value in register j 

)( jrzero  resets the value in register  j to zero 

),,( mkj irrjump  If j is equal to k, jumps to instruction m, 
otherwise, the next instruction is 
executed 

end terminates the computation 

Table 1:  URM Instructions 
 
 
 

i1: zero(r3) 
i2: jump(r2,r3,i6) 
i3: inc(r1) 
i4: inc(r3) 
i5: jump(r2,r2,i2) 
i6: end 

Table 2:  URM Program Computing f(x, y) = x + y 
 

Yılmaz and Say proved [10] that any given URM/input pair can be simulated in a 
qualitative simulator which supports one of several quite restricted subsets of the 
input/output vocabulary of QSIM. To simulate a URM program with p instructions, one 
constructs a qualitative simulator input with 2+p  operating regions: one for each 
instruction, one for the initialization, and one more for the finalization of the 
computation. In the qualitative simulation of the URM’s computation process, each state 
of the behavior tree (except the root, which corresponds to the initialization,) corresponds 
to the execution of an instruction. This simulation can be performed in a behavior tree 
with a single branch. (Note that this requires some additional filters which “decode” the 
input to obtain and then keep track of the exact numerical values of the simulation 
variables to be incorporated to presently available qualitative simulators, and nobody has 
seriously tried to implement the construction in [10] to our knowledge. However, an 



implementation is entirely possible, and in fact quite straightforward when compared 
with some of the mathematically much more sophisticated filters that have been 
developed for QSIM, e.g. [5, 7].) 

In fact, such qualitative simulators can be thought of as an alternative computational 
model like the URM, and appropriately prepared qualitative simulator inputs play the 
roles of the programs to run on this computational model.  

Note that qualitative simulators can be (and are) simulated by our computers; 
therefore they can be simulated in a TM, which is capable of doing everything which can 
be done by our computers [8]. It follows from the computational universality of URM’s 
that any qualitative simulator can be simulated by a URM. As a result, a qualitative 
simulator which supports one of the subsets of the QSIM input vocabulary listed in [10] 
can simulate any other qualitative simulator implementation. 

 
2.2.3 The Recursion Theorem 
This theorem, [8] which is a well-known fact of computability theory, provides the 

following technique, which can be used when one needs to construct programs which can 
store their own code in a variable, and then process it as necessary: We construct a 
program which consists of three parts; A, B, and Main, which run in this order. When 
executed, part A stores the code of the other two parts, namely, a string of the form 
<B,Main>, into a variable v. Part B then starts running, and uses the string in v to 
construct the description of a partial program which stores the value that B sees in v into 
the variable v. Note that the partial program B prepares in this manner is A itself. B then 
appends <A>, which it has just constructed, with the current contents of v, stores the 
resulting longer string, which is none other than the code of our program itself, namely 
<A,B,Main>, in v, and passes control to part Main, which can use the program’s code 
stored in v when needed. Main contains the rest of the code which makes the program 
accomplish whatever its designated task is; A and B are used just for implementing the 
recursion technique described above. 
 

2.2.4 The Halting Problem Is Reducible to Hilbert’s Tenth Problem 
As the name suggests, Hilbert’s Tenth Problem is the tenth of 23 problems which 

were announced in 1900 by the famous mathematician David Hilbert as a challenge to the 
mathematicians of the 20th century. It asks for an algorithm for deciding whether a given 
multivariate polynomial with integer coefficients has integer solutions. In 1970, Yuri V. 
Matiyasevich showed that no such algorithm exists, by demonstrating a method which 
can be used to construct, for any given Turing machine T, a polynomial P with integer 
coefficients, such that P has a solution in the natural numbers if and only if T halts on the 
empty input. As mentioned above, the original statement of the problem talks about the 
domain of integers, rather than natural numbers. However, this can be shown to be 
equivalent in difficulty to the version with the domain restricted to the natural numbers; 
see, for instance, [3]. 
 

2.2.5 Hilbert’s Tenth Problem Is Reducible to Qualitative Simulator Input 
Consistency Checking 
Yılmaz and Say have proven [10] that, even if the qualitative representation is 

narrowed so that only the derivative, add, mult and constant constraints can be used in 



QDE’s, and the simulation proceeds only in a single operating region, it is still impossible 
to build a sound and complete qualitative simulator based on this input-output 
vocabulary. This proof uses a reduction from Hilbert’s Tenth Problem, namely, a 
technique that can be used to build, for any given multivariate polynomial P with integer 
coefficients, a qualitative simulator input QI, such that QI is consistent if and only if P 
has a solution in the integers. This means that a sound and complete qualitative simulator, 
if it existed, could be used to solve Hilbert’s Tenth Problem. Although this proves that 
there can be no qualitative simulator which is both sound and complete, the 
transformation used for this purpose in [10] can also be used fruitfully to obtaining 
interesting results about sound, steadfast, responsive and naturally incomplete simulators, 
as will be seen in Section 3.2. 

