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Abstract

In this paper we introduce a methodology for extracting test-
cases from qualitative knowledge which represents the ex-
pected behavior of the environment of a system under test.
Usually in software engineering test-cases are only derived
from the requirements documentation and do hardly consider
environmental constraints. This is especially problematic if a
system like a mobile device has interactions with the environ-
ment which cannot be foreseen in advance in all details. An
approach that is based on the behavior of the world which is
external to the system would help to generate test cases which
are realistic and capture the whole range of interactions. The
use of qualitative reasoning for representing for example the
physical world is an advantage because the underlying mod-
els capture all possible behaviors and thus guarantee com-
pleteness of the generated test-case set to some extent.

Introduction

The complexity of systems and software increases every
year which is mainly caused by a strong demand for smarter
products that have to provide more and more functionality.
For example in the automotive industry the number of CPUs
with control software running on it is still increasing. You
should not wonder that the number of such control units on-
board of a vehicle is likely to more than 40. Because of
the fact that control units even implement different func-
tionalities there is also heavy communication between them.
Hence, complexity of the whole system increases and makes
it difficult to construct such systems and to validate and ver-
ify them. Moreover, there is a tendency that less and less
effort is spent in verification and validation (V & V) due
to market requirements, e.g., pre-defined dates for introduc-
ing a new product, and economical requirements, e.g., labor
costs and expected revenue. Such considerations of course
do not apply in the development of safety-critical systems
like vehicles.

A proposed solution to overcome the mentioned problems
is to automate testing to some extent. This can be done by

*This work has been supported by the FIT-IT research project
Self Properties in Autonomous Systems project (SEPIAS) which is
funded by the Austrian Federal Ministry of Transport, Innovation
and Technology and the FFG.

Copyright (© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

providing tools for test execution and test-case generation.
The former helps to reduce effort in running test-cases espe-
cially in cases of several product releases and where regres-
sion testing is necessary. Such test execution tools also pro-
vide statistical information regarding failing test-cases and
other measures. Test-case generation tools are used to gen-
erate test-cases from specifications or from the source code
which fulfill certain requirements like coverage or maximiz-
ing the mutation score. One important aspect of develop-
ment of good test-cases especially for system tests as part of
the validation procedure is that test-cases should reflect pos-
sible interactions between the system and its environment.
For example, if there is no pre-defined order for entering
data into a system, different sequences have to be tested.
Moreover, unexpected but possible interactions have to be
tested. For example, what happens when killing a process
which has an open transaction with a database? If the data-
base software is correct, the transaction is not allowed to be
confirmed in order to ensure integrity. In this case a roll-
back procedure would be necessary.

In this paper, we focus on the generation of test-cases
from qualitative models. The reason for that is the need
for test-cases which test not only specified requirements but
also unexpected but still possible interactions of the system
with the environment. Qualitative reasoning is appropri-
ate for that purpose especially when generating test-cases
for embedded systems that have to work more or less au-
tonomously. One reason is the fact that QR models capture
all possible behaviors which make them a perfect choice for
explanation and in our case test-case generation. For test-
case generation using QR models we have two application
areas in mind:

1. Systems that have to have knowledge of its domain in or-
der to fulfill a certain task. Such systems might be con-
trol or decision support systems. For example, if we want
to have an automated advisor that helps us in deciding
actions for protecting the ecosystem (or some parts of
it like a river), we have to provide test-cases which de-
scribe a range of possible scenarios. For the generation
of such test-cases someone obviously has to have knowl-
edge about the considered ecosystems. If we want to au-
tomate test-case generation, the test-case generator has to
use knowledge about possible behaviors of the ecosystem.
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Figure 1: An mobile embedded system with a solar panel
for providing electricity

2. The second scenario considers systems that implement a
certain functionality and interact with the surrounding en-
vironment. In this case knowledge about the behavior of
the environment can be used to generate test-cases that
are unexpected. In this case the environment knowledge
is not used to test the basic functionality of the system but
to test the interaction with its environment. This is espe-
cially important for system tests.

