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Abstract

Qualitative models are often a useful abstraction of the phys-
ical world. Learning qualitative models from numerical data
is a possible way to obtain such an abstraction. We present a
new approach to induction of qualitative models from numer-
ical data which is based on discrete Morse theory (DMT). Our
algorithm QING (Qualitative INduction Generalized) has a
firm theoretical background in computational topology. This
makes it possible to extend the capabilities of state-of-the-art
algorithms for qualitative modelling substantially. The out-
put of QING is a labeled graph, which enables a visualisation
of the qualitative model. Induced qualitative models can also
be used for numerical regression by applying the Q2 method.
To illustrate the power of QING we present its application
on an artificial function, add noise, and finally show how it
performs on a dynamic domain such as inverted pendulum.

Introduction
Every day more and more data from real-life processes, such
as measurements of weather variables, measured data from
simulations, technological processes, chemical reactions etc
is being recorded. Only a small subset of this data is later
analyzed in hope to obtain the models that would imitate the
processes from which the data was gathered. Such models
enable the experts to run simulations and make predictions
about something before it really happens. Numerical predic-
tion and quantitative modelling, both suited for such a pur-
pose, are common tasks in machine learning. Their quality
is usually judged on the numerical accuracy they achieve on
yet unseen data. It often happens that numerically accurate
model fails to explain the underlying processes hidden in the
data or the explanation is too complex. Recently, quantita-
tive machine learning has been combined with qualitative
learning in the method called Q2 learning (Šuc, Vladušič, &
Bratko 2004) which turned out to be very successful. In Q2,
a qualitative model is induced first and is later used to force
the numerical model to be consistent with the induced qual-
itative constraints. This usually contributes to better accu-
racy of numerical predictions while qualitative models them-
selves are useful as comprehensible models that intuitively
explain how the system works.

Qualitative models have been neglected for several rea-
sons. Not only the induction of a qualitative model is a com-
plex task but it is also not possible to estimate the true value

of the induced model. How good is it? How does it compare
to the model induced by another algorithm? There are sev-
eral estimates for numerical models but none for qualitative
models. More or less it is the matter of one’s taste and habit
when one decides which algorithm to use.

In this paper we present an algorithm QING (Qualitative
INduction Generalized) which is based on discrete Morse
theory (DMT) (Forman 2001) from the field of computa-
tional topology. We consider this powerful theoretical back-
ground in mathematics an advantage. Given a learning set
of examples with numerical attributes and a numerical class
variable, the goal of QING is to perform qualitative analy-
sis of class variable w.r.t. attributes. The output of QING
is a qualitative field (qfield), a set of critical points and a
labeled qualitative graph (qgraph), which is a visualisation
of the qualitative model. Detailed definitions of these terms
are given in section ’Algorithm QING’. Induced qualitative
models can also be used for numerical regression by apply-
ing the Q2 method. The main difference between QING
and other algorithms for induction of qualitative models is
in attribute space partitioning. Unlike algorithms that split
on attribute values (e.g. trees, rules), QING triangulates the
space (domain) and constructs the qualitative field which
for every learning example tells the directions of increas-
ing/decreasing class. Doing so it finds all maxima, minima
and saddles, so called critical points. One of the main fea-
tures of QING is canceling, a direct way to handle noisy
data. Another important advantage over state-of-the-art al-
gortihms is that monotonic qualitative constraints are gener-
alized so that most of the qualitative ambiguity is removed.
This paper is mainly focused on the theoretical background
of our approach that greatly contributes to many features of
QING. However, we also present some experiments to show
how QING works in practice, how it handles noise and how
it compares to state-of-the-art algorithms for induction of
qualitative models.

The most relevant of related work is algorithm QUIN
which we briefly summarize in ’Related work’. Algorithm
QING is described and accompanied with a simple exam-
ple in section ’Algorithm QING’. In section ’QING with in-
verted pendulum’ we aplly QING to the dynamic system of
inverted pendulum. For mathematically oriented readers we
summarize discrete Morse theory in section ’Discrete Morse
theory’.



