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Abstract

Equation discovery is a very lively area of artificial intel-
ligence which deals with explaining phenomena by mathe-
matical formulae induced from the data. One successful ap-
proach to the problem are algorithms which construct thou-
sands of formulae and report the simplest ones with the best
fit to the data. Another, sub-symbolic, fits (piecewise) regres-
sion hyper-planes; their advantage is that they may be made
to conform to qualitative constraints. We propose an algo-
rithm that shares the qualities of the two approaches: EDGAR
searches for simple qualitatively faithful equations which fit
the data well. The algorithm performs very well on sim-
ple problems, but in its current implementation fails to solve
more complex ones.

Introduction
The field of equation discovery can be defined as “given a
set of (numerical) observations, find a set of laws, expressed
as mathematical equations, which govern the observed sys-
tem”. An amazing example of such a venture is Kepler’s
use of Brahe’s data to discover the rules of planetary motion.
The task is far easier if the researcher knows what he is look-
ing for, that is, if he wants to discover the relation between a
set of independent variables and a dependent variable.

The physicist’s approach is to derive a new law from the
known laws. For instance, the motion of planets is a direct
consequence of Newton’s universal laws of gravity. This
will fail when the laws are not there yet (like they were
not in Kepler’s time) or, as is more often the case nowa-
days, if the domain is too complex, non-linear, or has too
many variables to be analytically solvable. A typical exam-
ple of such a problem is modeling weather. In such cases,
the expert may be able to come up with an approximate
model where the constants are fit to the existing data by ap-
plying statistical methods like minimization of squared er-
ror. When the domain is not understood well enough, even
this may be unfeasible. Some well known examples of this
kind occur in ecological modeling (Langley et al. 2002;
Kompare, Todorovski, & Džeroski 2001).

Machine learning and statistics offer two alternatives.
One is to generate numerical models, such as piecewise
linear regression or LOESS (Cleveland, Devlin, & Grosse
1998). The property of this approach, which is of partic-
ular interest for our paper, is that it can be implemented

to also conform to qualitative constraints (Šuc, Vladušič,
& Bratko 2004) given by an expert or by algorithms like
QUIN (Bratko & Šuc 2003) or Padé (Žabkar, Bratko, &
Demšar 2007). These models may be very accurate, but they
are useful only for predicting and not explaining the domain
and so fail to fulfill our goal of finding “a set of laws gov-
erning the system”.

The alternative, symbolic models are better in this respect.
Algorithms like Goldhorn (Križman, Džeroski, & Kompare
1995) and Lagramge (Todorovski & Džeroski 1997) pro-
duce a number of equations with missing constants, fit the
constants to the data and rank the equations by their sim-
plicity and fit. For better control, they may also allow the
expert to define a grammar for the equations (Todorovski &
Džeroski 1997; Langley et al. 2002).

The problem with symbolic models is their ignorance of
qualitative constraints, which can lead to meaningless re-
sults. For a simple test we modeled the free fall acceleration
at different distances from the Earth. The correct equation
(if the experiment is done above the Earth surface) is

g = G
M

r2
=

3.99 × 1014

r2

where G is the gravitational constant, M is the Earth’s mass
and r is the distance from the Earth’s center at which we
measure the acceleration.

We generated artificial experimental data by sampling the
function g(r) with step 200 in the interval [6371, 39971]
(from the ground to the height of satellites) obtaining 169
samples. We added Gaussian noise with N(0, 0.5). We tried
to reconstruct the formula as a linear combination of terms
obtained by generating all subsets of elementary functions

{1, r, r−1, r2, r−2, r3, r−3, sin r, log r, cos r, exp r},
i.e. we were fitting the coefficients of functions like a +
br2 + sin r and a log r + br−2. We sorted the functions us-
ing the state-of-the-art combination of root mean squared
error (RMSE) and minimum description length (MDL) mea-
sures from (Todorovski & Džeroski 1997). The optimal
fit was a constant function, and the second best fit was
(RMSE=0.5013):

g(r) =
3.928 · 1014

r2
− 0.124 cos(r).



The first term is quite correct, while the second term only
fits the (random) noise. The problem with this solution is
that it suggests that free fall acceleration oscillates with r —
which we (today) know is not true. The obvious remedy to
this problem is to exclude the sine and cosine from the list
of base functions. We can also tune the scoring function’s
bias on description length, but this can only be done if we
know the correct formula in advance. Besides, the emphasis
on MDL may already be too high, as witnessed by the fact
that the best ranked function is simply a constant.

In this paper we propose a new algorithm, EDGAR, that
offers a third approach, combining the advantages of nu-
meric and symbolic approaches: it searches for symbolic
equations by fitting the template functions constructed as a
combination of terms (like in the example above) or from
a grammar given by the expert, but at the same time also
ensures that the solutions match the prescribed qualitative
constraints.

