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Abstract

Padé is a new method for learning qualitative models from ob-
servation data by computing partial derivatives from the data.
Padé estimates partial derivatives of a target function from
the learning data by splitting the attribute space into triangles
or stars from Delaunay triangulation, or into tubes, and com-
puting the linear interpolation or regression within these re-
gions. Generalization is then accomplished by any attribute-
value learning method. The methods for estimating partial
derivatives differ regarding their resistance to noise, ability
to handle noisy and missing values, computation speed and
other properties. The experiments show these methods to be
quite accurate, fast and robust. Being well integrated into our
general machine learning and data mining suite Orange, Padé
should also prove useful in practice.

Introduction
One of the goals of attribute-based machine learning is to
explain the roles of individual attributes. An efficient way
of achieving this in regression problems is to observe the
change of function value corresponding to changes in indi-
vidual attribute values. In mathematics, this is called partial
derivative and has been — from its invention by Newton and
Leibniz on — a most fundamental tool for describing rela-
tions in physics. In this paper we develop a machine learning
method that computes partial derivatives and combines well
established principles from mathematics and physics with
the robustness and flexibility of typical machine learning al-
gorithms.

In qualitative modeling, the task is often limited to only
predicting the sign of the derivative and not its magnitude. In
this paper we propose a set of methods with a common name
Padé (an acronym for “partial derivative”, and the name of
a famous French mathematician). The methods assess qual-
itative or quantitative partial derivatives for points in the at-
tribute space. We can then use machine learning algorithms
to induce a predictive model, or venture into exploratory
analysis and manually discover relations in the data.

Our goal was not only to design a fast, robust and concep-
tually clean algorithm with a small number of parameters,
but also make it well integrated into our general ML plat-
form Orange (Zupan, Leban, & Demšar 2004) with its sub-
stantial arsenal of machine learning and data mining tech-
niques.

Learning method
We assume the following learning problem: the input data
is a set of variable-value vectors, each consisting of attribute
values and a class-value. The attributes normally correspond
to independent variables in our problem space, and the class
corresponds to a dependent variable. The task is to find a
qualitative model that explains this data. The model may be
a formal structure, such as a set of qualitative rules or a tree,
or visual, for instance with a scatter plot. The model ob-
tained from the data should enable predictions of the depen-
dent variable value when given the values of the variables.

The class variable is continuous, and the attributes may
be either continuous or discrete. In the context of learning
models of physical systems, typically at least some of the at-
tributes are real-valued. In our case, a qualitative model will
consist of a set of qualitative proportionality constraints that
will appear in if-then rules or decision trees. For example,
let y be a function of x: y = x2. The learning data would
consist of a sample of pairs of values (x, y) where x is the
attribute (independent variable) and y is the class (dependent
variable). A correct qualitative model induced from this data
would be:

if x > 0 then y = Q(+x)
if x < 0 then y = Q(−x)

The constraint y = Q(+x) is read as y is qualitatively
proportional to x. Roughly, this means that y increases with
x. More precisely, in Padé this means

∂y

∂x
> 0.

The notation y = Q(−x) means that y is inversely quali-
tatively proportional to x (i.e. the partial derivative of y w.r.t.
x is negative).

As another example that involves a discrete variable, we
may state the qualitative relations between the price of a
product, and the product’s type and size:

if ProductType = car then Price = Q(+ProductSize)

if ProductType = computer then Price = Q(−ProductSize)
We will also be using an abbreviated notation when re-

ferring to several qualitative proportionalities. For example,



two constraints z = Q(+x) and z = Q(−y) will be abbre-
viated to z = Q(+x,−y).

Using Padé for learning of qualitative models of this kind
consists of three stages:

1. For all the given data points, use Padé to assess numer-
ically the partial derivative of the class variable w.r.t. a
chosen continuous attribute.

2. Perform a qualitative abstraction: Convert the computed
numerical approximations of partial derivatives at all the
data points into their signs. These signs are then used as
discrete class values in the next step.

3. Use any attribute-value learning method (such as if-then
rule learning, or decision tree learning) to produce a clas-
sifier that maps the points in the attribute space into qual-
itative proportionality constraints. This classifier is our
qualitative model induced from the data.