Related work
The problem of automatic induction of qualitative mod-
els has been addressed several times (Bratko & Šuc 2003;
Kuipers 1994). In one way or another, most of the ap-
proaches use mainly background knowledge and not learn-
ing examples. The first algorithm for induction of qualitative
trees from numerical data was QUIN.

QUIN (QUalitative INduction) looks for qualitative de-
pendencies in numerical data and induces qualitative trees
to express such dependencies. The induction process is sim-
ilar to the induction of decision trees (Breiman et al. 1984;
Quinlan 1992). In a qualitative tree the leaves are labeled
with MQCs (monotonic qualitative constraints), a kind of
monotonicity constraints that are widely used in the field of
qualitative reasoning (Kuipers 1994).

An MQC is best described by an example, let’s say y =
M+(x). This says that y monotonically increases when-
ever x increases. In general, MQCs can have more than
one argument, e.g. z = M+,−(x, y) says that z monoton-
ically increases whenever x increases and z monotonically
decreases when y increases. Each qualitative constraint in
an MQC requires a strict increasing/decreasing dependency
in its variable while keeping the other variables constant.
Therefore, an MQC may be qualitatively ambiguous. Qual-
itative ambiguity occurs when the qualitative value of the
constraint cannot be predicted (e.g. the qualitative change in
z = M+,−(x, y) cannot be determined in the case of x and
y both changing). The degree of fit between the data and
an MQC is evaluated by two measures: qualitative consis-
tency and qualitative ambiguity. Qualitative consistency of
an MQC is the percentage of the learning examples that are
qualitatively consistent with the MQC. Qualitative ambigu-
ity is the percentage of examples for which the MQC allows
ambiguous predictions.

The QUIN algorithm has quite a high complexity. Em-
pirical results (Bratko & Šuc 2003; Šuc, Vladušič, & Bratko
2004) show that QUIN can handle noisy data and, at least in
simple domains, produces qualitative trees that correspond
to human intuition.

Algorithm QING
QING’s task is to perform qualitative analysis of continuous
class variable f w.r.t. given attributes (x1, . . . , xn), where
n is the dimension of the attribute space. For simplicity we
will in this paper restrict ourselves to two attributes. Theo-
retically, QING works for any dimension n but is practical
for n ≤ 5 due to the complexity of triangulation. The in-
put to QING is a set of learning examples with continuous
attributes. Its output is:

• a qualitative field, (qfield)

• a set of critical points – minima, maxima and saddles of
f , where in the case n > 2 the saddle are of different
types,

• a qualitative graph, (qgraph)

Definition A qfield is a qualitative model represented as a
set of pairs (pi, pj) which determine vectors pointing in the
direction of incresing f . The points pi in attribute space can

−10 −5 0 5 10
−10

0
10

−100

−50

0

50

100

(a)

��

��

� �

1

(b)

Figure 1: Function f(x, y) = xy and the triangulation of its
domain with two minima (circles), two maxima (triangles)
and a saddle in the middle.

be either data points or midpoints between the data points,
i.e. centers of mass of the segments and triangles forming
the triangultaion. An example of qfield is shown in Fig. 2.

The qfield determines the critical points of f . They are
simply the points which do not appear in any one of the pairs
(pi, pj).

Definition A qgraph is a labeled graph describing the
qualitative behaviour of f . The vertices are in the critical
points and two critical points are connected if a path along
which the function values monotonically increase. It is an
abstraction of qfield, ment as a visualization of the qualita-
tive model. An example of qgraph is shown in Fig. 3.

To be more illustrative, the description of the algorithm is
accompanied with an example f(x, y) = xy defined on an
orthogonal mesh (see Fig. 1(a)) on the domain [−10, 10] ×
[10, 10].

Before we continue, let us slightly extend the notation of
an MQC: f = M c

(x) means that f stays constant with in-
creasing x. We also note here that the specific qualitative
ambiguity described in section ’Related work’ is removed in
QING – the values of all the variables may change simulta-
neously.
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Figure 2: Qualitative field for f(x, y) = xy. The arrows
point in the direction of function decrease.

Figure 3: Qualitative graph for f(x, y) = xy.