In the paper we will use an example from the second ap-
plication area but the ideas should be applicable as well for
the other area.

Basic idea

To illustrate the basic idea of our approach we use a small
example which is depicted in Figure 1. In this example a
solar panel is used to provide electrical power of mobile em-
bedded systems. The system comprises a battery which is
loaded whenever the solar panel is providing energy, and
other components like a GPS for measuring the global po-
sition and a GSM module for communicating with a server.
Because the systems have to fulfill a task, e.g., sending its
position to the server every minute, it requires electrical
power. During the night the power is provided only by the
battery and thus the battery is discharged. Of course the sys-
tem should be designed in a way that the capacity of the bat-
tery is large enough to provide electrical power for the whole
night. However, the system’s designer might not considered
all possible situations when computing the required capac-
ity. For example, there can be several cloudy days where
the solar panel does not provide enough power. The solar
panel might produce no electricity because the device is in a
building or a tunnel. Because of aging the battery capacity
and the solar panel capabilities are decreasing. Moreover,
the device is used in the north of the globe during winter
where there is almost no sun light during a day.

A qualitative model describing the mentioned situation
has to describe the relationships between the important en-
tities. In particular, we introduce the following variables to-
gether with their domains:
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Figure 2: The cause-effect relationships of the solar panel
example

{day, night}

{sunny, cloudy }

{ no, medium, full }

{ yes, no }

{ no, medium, full }

{ no, medium, full }

{ empty, medium, full }

The day_time variable indicates whether it is cur-
rently day or night. weather_condition is for stat-
ing the current weather situation where in our case only
the amount of clouds is required. @From day time
and weather_condition we can derive the amount
of sun light (sun_light) at the ground level of the
earth. If there the solar panel is not covered by any-
thing,e.g., cover_condition is false, sun_light has
to be equivalent to the light available directly at the panel
(light_solar_panel). Otherwise, there is no light
available for the solar panel to produce electrical power. De-
pending on the light at the solar panel more or less power
(power_solar_panel) can be produced. And from the
energy we can derive the charging status of the battery. Fig-
ure 2 depicts the cause-effect relationship between the vari-
ables. Note that this model is of course simplified and does
not handle all possibilities. The model can be extended to
represent parts of the internal behavior of the mobile em-
bedded system, e.g., the influence of the subsystems to the
status of the battery charge capacity.

This model can be formally represented using a qualita-
tive reasoning methodology like Qualitative Process Theory
(Forbus 1984) or Qualitative Simulation (Kuipers 1986). A
qualitative reasoning engine like Garp 3 (Bredeweg et al.
2006) can be used to produce simulation runs. For this paper
we assume that the qualitative model together with a reason-
ing engine is available.

For example, we know that the weather condition
has a negative impact on the amount of sun light if
we assume the following order sunny<cloudy and
no<medium<full defined for the domains of the cor-
responding variables. If the weather condition increases
(which means the amount of clouds is increasing), then the
sun light is decreasing. Using the QSIM representation we
would write M~ (weather_condtion,sun_light).
For other relationships between variables we are able to de-
fine similar relationships. Moreover, we specify a relation-
ship between the state of the charge of the battery and the
power consumption of the device in order to compute the



discharging of the battery whenever a consumer is added. If
a device is added to a battery there is a negative impact on
the battery’s charge capacity:

M~ (power_consumption,battery_charge).

Hence, we might be interested in finding a behavior that
leads to a value of no for battery_charge when assum-
ing that the battery is fully charged at the beginning.