Padé is not a single algorithm but a suite of methods per-
forming this task: approximation of partial derivatives of a
sampled unknown function f . The input for all the methods
is a set of examples described by a list of attribute values
and the value of a continuous dependent variable. An exam-
ple of a function with two attributes is depicted in Fig. 1(a):
each point represents a learning example and is assigned a
continuous value. Our task is to compute a partial derivative
at each given point. In our illustrations, we shall show the
computation at point (5, 5), which is marked with a hollow
symbol.

In the following paragraphs, we describe four novel meth-
ods of numerically estimating partial derivatives, which we
use in Padé.

First Triangle method was the initial venture point of de-
velopment of Padé. It models the function’s behavior by
dividing the attribute space into simplices (we shall refer to
them as “triangles”) by using the standard Delaunay trian-
gulation as shown in Fig 1(b). If the samples are sufficiently
dense the function’s behavior within triangles is approxi-
mately linear.

Being able to compute the value of function in point
f(P + dx) with a simple interpolation between points P ,
A and B, First triangle method can apply the textbook defi-
nition of the partial derivative:

∂f

∂x
=

f(P + dx) − f(P )
dx

.

Star Regression is based on the First triangle method, but
improves its noise resistance by assuming the function’s lin-
earity across the entire star (a topological term for the set of
triangles surrounding a point) instead of just a single trian-
gle. It finds the value of the partial derivative that minimizes
the square error, which translates into computing the uni-
variate linear regression across the points of the star.

In the case shown in Fig. 1(c), the derivative would be
computed as the coefficient of the linear regression on points
A, B, C, D, E and F.

Triangles’ Path method copes with more noise by
smoothing the function more. To keep the computation fo-
cused, we do not simply widen the star but instead follow the
triangles in the direction in which we compute the deriva-
tive (1(d)). The partial derivative is then again computed
by minimizing the square error for the points lying on that
path. In each shaded triangle, we choose an arbitrary point
and assign it a function value by linear interpolation between
triangle’s vertices.

This method was actually never implemented as described
here, but only as a simplified version of another, more com-
plicated algorithm Qing, which includes many other im-
provements that will be published elsewhere.

Tube Regression is an approximation of the Triangles’
Path method. It avoids computing the triangulation alto-
gether, but instead considers a certain number of exam-
ples nearest to the axis in the direction in which we com-
pute the derivative. These examples lie in a (hyper)tube
which approximates (or, better, mimics) the Triangles’ path
(Fig. 1(e)).

The tube can also contain points that lie quite far from the
point P . To observe the local behavior of the function, Tube
regression weights examples by their distances from P along
the tube (that is, ignoring all dimensions but x). The method
is thus similar to computing 1-dimensional LWR within the
tube and taking the coefficients as partial derivatives.

All described methods are implemented as preprocessors,
which get a sampled function, described by values of ar-
guments and the function value, and return the correspond-
ing numerical or qualitative partial derivative at each point.
These derivative data can then be modeled with regression or
classification trees (in the latter case one can model deriva-
tives for each attribute separately or all attributes together)
or by any other appropriate machine learning algorithm. It is
usually even more interesting and useful to observe the data
by visualizing it in scatter plots or other visualizations.

Experiments

The described methods were implemented within data min-
ing and machine learning framework Orange (Zupan, Leban,
& Demšar 2004), so they can be used with its huge arsenal
of machine learning and visualization techniques.

We will illustrate the interesting qualities and shortcom-
ings of the algorithms with several experiments. We com-
mence with inverted pendulum: we use a simple visualiza-
tion that reveals the qualitative behavior of the function and
also helps choosing a suitable modeling algorithm. We then
show a simple artificial domain where the correct model de-
pends on using a discrete attribute. We continue with an-
other artificial example, sin(x) sin(y) over a few periods,
where the visualization turns out to be the only sensible
“model”. We then investigate Padé’s ability to cope with
noise, and conclude with an example with data from a 6th
Framework European research project XPERO.
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(a) Sampled function x2 − y2
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(c) Star regression
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(d) Triangles path
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(e) Tube regression

Figure 1: Illustration of Padé’s methods



Inverted pendulum

The inverted pendulum is a well known dynamic domain of-
ten used in evaluation of algorithms for learning and control.
The physical model is determined by equations for ẍ and ϕ̈.