 
3. Every Sound, Steadfast and Responsive Qualitative Simulator Has a “Blind 

Spot”  
 

We will now prove that every qualitative simulator which possesses the soundness, 
steadfastness, and responsiveness properties necessarily predicts a provably spurious 
behavior B, and that this same B can be recognized as spurious and filtered out easily by 
many other feasibly constructible qualitative simulators. Section 3.1 demonstrates this 
fact for qualitative simulators which support the operating region transition feature. In 
Section 3.2, we show that this feature is not required for the phenomenon we describe 
here to occur. 

 
3.1.The Blind Spot Theorem: Multi-Region Version 

 
We start by observing that qualitative simulator inputs can be designed to use a 

simple adaptation of the recursion technique of Section 2.2.3 to obtain and store their 
own code in a simulation variable. Such an input will consist of three submodels: A, B, 
Main. A, which consists of a single operating region, will contain a variable V, which it 
initializes to an integer encoding the string <B, Main>. Another variable in A is 
constrained to reach a landmark which will trigger a transition to the starting operating 
region of the multiple-region submodel B. Variable V inherits its value during all 
operating region transitions. B models a URM which uses its knowledge of the value in V 
to prepare the description of a qualitative input submodel, which models a URM that 
initializes variable V to the value B now sees in V, and then triggers a transition to the 
starting operating region of B. Note that this submodel description prepared by B is none 
other than <A>. B then combines <A> and <B, Main> to obtain <A, B, Main>, stores this 
value in V, and triggers a transition to Main, where the description of the entire input <A, 
B, Main> can be used as needed. 

 
We now note that, given any qualitative simulator C, one can build a qualitative 

simulator input MC as follows: 
MC contains the representation of a URM program. Upon starting execution, MC first 

acquires its own code <MC> using the recursion technique described above, and then 
starts to simulate C, whose code has been embedded in that of the program of MC, with 
<MC> as input. The simulation of C is performed until C gives its response about the 



input, i.e. until C either declares inconsistency or prints the initial state as the root of the 
behavior tree. If C rejects the initial state of <MC>, the program of MC ends by arriving at 
an operating region where a variable increases until it reaches a bound of its legal range, 
constituting a successful termination of the corresponding branch of the behavior tree, 
meaning that <MC> was a consistent input. On the other hand, if C prints the initial state 
of its input, the program of MC jumps to an instruction represented by the operating 
region ORC, which causes a contradiction. This can be achieved by a variable, say, S, 
which is defined in all operating regions, and whose value is inherited in all operating 
region transitions. S is constrained to be constant in all operating regions and it is 
initialized to a positive finite value. In the operating region ORC, S is constrained to be 
constant at zero. Therefore a transition into this region causes an inconsistent behavior.  

 
Now let Q be any sound, steadfast and responsive qualitative simulator. We claim 

that the input MQ is inconsistent, and yet Q does not reject this input; it starts printing a 
provably spurious prediction that begins with the initial state of MQ. We justify this claim 
with the following analysis of the execution of Q on input MQ: 

To prevent confusion, let Q0 denote the “outer” Q, and let Q1 denote the “inner” Q, 
which will be simulated as described above by the program MQ. Since Q0 and Q1 are 
implementations of the same qualitative simulator which are working on the same input 
(MQ), their actions will be exactly the same. 

There are two possibilities for the response of Q to the input MQ: Q either rejects MQ, 
or prints out the initial state of MQ. 

Let us first analyze the case where Q0 rejects MQ. Then Q1 will also reject MQ. But 
now consider what the program described by MQ does: It simulates Q1 for a finite number 
of steps to see how Q1 responds to <MQ>, and when it sees a rejection, it terminates 
successfully, without reaching a contradictory state. This is a perfectly valid behavior of 
the described system, and should of course be printed out by any sound qualitative 
simulator. Since Q is sound, we conclude from this argument that it cannot reject MQ. 

The remaining possibility is that both Q0 and Q1 will print out the initial state of MQ. 
Since Q is steadfast, printing the initial state is an irreversible action, and means that Q 
announces the input MQ to be consistent. Let us consider what the program of MQ does in 
this case: It simulates Q1 for a finite number of steps, and when it sees Q1 print out the 
initial state of MQ, it jumps to a contradictory operating region, making the branch of the 
behavior tree describing its entire execution a spurious one. Since the model is so 
constrained that no other nonspurious branches are possible, as explained in section 2.2.2, 
we conclude that MQ is, after all, inconsistent. By the argument of the previous 
paragraph, Q must announce this inconsistent input to be consistent. 