In order to compute such a behavior we have to have in-
formation about the values of some variables, the model,
and a test condition. The latter specifies the behavior to be
searched by simulating the model. For our example, one
test-case might be of the form:

(day_time,night)

< (power_consumption,yes) >
(battery_charge, full)

(day_time,night)

0

< (power_consumption,yes) >
(battery_charge,medium)

(day_time,night)

< (power_consumption,yes) >

(battery_charge,empty) *,

Note that the values of other variables over time are not
given for this example. The test-case states that the battery
can be discharged during the night. Such a test-case is an
abstract test-case because it does not provide any informa-
tion about the quantities, e.g., the length of night. Hence, in
order to create an executable test-case we have to instantiate
or refine the abstract test-case. For example, we might de-
fine that a night lasts for 12 hours and thus we have to test
whether the device is designed to fulfill its expected func-
tionality during the night or even longer.

Definitions and algorithms

Generating test-cases automatically requires the availability
of a formal model (or the source code). In our case we as-
sume that the formal model is a qualitative model which cap-
tures the important aspects of the environment and of the
system to be tested. In the example given in the previous
section we introduced variables for stating properties of the
solar panel, the battery as well as the power consumption
which correspond to parts of the system. In the following
definition of the model to be used for test-case generation we
distinguish the environment model from the system model.
The purpose of separating the model is that re-use of models
is supported. It is very likely that the environment part of the
model can be used together with models of different systems
under test.

Definition 1 (Test-case model) A rest-case model is a tuple
(QM UQS,Cr,Cr) where QM is the qualitative model of
the environment, QS is the partial qualitative model of the
system, C is a set of constraints of input variables, and C'p
is a set of test-case constraints.

Note that in the definition of a test-case model a test pur-
pose can be specified using Cr. The test purpose gives in-
formation about which test-case to generate. In our previous

example we wanted to have a test-case which leads to an
empty battery. Formally, we would write the input and test-
case constraint of our example as follows:

Cr ={(day_time,night)}UC
Cr = {(battery_charge,empty)}

In this example C' denotes the set of constraints stating
that it is not possible for variables to have more than one
value assigned at the same time.

Given a test-case model we now are interested in specify-
ing a test-case. We do this by defining a test-case as the out-
come of a qualitative simulation where all input constraints
have to be fulfilled and where the test purpose is reached.

Definition 2 (Abstract test-case) Given a test-case model
(QM U QS,Cr,Cr) and a qualitative simulator QEXEC.
An abstract test-case t is the result of a run of the simula-
tor on the model where the inputs do not contradict C; and
t covers all requirements of Cr, i.e., t = QEXEC(QM U
QS, i) where i U Cj is consistent and endState(t) = Cr.

In the definition of abstract test-cases the constraints
which apply on the test-case, i.e., the test-case requirements
C'r are somehow stronger that the constraints for the inputs.
A reason is that we expect a test-case to entail all require-
ments whereas consistency checks are enough for the input.
The test purpose has to be reached in all cases.

The following algorithm computes an abstract test-case
from the given test-case model. The algorithm does not only
compute one test-case for each run of the QR simulation en-
gine but combines different runs. A reason for extending the
computation is to generate larger test-cases which are likely
to capture a more complex behavior. Moreover, we further
be able to represent information about possible inputs over
time using C7. For example, we might be interested in test-
ing the system over several days. Hence, we have to specify
that after the night we start with a day which is followed by a
night and so on. Such knowledge is assumed to be captured
by C I-

Algorithm AbstractTestCase
Inputs: A test-case specification (QM U QS, Cr, Cr)
Output: An abstract test-case

1. Let ¢t be the empty test-case sequence and let b be the
empty behavior.

2. Choose inputs ¢ which are consistent with the input con-
straints C7 and the last state of the behavior b computed
in the previous run.

3. Select a behavior b which is computed by calling a QR
engine on model QM U @S and inputs i.

4. If no new behavior b exists, then return ¢.
5. Let t be t extended with b, i.e., ¢t := ¢t + b.

6. If ¢t fulfills the criteria for test-cases C, then return t.
Otherwise, go to 2

The algorithm AbstractTestCase obviously computes an
abstract test-case accordingly to our definition. The algo-
rithm halts if a test-case that entails the test purpose C'r can



be found or if the whole search space has been explored. The
latter cannot be guaranteed in general. However, in practice
someone would specify a boundary which when reached ter-
minates the computation. The complexity of the algorithm
depends on the complexity of the simulator and the size of
the model in terms of variables and their domains.