ẍ =
4F + 2lmϕ̇2 sin ϕ − 1.5mg sin 2ϕ

4M + 4m − 3m cos2 ϕ

ϕ̈ =
(M + m)g sinϕ − F cos ϕ − 1

2mlϕ̇2 sin ϕ cos ϕ
1
6 (4M + 4m − 3m cos2 ϕ)l

The variables x and ϕ are the horizontal position of the
cart and the angle of the pole w.r.t. vertical axis. F is the
horizontal force applied to the cart. The parameters M , m
and l are the mass of the cart, the mass of the pole and the
length of the pole. We here demonstrate our algorithm on
the problem of modeling ẍ, which is more difficult than the
modeling of ϕ̈. We generated a set of 1000 examples by
random sampling with parameters set to: F = 0 (free move-
ment), M = 1 (mass of cart), m = 0.1 (mass of pole), l = 1
(length of pole). Independent variables are ϕ ∈ [−π/2, π/2]
and ϕ̇ ∈ [−10, 10].

We approached the problem with the First triangle method
because the data consists of only continuous attributes with-
out any noisy or missing values. Its results can be nicely
visualized with a scatter plot, which shows that ẍ is nega-
tive for smaller values of ϕ and ϕ̇, and positive for the larger
(Fig. 2a). The boundary between the two areas suggests the
unsuitability of classification trees for modeling the domain.
We instead used Orange’s implementation of naive Bayesian
classifier which uses LOESS for estimating the conditional
probabilities for continuous attributes. Its visualization with
the nomogram (Fig. 2b) shows that it can fit the boundary
perfectly (see (Jakulin et al. 2005) for a detailed explanation
of nomograms).

We obtained similar results with other Padé’s methods,
though they somewhat distorted the ellipse.

Discrete Attributes

We checked the Tube Regression’s handling of discrete at-
tributes with a function nastily defined as

IF s = 1 THEN f = −x/10 ELSE f = 10x.

Besides the continuous attribute x and Boolean attribute s,
the data set also included an attribute r with random values
and no influence on f . Variables x and r were from the same
definition range, [-10, 10]. The function was sampled in 400
points.

Tube Regression, whose results we used to construct a
classification tree using C4.5 (Quinlan 1993) included in Or-
ange, found the correct solution (Fig. 3). We also tried other
Padé’s methods, which, as expected, mostly failed to recog-
nize the role of s (which they were given as a continuous at-
tribute). This confirms that replacing discrete attributes with
dummy variables, like in statistical regression methods, will
not work with triangulation-based Padé’s methods.

Visualization
There are domains in which most machine learning algo-
rithms fail to produce any meaningful results without a
strong help from the expert. In such cases, using a good
visualization is a much better choice than blindly inducing
a model. Padé works with many visualization algorithms,
from a simple distribution graph or scatter plot to state-
of-the-art methods of intelligent visualization (Leban et al.
2006).

To illustrate such a domain, we generated a data set of
10000 sampled points for function sin(x) sin(y), x, y ∈
[−3π, 3π] (Fig. 4(a)). Such periodic functions of two vari-
ables are quite common in the real world. We computed
derivatives by x; results for y are analogous.

The obvious candidate for this data is the First triangle
method: there is no noise and all attributes are continu-
ous. Knowing the complexity of the modeled function in
advance, we can expect the noise reducing methods to al-
most certainly “oversimplify” the data.

First triangle (Fig. 4(b)) performed perfectly. The edges
are perfectly sharp, which is due to the very high density
of the samples. We checked that the algorithm still per-
forms very well with 500-1000 samples, except for the edges
which then evidently follow the individual sample points.

Star regression (Fig. 4(c)) exhibits some smearing at the
corners, yet its results are still excellent and useful. Our sus-
picions that Tube regression (Fig. 4(d)) is unable to model
this data were proved correct: it merged the left-most and
the right-most two columns, and performed miserably in be-
tween.

Figures 4(e) and 4(f) visualize numerical derivatives.