The outline of the QING algorithm is as follows. Learn-
ing examples are represented as points in the attribute space,
each point having assigned a value of its class variable. The
domain is triangulated in order to be analysed with discrete
Morse theory. Critical points are reconstructed using the al-
gorithm of (King, Knudson, & Mramor Kosta 2005). Can-
celing is performed to remove the noise.

In the following paragraphs we explain each main step
of the algorithm in more detail followed by examples. We
finish this section with the analysis of QING’s complexity.

Preprocessing
In the topological setting, learning examples are represented
as points in R

n, where n is the number of attributes, and
the class variable f represents the values of a smooth Morse
function in these points. In the case n = 2, a set of points
{(xi, yi, zi), i = 1, . . . , k} which represent sampled values
of a function z = f(x, y) over some domain D ⊂ R

2 is
given, and our goal is to analyse the function f using DMT
to obtain a qualitative behaviour of f . To do so we first tri-
angulate our domain D. The class values at these points are
extended to a discrete Morse function defined on the trian-
gles. In QING we use Delaunay triangulation implemented
in a free software library Qhull (Barber, Dobkin, & Huh-
danpaa 1996) which is very robust and works in arbitrary
dimension. Since triangulation is the basis for further anal-
ysis it is worth using it carefully. Delaunay triangulation tri-
angulates the convex hull of the given points causing some
undesired effects on the edge, namely, triangles connecting
distant points appear. To avoid this we embed our points
in an artificial polygon, triangulate and remove the triangles
that connect to the points on the polygon.

Obtaining qualitative model
To calculate the critical points of a function on a discrete set
of points we use discrete Morse theory of Forman (Forman
2001). Critical points are reconstructed from the qualita-
tive field which is obtained using the algorithm of (King,
Knudson, & Mramor Kosta 2005). Possible pairs of criti-
cal points with function values differing by less than a given
margin (parameter persistance) are cancelled. This becomes
useful in noisy domains to set the threshold for noise reduc-
tion, where persistance is set to the value of the measuring
tolerances at data acquisition.

Critical points together with the qfield represent a qualita-
tive model of our function, the class variable. So described,
the qualitative model could be used in Q2 learning but it
still lacks a comprehensive explanatory power. Especially in
higher dimensions, it is too complex for a human to compre-
hend. Therefore we abstract the qualitative field to a quali-
tative graph which serves as a visualization tool.

Algorithm complexity
The algorithm consists of three major steps: constructing
a triangulation and a discrete vector field on it, and con-
structng the qgraph connecting the critical points. In the
first step, an additional feature is the possibility of cancelling
neighboring pairs of critical points where the values differ



by less than a given margin, which is an efficient method for
dealing with noise. The complexity of this first step is O(h)
without canceling, and O(h2×� d

2 �) with cancelling, where
h is the number of points and d is a dimension of the at-
tribute space. The second step requires for each critical point
a search through the paths leading through this critical point.
The complexity of this step is O(N), where N is the number
of triangles. The last step requires a linear search through the
points and therefore has the complexity of O(h) where h is
a number of learning examples (i.e. points).

How QING handles noise
Noise is disturbing but inevitable in real data. Therefore it is
very important that the algorithm is able to deal with it and
still induce a usefull model. QING has a straightforward so-
lution to this problem. Its only parameter, persistence, can-
cels the pairs of critical points that differ in function values
for less than the persistence.

To demonstrate canceling in practise we added 10% noise
to our artificial domain f(x, y) = xy. Fig. 4 shows how dif-
ferent values of the parameter persistence influence the qual-
itative field. Starting with persistence 0, which corresponds
to assuming that there is no noise, we encounter many crit-
ical points in the qfield. Increasing persistence we finally
come to the point where the qgraph very much resembles
the one on Fig. 3 with no noise. Both qgraphs are isomor-
phic, i.e. qualitatively equal. Inspite of noise we managed to
discover the correct qualitative model. In practice, domain
experts can usually asses the persistence value (e.g. the mea-
suring tolerances) very well.