There exist other qualitative simulators which can correctly detect the inconsistency 
of this input and reject it: Consider, for example, a computationally universal version of 
QSIM, to which the “numerical” filters mentioned in section 2.2.2, that are required for 
the simulation of a URM to produce a single-branch behavior tree, have been 
incorporated. Such a simulator will start “running” the program of the input MQ, which in 
turn will simulate Q on the input MQ, see Q accept MQ as proven above, and jump to the 
contradictory operating region, at which point the “outer” simulator will propagate the 
inconsistency all the way back to the initial state and reject the input MQ. Interestingly, 
almost every sufficiently sophisticated qualitative simulator other than Q is capable of 



rejecting MQ in this manner. It is this fact which leads us to use the term “blind spot” in 
the title of this section. 

As a somewhat frustrating thought exercise, one can show that some qualitative 
simulators can sometimes “understand” that their present input will cause a blind spot 
spurious prediction, but they just cannot announce it loud, so to speak: Assume that our 
sound, responsive and steadfast simulator Q has been written by someone who knows 
about the trick that we have been discussing above. The programmer has coded Q so that 
it obtains its own code using the recursion technique, and then uses this to construct the 
string <MQ>, which will cause it so much trouble. Q can now compare its present input 
with <MQ>, but even this capability does not save it: Even when Q “knows” that the input 
is <MQ>, it cannot announce it to be inconsistent as proven above, and the only option 
available is to start print the spurious prediction. 

The argument we use to prove the existence of blind spots in sound, steadfast and 
responsive qualitative simulators has been inspired by the proof of Gödel's 
incompleteness theorem, which states that a sound formal system of axioms and rules of 
inference cannot be complete if it satisfies some simple conditions. (A sound formal 
system is one in which one cannot prove a statement to be both true and false at the same 
time. In a complete formal system, every true statement is provable.) The key point of 
Gödel’s proof is the sentence T=“This sentence cannot be proven,” which can be defined 
mathematically in any system M which satisfies the conditions. If this sentence T can be 
proven, then it is obvious that a false statement is provable; since T states that T itself 
cannot be proven. Since system M is sound, this is not a valid choice. The other 
possibility is the non-existence of a proof in system M for statement T. This means that T 
is true, and therefore M is incomplete. For more information on Gödel's proof, see [9]. 
The resemblance between the argument in this section and Gödel's proof is a result of self 
reference. In our proof, the input has to be consistent if the qualitative simulator rejects it, 
and in Gödel's proof, the statement has to be wrong if the system can be used to prove it. 

 
3.2.The Blind Spot Theorem: Single-Region Version 

 
In the proof of Section 3.1, the operating region transition feature of the QSIM 

vocabulary played a critical role, since it is due to that representational item that URM’s 
can be modeled. In this section, we show that the problem demonstrated in that section 
persists even when the operating region transition feature is excluded from the qualitative 
simulation vocabulary. 

Let Q be any sound, steadfast and responsive qualitative simulator which works with 
the restricted vocabulary described above. We will now demonstrate that there exists an 
input which is inconsistent but which is announced to be consistent by Q. For this 
purpose, we first construct a Turing machine named T. 

T starts to simulate Q’s simulation of an input M, whose preparation will be described 
shortly. On the first response of Q, T stops the simulation. If Q rejects its input, T halts; 
otherwise, T loops forever. 

 T prepares the input M, which it feeds to U, as follows: T first obtains its own code 
<T> by recursion, and then it sets up a polynomial D, which has a solution if and only if 
T halts with the empty string as input, (The details of this computation are explained in 
the next two paragraphs.) T then encodes D as a qualitative simulator input M using the 



technique described in [10], (Section 2.2.5) setting the initial magnitudes of all the 
simulation variables representing the polynomial variables to (0, ∞). 

The transformation used by T to encode its own halting status in a multivariate 
polynomial is realized in two stages. T first employs the techniques of [3] (Section 2.2.4) 
to produce a polynomial D1 defined on the domain N (including zero). Since we will 
specify to the simulator that we are looking for a solution where all the polynomial 
variables are positive, as mentioned in the previous paragraph, what we really want here 
is a polynomial which has positive roots if T halts. So T transforms D1 to another 
polynomial D in the following manner: 

Given a polynomial ),(D 211 nxxx L , which is defined on N, we will build a new 
polynomial D, which has a solution in the positive integers, if and only if ),(D 211 nxxx L  
has a solution in the set of natural numbers. D is the product of all the variations of D1. 
By a variation of D1, we mean a polynomial which can be obtained by setting some of 
the variables of D1 directly to zero. Since there are two possibilities (zero or not) for each 
variable, there are 2n variations of D1.  
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Having described T, we immediately proceed to our proof. Q can either find the input 

M inconsistent, or can start to print out the initial state. Let us analyze these cases.  
Assume that Q says that M is inconsistent, and that therefore T halts. But if T halts, 

then D has a solution, and M is consistent. So Q has incorrectly rejected a consistent 
behavior. Since Q is sound, this is impossible, so Q cannot reject M. 