AbstractTestCase can be used to compute a set of test-
cases by calling it more often. In this case we might change
the input constraints and test purpose. If we do not change
the constraints, we also expect that AbstractTestCase returns
different solutions because we assume the selection of inputs
and behaviors to be random. In a practical implementation
someone might make this selection deterministic. In this
case the algorithm can also be extended to compute differ-
ent solutions by exploring the search space in a breadth-first
manner.

Refining test cases

Abstract test-cases cannot be directly used because of the
abstraction of time and domain knowledge. In order to have
a test-case or a test suite which can be directly used we have
to convert the abstract test-case to a concrete one. For this
purpose we have to define a function which maps qualita-
tive values to their corresponding quantitative values. This
function has to be adapted for specific qualitative models of
systems in order to capture the relevant aspects of a system.
In particular, the function has to distinguish cases where the
state sequence which represents an abstract test-case has to
be mapped to a sequence of quantitative variable values from
cases where information about dense time is required. In our
example, the states carry information about the time during
the day.

The function which maps abstract test-cases to their con-
crete counterparts is called a refinement function because it
has to refine the abstract knowledge in order to lead to a spe-
cific and executable test-case. In the following, we discuss
requirements of refinement functions:

e The refinement function has to preserve the order of
events. Consider for example two immediately succeed-
ing states at the qualitative level where we have events x
and z’ respectively. If we map z to y and z’ to 3’ at the
quantitative level, then the occurrence of y has to be be-
fore y'. For events occurring at the same state of the qual-
itative level no ordering can be ensured at the quantitative
level.

e The mapping from quantitative values to qualitative ones
has to preserve the order relation.

e The refinement function should ignore those events which
are neither used to stimulate the system under test nor
to check whether the system behaves correctly or not.
Hence, events which are only relevant to compute a cer-
tain environment behavior but cannot be used to test the
system should be ignored.

Given such a refinement function fr we can compute a
concrete test-case from an abstract one. However, even if
fr fulfills all requirements, the test-case at the quantitative

level needs not to be a valid test-case in terms of being exe-
cutable. This problem is similar to the one in verification. In
(Ball & Rajamani 2002) a program is compiled into a repre-
sentation using predicate abstraction. If a counter-example
can be obtained from the abstract version of the program,
the real program might be correct. Such problems always
occur when using abstraction and correspond to the used ab-
straction mechanism which might ignore knowledge which
is necessary to avoid the problem.

The methodology for generating test-cases from qualita-
tive models has to have the following steps:

1. Compute abstract test-cases for the given qualitative
model, the input constraints and the test purpose.

2. Apply the refinement function fg to all abstract test-cases
to obtain a set of concrete test-cases.

3. Evaluate the set of concrete test-cases by (i) executing the
system under test on those tests and (ii) manually check-
ing the test-cases for plausibility. Test-cases which are not
plausible or which cannot be executed because of other
reasons can be removed from the test suite.

An advantage of this methodology is that we obtain a lot
of tests which based on a firm ground and all of them repre-
sent a certain interaction between the system and its environ-
ment. Hence, it is very unlikely to miss a test-case because
of missing requirements.

The concrete test-case for our example would be of the
form:

Simulate a night for a duration of 10 hours. The system is
not allowed to run out of power during the simulation.

The specific value for the duration depends on the ex-
pected area of operation of the system. Hence, such val-
ues have to be specified when defining the refinement func-
tion fr. The assertion that the system is not allowed to run
out of power would come from a system engineer and is
equivalent to the negation of the qualitative test purpose, i.e.,
battery_charge reaches the value empty.

The question of how to execute the obtained test-cases is a
different one and is not in the focus of this paper. Moreover,
it is not always possible to automate test-case execution. In
our example we have to simulate the conditions of a night
which can be hardly automated.