QING with inverted pendulum
The inverted pendulum (also known as ’pole and cart’) is a
well known dynamic domain that is, due to its simplicity,
often used in experimenting with new algorithms. The sys-
tem is shematically shown in Fig. 5. Equations 1 and 2 give
its physical model. To build a qualitative model of the in-
verted pendulum we would have to model both equations.
Since the procedure is the same, we choose to present only
the more complex half of the qualitative model, ẍ, and omit
ϕ̈.
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Figure 5: Inverted pendulum, also known as pole and cart.

ẍ =
4F + 2lmϕ̇2 sin ϕ − 1.5mg sin 2ϕ

4M + 4m − 3m cos2 ϕ
(1)

ϕ̈ =
(M + m)g sin ϕ − F cos ϕ − 1

2mlϕ̇2 sinϕ cos ϕ
1
6 (4M + 4m − 3m cos2 ϕ)l

(2)

ϕ ≤ 0.65

ϕ ≤ −0.65

ẍ = M+,+,+

(ϕ̇, F, ϕ) ϕ̇ ≤ 0

ϕ ≤ 0

ẍ = M+,+,−
(ϕ̇, F, ϕ) ẍ = M−,+,−

(ϕ̇, F, ϕ)

ϕ ≤ 0

ẍ = M−,+,−
(ϕ̇, F, ϕ) ẍ = M+,+,−

(ϕ̇, F, ϕ)

ẍ = M+,+,+

(ϕ̇, F, ϕ)

Figure 6: Qualitative tree for ẍ = ẍ(ϕ, ϕ̇) built analytically
from Eq. 1.

Since the equations are known, a straightforward way
to obtain the qualitative model, would be to calculate the
derivatives ∂ẍ

∂F , ∂ẍ
∂ϕ and ∂ẍ

∂ϕ̇ and look for the areas where they
are positive/negative. By hand, with some approximations,
we can get the qualitative tree shown in Fig. 6. Approxima-
tions are necessary because the area in R

2 where ∂ẍ
∂ϕ is close

to 0 is an ellipse and using a qualitative tree, we can only
approximate it with a rectangle.

Analytical solutions are nice to play with but in practise
we often have only data, obtained by a sampling some pro-
cess. For the sake of experiment, we use Eq.1 to obtain a
data sample. Without loss, we neglect F . Our domain is
therefore a plane spanned by ϕ and ϕ̇, specifically, a rect-
angle [−π/2, π/2] × [−10, 10]. To keep things simple we
again have an orthogonal mesh and no noise.

On this data we use QUIN to construct a qualitative tree
of depth 6 with 27 nodes, of which 14 are leaves – 7 M−(ϕ̇)
and 7 M+(ϕ̇). The root splits on ϕ̇ ≤ −0.5. All internal
splits are made on different values of ϕ. As QUIN says, the
coverage is perfect and there is no qualitative ambiguity in
this tree. We can of course tell QUIN to build a smaller tree.
The one of depth 3 has 8 leaves and its splits are the same as
those to the third level in the larger tree.

At the end, we use QING on the same data. The induced
qualitative graph, Fig. 7, has 8 nodes (critical points) and 15
segments (MQCs) between them.

Technically speaking all three models are graphs so we
can compare them simply by looking at their complexity.

Discrete Morse theory
In this section we review the basics of Forman’s discrete
version of Morse Theory (Forman 2001).

In the classical, smooth version of Morse Theory, a Morse
function is a function defined on a smooth manifold M of di-
mension n, which has only nondegenerate critical points. In
our case, M will be a domain in Euclidean space R

n, and
in this case a critical point p of a function f : M → R, is a
point where grad f = 0, i.e. the linear term in the Taylor ex-
pansion of f around p is 0. A critical point is nondegenerate
if the second degree term in the Taylor expansion is nonzero.
In the neighbourhood of a nondegenerate critical point, the
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Figure 4: Domain f(x, y) = xy with added 10% noise. Different values of parameter persistence are used to show how noise
is removed through canceling of critical points.