Noise
As an example of a very noisy function, we sampled the
function f(x, y) = x2 − y2 on interval [−100, 100] ×
[−100, 100] to which we added uniform random noise of up
to ±2000. The data set consisted of 1000 random samples.
Fig. 5 shows the intersection of the ”noised” surface x2−y2

with the plane y = 0 to illustrate the magnitude of the added
noise around the point where the qualitative behavior of the
function changes.

With such extreme noise, the method of choice is Tube
regression. The assessed qualitative derivatives were used
to induce a decision tree (Fig. 6). The induced models are
correct and the split thresholds are quite accurate given the
huge relative noise at around x = 0 and y = 0.

XPERO robot
For the final example, we used Padé on data from the on-
going European project XPERO (IST-29427). A simulated
robot with a camera observes a ball. The task in this particu-
lar case was to discover the relation between the area of the
ball in the picture, and the robot’s angle and distance from
the ball.

Figure 7 shows the corresponding trees. Padé performed
perfectly regarding qualitative proportionality between dis-
tance and area: whenever the ball is visible (that is, the angle
is approximately between -28.9 and +27.8 degrees), the area
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(a) A scatter plot of the data set generated by Padé, which
visualizes qualitative behaviour of ẍ with regards to ϕ.

(b) A naive Bayesian nomogram from
Padé’s data that models the qualitative be-
havior depicted in the scatter plot on the left.

Figure 2: A visualization and a qualitative model for inverted pendulum.

decreases with distance. Otherwise, is does not depend upon
the distance (denoted by Q()).

The tree for the correspondence between the angle and
the area correctly discovered – although with rather loose
threshold values – that the area increases when the robot is
turning towards the ball (that is, when the negative angle in-
creases and when the positive angle decreases). When the
entire ball is visible, the angle plays no role; the prevalent
class with a slim majority is Q(-angle), yet the tree contin-
ues to split further and further. These further splits make
no sense and, admittedly, the tree in Figure 7 was manually
pruned at the middle leaf. For the angles in between, the
area thus sometimes increase and sometimes decrease with
the angle, which is the artifact of particular learning traces.

Discussion
All Padé’s methods are fairly easy to understand and imple-
ment. They, however, differ in many important aspects.

Noise Handling
First triangle’s beauty is in its pure use of concepts from
topology and analysis. Its results on noiseless data are as
good as the density of samples permit, while with increasing
the noise level they soon degrade to useless. Noise canceling
algorithms from topology are being added as a part of the
Qing algorithm mentioned earlier.

Tube regression, on the other side of the spectrum, is
highly noise resistant, which will, as usual, also make it
smear fine details in noiseless data. The actual degree of
smoothing is in principle regulated with two arguments. The
width of the tube should balance between having enough ex-

amples for a reliable estimation of the coefficient on one side
and not observing the examples where the values of other
attributes could significantly affect the function value (too
much) on the other. However, if the tube is symmetrically
covered by the examples (this is probably true except on the
boundaries of the covered attribute space) and if the func-
tion which we model is negatively symmetrical with respect
to other attributes’ values in the part of the space covered by
the tube,1 impacts of other attributes can be expected to can-
cel out. Wide tubes therefore should not (and empirically do
not) cause too much of a problem.

There is a similar balancing along dimension x: if the ker-
nel function for the weight is too wide, the derivative will not
be local enough, while a narrow kernel will not be resistant
to noise. This dilemma is the same as in LWR, with the only
difference that while LWR computes a function value, we
here observe the regression coefficient.

We experimentally observed that the method’s parameters
do not have considerable impact on the results and fixed the
width of the tube to 30 points. Examples are weighted using
a Gaussian kernel fitted so that the point farthest along the
tube has a negligible coefficient of 0.001. The method is
thus effectively without user-definable parameters.

Star Regression’s resistance to noise is in between those
of the First Triangle and the Tube Regression. We would
also expect the Triangles’ Path to be close to that.

1Formally, f(x+y)−f(x) ≈ f(x)−f(x−y), where x is a point
on the axis and y is a vector perpendicular to the axis and smaller
than the tube’s diameter. Linear functions, for instance, have this
property, and most other functions we model are also locally linear
enough.
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Figure 3: Experiment with discrete attributes, function IF s = 1 THEN f = −x/10 ELSE f = 10x.
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Figure 7: Padé’s modeling of XPERO data. Q() signifies
negligible changes. Numbers in the leaves represent the
number of examples with Q(-), Q() and Q(+), respectively.