Related research

Classical white-box or black-box testing and test-case gen-
eration techniques (Beizer 1990) assumes both the existence
as well as the accessibility of a source code, or a specifica-
tion from which test-cases can be extracted. In most cases
the objective is to prove the correct implementation of func-
tions. Since specifications are hardly ever complete there
might be cases where interactions of systems with their en-
vironment lead to harmful situations. This becomes even
more critical if the complexity of systems is increasing. One
solution to this problem is to provide models of the envi-
ronment and its interaction with the system to be developed
and extract possible interaction sequences for testing. For
example, (Auguston, Michael, & Shing 2005) follow this
solution.



In classical white-box testing and test-case generation the
objective is to generate test-cases which fulfill a certain pro-
gram coverage criterion like statement or path coverage.
Such critera are very usefull for verification purposes be-
cause they allow to judge the quality of the used test suite to
some extend. However, in black-box testing where a speci-
fication is available someone is more interested in test-cases
covering the specification. This is the case for our approach
where the test-cases are extracted from QR models using
possible simulation runs. The quality of the computed test-
cases wrt. to program coverage is left for future research.

(Auguston, Michael, & Shing 2005) introduced the use
of attributed event grammars for generating test-cases from
environment models for reactive systems. In the paper the
authors use the grammar for representing an event-based
model. Possible execution traces of the model form the test-
cases. Insofar the underlying idea for test-case generation
as described in this paper is very similar and can also be
found in other papers, e.g., in (Fraser & Wotawa 2006a;
2006b). However, the mentioned papers can be distin-
guished with respect to the underlying modeling language.
Whereas Auguston et al. are using attributed event gram-
mars, Fraser et al. are using temporal logic and model-
checking techniques, and in this paper we are proposing the
use of qualitative models for test-case generation.

(Esser & Struss 2007) focused on test-case generation
from finite state machines and on the underlying theory. In
their work the authors want to create distinct test-cases, i.e.,
test-cases that allow for distinguishing different faults. For
that purpose, the finite state machine model is compiled into
a constraint representation. In contrast to Esser and Struss
the methodology proposed in this paper does not require a
transformation of the model. Moreover, we are more inter-
ested in obtaining test-cases from environment models (like
(Auguston, Michael, & Shing 2005)) and not from behavior
models of the system.

Conclusion

In this paper we followed the basic idea of (Auguston,
Michael, & Shing 2005), i.e., using information about the
environment of a system in order to generate test-cases for
validating the system. The focus on the behavior of the
system’s environment is important because this potentially
leads to test-cases which would not be generated when con-
sidering only the system’s functional requirements. In con-
trast to (Auguston, Michael, & Shing 2005) we introduced
the use of qualitative models for describing the behavior of
the environment. We argued that qualitative models provide
the right means for describing the behavior of the environ-
ment in terms of physical laws and causal relationships and
the important parts of the system under test. The models
themselves can be simulated and thus reveal possible inter-
actions of systems with their environment. Hence, simula-
tion results induce potential test-cases. Because the obtained
test-cases present only an abstraction of the real behavior
they have to be refined.
Advantages of the proposed methodology are:

o Test-case generation relies on well defined modeling par-

adigms and simulation engines are available.

e Because QR methods provide all possible behaviors
(something which is a drawback in certain cases) even
rare interactions of the system with its environment can
be found.

e The restricted value domains in QR allows for taking into
account all possible inputs. Those input values have to
be refined, i.e., the abstract values have to be mapped to
their corresponding quantitative values when computing
the real test-cases for a system. This refinement step has
to be specified by the user of the test-case generator. This
is not a drawback but ensures flexibility. Moreover, the
same happens when using abstraction which is sometimes
necessary for formal verification and test-case generation
using classical methods.

e QR is very well adapted for representing environment
models and thus makes it very attractive for generating
test-cases for reactive systems which interact with the en-
vironment.

Future research has to provide case studies for generating
test-cases from QR models.
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