(-1.57, -10, -4.54)
min

(-1.57, 10, -4.54)
min

(0.93, 0, -0.33)
min

(-0.07, 4.0, -0.004)
saddle

(-0.07, -4.0, -0.004)
saddle

(1.43, 10.0, 4.41)
max

(1.43, -10.0, 4.41)
max

(-0.57, 0, 0.32)
max

Figure 7: Qualitative graph for ẍ = ẍ(ϕ, ϕ̇) built by QING.

function f can be expressed as −
∑k

i=1 u2
i +

∑n
i=k+1 u2

i ,
where the number of negative terms k is called the index
of p. In the case n = 2, a critical point of index 0 corre-
sponds to a minimum, a critical point of index 1 to a saddle,
and a critical point of index 2 to a maximum. In higher di-
mensions, saddles of different types exist. A nondegenerate
Morse function determines a flow on the manifold M which
corresponds to the vector field grad f . A good introduction
to Morse theory is (Milnor 1963).

In the discrete version of Morse theory, a triangulation of
the domain M is given. A discrete Morse function f asso-
ciates a value to each simplex in the triangulation, and sat-
isfies the following conditions. For each simplex α there is
at most one simplex β(k+1) which contains α as a face such
that f(β) ≤ f(α), and there is also at most one faces γ(k−1)

of α such that f(γ) ≥ f(α).
As we can see from these two conditions, the values of

a Morse function generally increase with dimension, with
one possible exception. It is easy to see that the two con-
ditions above are exclusive, and so each simplex appears in
at most one pair (α(k), β(k+1)), where α is a face of β and
f(β) < f(α). A simplex α(k) is a critical simplex of index
k, if it does not appear in any such pair, i.e. if the function
values on all its faces are lower, and the function values on
all simplexes which contain it as a face are higher.

The collection of pairs F = {(α(k), β(k+1))} with αk

face of βk+1 and f(β) ≤ f(α) is the discrete analogue of
the gradient vector field of a smooth function f . The discrete
analogue of a trajectory of the gradient vector field is a V -
path which is a sequence of simplices

α
(k)
0 , β

(k+1)
0 , α

(k)
1 , β

(k+1)
1 , ..., β(k+1)

r , α
(k)
r+1

such that pair (αi, βi) ∈ F , for each i = 0, 1, .., r, αi �=
αi+1 and αi+1 (as well as αi) is a face of βi. Then f(βi) <

f(αi) because (αi, βi) belongs to F and f(αi+1) < f(βi)
because αi+1 is a face of βi (but (αi+1, βi) does not belong
to F ). A V -path corresponds to a path through the simplices
in M along which f decreases.

A discrete gradient vector which has no nontrivial closed
paths, i.e. no V -paths such that r ≥ 0 and α0 = αr+1

corresponds to a discrete Morse function (Forman 2001).
So if we want to extend a function given on set of vertices
to a discrete Morse function on the entire triangulation, we
only have to find a discrete vector field that has no nontrivial
closed paths (King, Knudson, & Mramor Kosta 2005).

Conclusions and further work
We applied the discrete Morse theory, which is a ’hot is-
sue’ in the field of computational topology, to qualitative
machine learning. We used it to induce a qualitative model
from numerical data. Qualitative rules are used to describe
the qualitative constraints of class variable using given at-
tributes. We focused mainly on the theoretical issues yet
showing how QING performs in practise. We are aware
of the fact that QING’s true power should be tested on real
domains but still believe that all the theoretical background
should be carefully considered first.
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Bratko, I., and Šuc, D. 2003. Learning qualitative models.
AI Magazine 24(4):107–119.
Breiman, L.; Friedman, J.; Olshen, R.; and Stone, C. 1984.
Classification and Regression Trees. CRC Press.
Forman, R. 2001. A user’s guide to discrete morse the-
ory. In Proceedings of the 2001 International Conference
on Formal Power Series and Algebraic Combinatorics, A
special volume of Advances in Applied Mathematics.
King, H. C.; Knudson, K.; and Mramor Kosta, N. 2005.
Generating discrete morse functions from point data. Exp.
math. 14(4):435–444.
Kuipers, B. 1994. Qualitative Reasoning: Modeling and
Simulation with Incomplete Knowledge. MIT Press, Mas-
sachusetts.
Milnor, J. 1963. Morse Theory. Princeton University Press.
Quinlan, J. 1992. Learning with continuous classes. In
Proceedings of the 5th Australian Joint Conference on Ar-
tificial Intelligence, 343–348.
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