Discrete Attributes and Unknown Values

The methods based on triangulation cannot handle unknown
attribute values. Discrete attributes can be considered only
if they are converted to dummy continuous variables, yet
this gives awkward triangulations and meaningless results.
Although not used in computation of derivatives, they can
still be used in further processing of the data provided by
Padé.

Tube regression can handle unknown values of attributes
(except for the attribute on which we compute the deriva-
tive). This is, however, done through implicit imputation

in distance computation procedure. Discrete values seem to
pose no problems, as shown in experiments.

Total Derivatives

It may sometimes be interesting to observe the behavior of
a function in a particular given direction not orthogonal to
the coordinate axes. The adaptations of Padé’s methods for
that purpose are obvious. In First Triangle we align dx with
the given direction, and in Tube regression we do the same
with the tube. For Star Regression we can rotate the star in
a similar fashion or, differently from the above tricks, com-
pute multiple regression instead of univariate and treat the
coefficients as a gradient. We then get the total derivative by
multiplying the gradient with a (normalized) direction vec-
tor. None of these methods were implemented and evaluated
yet.

Time Complexity

For First triangle method, the most time consuming step is
finding the triangle lying in the desired direction, which re-
quires computing the determinant of a d-dimensional matrix
(where d is the number of attributes). Such a triangle needs
to be found for every point in space, for every attribute by
which we compute the derivative. The running time strongly
depends on the number of triangles that surround each point,
which usually rises exponentially with the number of dimen-
sions. In practice, the method is fast on low dimensional data
and gets slower when the number of dimensions increases.

Tube regression’s time complexity is linear in the number
of dimensions and quadratic in the number of examples. It
is consistently the slowest of all methods, except, possibly
the Triangles’ path, whose run time we have not measured.

Star regression always outran all other methods.
Table 1 sums up the running times of First triangle,

Star regression and Tube regression for all experiments per-
formed in the previous section.
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Figure 5: The intersection of the surface x2 − y2 with the plane y = 0 to illustrate the added noise.
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Figure 6: Qualitative models of function x2 − y2 with added random uniform noise. The data set contains 1000 randomly
sampled examples.

#attr examples Triangle Star Tube
pendulum 2 1,000 2 < 1 4

discrete 2 400 1 < 1 1
sine 3 10,000 35 8 496

noise 2 1,000 2 < 1 4
XPERO 2 4,011 15 3 80

Table 1: Run times (in seconds of CPU on a 2 GHz laptop)
of First triangle, Star regression and Tube regression in the
experiments.

Related Work
Many algorithms have, in one way or another, tackled
the problem of qualitative model induction from observa-
tion data. Recently, Gerçeker and Say (Gerçeker & Say
2006) proposed algorithm LYQUID which fits polynomials
to numerical data and use them to induce qualitative mod-
els. Other systems include QMN (Džeroski & Todorovski
1995), LAGRANGE (Džeroski & Todorovski 1993) and
LAGRAMGE (Todorovski 2003). Other approaches that
mostly induce models in the form of QDEs include GEN-
MODEL for the induction of QSIM-type models (Hau &
Coiera 1997), and SQUID (Kay, Rinner, & Kuipers 2000)
which focuses on trends and extreme points in numerical
data and use envelopes that bound the trajectories of vari-
ables.

An important difference between these algorithms and
Padé is that Padé is essentially a preprocessor while other

algorithms produce a model. Padé outputs a data set which
can later be used by appropriate algorithms for induction of
classification or regression models, or for visualization. So
Padé in the context of learning qualitative models is of inter-
est mainly in combination with other ML systems. To our
knowledge, most other algorithms for learning qualitative
models only handle numerical attributes, except QDE learn-
ers that take qualitative behaviors as input. In Padé, Tube re-
gression can also use discrete attributes, whereas other meth-
ods are limited to continuous attributes. However, discrete
attributes can be used by machine learning algorithms ap-
plied to Padé’s output, which means that the final model can
include discrete attributes.