So Q accepts M. But then T is a TM that does not halt, meaning that D has no 
solution, and that M is inconsistent. So Q accepts an inconsistent model. 

 
4. States Checkable with High Cost  

 
In [10], it is shown that a qualitative simulator can simulate a URM. Now, we will 

use this fact to construct a qualitative simulator input whose consistency requires )2( knΘ  
time to be detected, where n is the size of the input and k > 0. 

Consider any EXPTIME-complete language A. The fastest algorithm which decides A 
has superpolynomial time complexity, since all other languages in the class EXPTIME 
can be reduced to A in polynomial time, and it is known that P⊂EXPTIME [8]. Since A 
is decidable, a URM which decides it exists, call this URM U.                                                                           

We will use a modified version of the technique in [10], to encode U and its input as 
an input for a qualitative simulator Q. The only difference from [10] will be the number 
of finalization operating regions. We need two separate finalization operating regions. 
Since Q will simulate a decider, one of the regions will stand for yes, while the other will 
stand for no. The no operating region contains an inconsistency with regard to the other 
operating regions, so if the simulation reaches the no operating region, this will result in a 
spurious behavior, and since there will be at most one simulation branch, the input will be 
inconsistent in this case. The yes operating region does not contain an inconsistency, and 



therefore in the case of reaching there, the simulation will output a single nonempty 
behavior successfully. 

Now, let us construct a Turing machine T for deciding A. T reads its input string x, 
and uses the technique described in the previous paragraph to construct a qualitative 
simulator input M, which encodes the URM U working on input x, and then simulates Q 
on input M until Q gives its response to the initial state. If Q prints the initial state, this 
means that x∈A, and T prints yes; if Q rejects the input M due to inconsistency, this 
means x∉A, and T prints no. (Note that this construction is guaranteed to be valid only if 
Q is steadfast.)  

Let us calculate how fast the fastest possible qualitative simulator Q can respond to M 
in this scenario. Let the length of x be n. The length of the input M of the qualitative 
simulator is )(nΘ , since the only operating region of M whose size depends on n is the 
starting region, where the value x is supposed to be encoded as the initial value of U’s 
first register, and this can be done using a set of constraints that can be expressed in )(nO  
symbols. All the other operating regions have fixed lengths that do not depend on x. So 
M  is )(nΘ . Now, we know that for some values of x, the fastest possible T will have to 

run for )2( knΘ  steps. If one leaves the simulation of Q aside, it is clear that the remaining 

parts of T have a total runtime of )(O n . Since the total time is )2( knΘ , this concludes 

that time required for Q should also be )2( knΘ . Since M  is )(nΘ , and n is )( MΘ , Q is 

seen to require )2(
k)( MΘΘ  steps, that is, an exponential amount of time in terms of the 

size of its own input, to decide about the consistency of its initial state. 
If one thinks about QSIM (a version which has been augmented with the numerical 

filters to ensure a single branch while simulating the URM, and which has been 
guaranteed to act steadfastly, at least for the inputs it will encounter in this construction, 
by making sure that it starts printing the constructed state tree only when the simulation is 
over,) in this scenario, it is clear that the announcement of the verdict about the initial 

state will take )2(
k)( MΘΘ  steps, since QSIM would construct the branch all the way to its 

end, and then, in case of a no answer, propagate the inconsistency all the way back to the 
initial state. The proof above shows that this runtime is the best that can be achieved by 
any qualitative simulator. 

We conclude that, for any sound, responsive and steadfast qualitative simulator which 
has a practical (i.e. polynomial) upper bound on its runtime, there exist infinitely many 
provably inconsistent inputs, which require so much time for a consistency check that the 
simulator has to start printing out the spurious behaviors beginning with their initial 
states. 

There exists an infinite hierarchy of languages which require worse and worse 
runtimes than those in EXPTIME [8]. All these can be used to demonstrate the existence 
of spurious behaviors which are eradicable in principle, but ineradicable in practice, by 
the same argument as above. 

 
5. Conclusion 

 



We proved that there is no single sound, responsive and steadfast qualitative 
simulator which can detect and eliminate all eradicable spurious predictions. 
Furthermore, when practical limits are imposed on the runtime, the set of spurious 
predictions that can be eliminated is a dramatically small subset of the set of all 
eradicable spurious predictions. 

We acknowledge that the models involved in our arguments are not of the kind that 
would normally be submitted to a qualitative simulator by a sensible user. But getting rid 
of the occasionally predicted eradicable spurious behavior is a desirable thing for those 
normal users as well, and we hope that the findings reported here might be useful for 
researchers interested in constructing qualitative simulators with improved theoretical 
guarantees and additional filters of increasing mathematical sophistication. 
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