We shall compare our work in more detail with the well-
known algorithms QUIN and epQUIN (Šuc & Bratko 2001;
Šuc 2003; Bratko & Šuc 2003). Examining the differences
between Padé and QUIN will also be helpful for better un-
derstanding of the design of Padé itself.

The common property of Padé and QUIN (and, for that
sake, any other algorithm for estimation of derivatives from
sampled functions) is that they observe the local behavior
of the function by summing up the information from sam-
pled points in the vicinity of the point of interest. QUIN
does this by comparing the attributes and class value at each
pair of near data points, and constructs a vector of qualita-
tive changes. These vectors are used to determine how well
the learning data in various regions comply with possible
qualitative constraints. epQUIN differs from QUIN by con-
sidering every pair of examples, not only near neighbors, but



weighting the evidence by the distance. The results are used
to induce a qualitative tree, that is a decision tree with the
qualitative constraints that fit well the corresponding data in
the leaves.

The most obvious difference between Padé and QUIN is
that Padé computes numerical derivatives, which can be (and
in most of our experiments indeed were) later used qualita-
tively. QUIN, on the other hand, sums up the qualitative
changes. While Padé estimates the magnitude of change,
QUIN estimates the probabilities of various changes. These
probabilities can be rather unreliable since they may be com-
puted from small subsets of examples only.

There is an important difference in the definitions of qual-
itative proportionality constraints in Padé (denoted by Q),
and monotonic qualitative constraints in QUIN (denoted by
M ). Padé’s Q-constraints correspond to qualitative partial
derivatives. QUIN’s M -constraints, on the other hand, have
a different definition (see (Šuc, Vladušič, & Bratko 2004))
illustrated by the following example. The M constraint
z = M+,−(x, y) means: for all the points (x1, y1, z1) and
(x2, y2, z2) in the region in which the constraint holds, we
have: if x2 > x1 and y2 < y1 then z2 > z1. Accord-
ing to the continuous reification theorem (Šuc, Vladušič, &
Bratko 2004), if x, y and z are continuous variables then
if z = M+,−(x, y) holds then e.g. z = M+(x) cannot
hold. This is obviously different from the Q-constraints.
The difference comes from the fact that Padé only considers
changes along the independent variables (which corresponds
to partial derivatives), whereas QUIN considers changes in
any direction (e.g. changes in both arguments x and y). This
leads to a less apparent, yet crucial difference in the defini-
tion of vicinity in both systems.

A practical difference between the methods is that QUIN
is implemented as a tree learning algorithm, while Padé is a
data preprocessor which can be used with any learning or vi-
sualization algorithm. This is further simplified by Orange’s
versatile graphical interface for connecting various methods.

We noticed that QUIN is considerably slower than learn-
ing with Padé’s and a typical chosen ML method, even when
Padé is run with its slowest method - Tube Regression. It is
though difficult to tell whether the difference comes from the
algorithms themselves or only from their implementations.

Conclusion
We presented a novel method for learning qualitative models
based on estimating partial derivatives from data. We devel-
oped an algorithm for estimation of partial derivatives from
a sampled continuous function. The basic version of the al-
gorithm, First Triangle, is based on splitting the attribute
space into regions defined by Delaunay triangulation and
the reasonable assumption that the function sample density
is high enough to exhibit sufficiently linear behavior within
the regions. The method is beautifully simple, but unfortu-
nately unable to cope with any significant noise. To amend
this, we developed several modifications of the method –
Star Regression, Triangles’ Path and Tube Regression. The
methods are parameter-free, except for the threshold defin-
ing the negligible change if the numerical derivatives are

transformed into qualitative changes. The only potential pa-
rameters would occur in Tube Regression, but since mod-
ifying them has no significant impact on the results, we –
preferring simplicity over “tweakability” – froze the param-
eters and hid them from the user.

In experiments on a few artificial and semi-artificial data
sets the algorithms behaved according to expectations, so we
believe that they will also be useful in practice.

Padé has been implemented inside the general machine
learning and data mining environment Orange, which can
be freely downloaded (either as sources or in binary format
for Windows or Linux) at http://www.ailab.si/orange.
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