Algorithm EDGAR
EDGAR (Equation Discovery with Grammars And Regres-
sion) is an algorithm for discovery of equations from a set
of measurements of independent and dependent variables,
a set of qualitative constraints, and the grammar specifying
the templates of equations. The constraints may also specify
a region, like in “y increases with x for all positive values of
x”. The algorithm consists of the following four steps.

1. Use a function generator to generate general forms of
functions (templates). For instance, a + bx + cx2 is a
template for second degree polynomials in x.

2. Compute a symbolic derivative of each generated func-
tion, e.g.

∂(a + bx + cx2)
∂x

= b + 2cx.

3. Symbolically solve the system that puts the constraints
on the coefficients of the initial function, respecting the
qualitative constraint. For instance, if we know (from an
expert or a qualitative model) that the function increases
with x for all positive x, the algorithm needs to find the
values of b and c which satisfy

∀x, x > 0 : b + 2cx > 0.

The solution is:

(b = 0 ∧ c > 0) ∨ (b > 0 ∧ c ≥ 0).

4. Finally, fit the coefficients of the function to minimize
RMSE, with respect to the constraints on the coefficients
that were computed in the previous step to guarantee that
the induced function will satisfy the given qualitative con-
straints. For instance, the algorithm would find the values
of a, b and c within (b = 0 ∧ c > 0) ∨ (b > 0 ∧ c ≥ 0),
for which a + bx + cx2 fits the data as close as possible.

For the first step, the algorithm currently supports two
forms of specifying the function templates. One is to pro-
vide a set of elementary (basic) functions from which we can
automatically generate candidate functions for further pro-
cessing, like we did in the example in the introduction. For

instance {1, x, x2} is used to generate all possible second
degree polynomials. The alternative is to use context free
grammars to generate candidate functions. This approach
has several advantages over the first one, among them offer-
ing a simple way for the user to provide background knowl-
edge and the use of declarative bias (Todorovski & Džeroski
1997).

The second step, computing the symbolic derivative of the
function from the previous step, is trivial.

The overall simplicity of the idea is unfortunately spoiled
by the extremely difficult realization of the third step. Its
task translates to the problem of quantifier elimination and is
generally insolvable. We used the state-of-the-art algorithms
coded in Mathematica’s (Wolfram Research, Inc. 2005)
function Reduce. For polynomials, it uses cylindrical alge-
braic decomposition (Collins 1975). Algebraic functions are
translated into equivalent purely polynomial systems. For
transcendental functions, Reduce generates polynomial sys-
tems composed with transcendental conditions, then reduces
these using functional relations and a database of inverse im-
age information. Piecewise functions are symbolically ex-
panded to construct a collection of continuous systems. The
user can also help by adding some background knowledge
into the logical formula.

The remaining step, minimization of RMSE given the
constraints from the previous step, is generally a nonlin-
ear constraint satisfaction problem, which we solve using
Nelder-Mead methods (Luersen & Le Riche 2002).

The first step of the algorithm was partially implemented
in Prolog. Everything else was implemented in Mathe-
matica, which already contains the derivation, methods for
quantifier elimination, and nonlinear minimization.

Experiments and Discussion
We tried the algorithm on the problem of modeling the grav-
itational acceleration with artificial data generated as de-
scribed in the introduction. The Gaussian noise was again
N(0, 0.5). We generated the function templates with a gram-
mar that can induce symbolic rational functions up to the
second order, e.g.: ax2 + bx sin(c + dx), or ax/[sin(b +
cx) − dx]. The sine terms were included only for the sake
of comparison, although it was obvious that all functions
with such terms would be discarded in the third step. As a
qualitative constraint, we told EDGAR that the gravitation
decreases with the distance, g = Q(−r).

The generated function with the optimal RMSE was

g(r) = −0.0259 +
4.096 · 1014

r2

with a RMSE of 0.4968.
Acting as domain experts, we noted that the formula, de-

spite obeying the given qualitative constraints, still made no
physical sense, since the negative term reverses the sense of
gravitation for distances above 125,000 kilometers.

EDGAR makes it easy to add new constraints. We
thus additionally stated that g(r) should always be positive,
which reported

g(r) =
4.070 · 1014

r2
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Figure 1: Best fit by EDGAR with enforced Q(−r) and ∀r :
g(r) > 0.

as the best ranked function with a RMSE of 0.4972 (see
Fig. 1). This function is correct, except for the 3.6% error in
the constant due to the noise.

We repeated the experiment with different amounts of
noise: N(0, 1) and N(0, 0.2). EDGAR’s results were the
same (correct) as in the experiment with N(0, 0.5), except
for the constant slightly varying due to different amounts of
noise in the data. On the other hand, RMSE alone always
selected an overly complex overfitted function, and adding
MDL to the scoring function resulted in always preferring a
constant as a solution.

Yet, despite this success — and a few others on similarly
simple domains, for instance on the XPERO robot data de-
scribed in (Žabkar, Bratko, & Demšar 2007) — there re-
mains a lot of further work to make the algorithm practi-
cally useful. We describe the problems and our proposed
solutions below.

Depending on the complexity of the templates (or, more
accurately, their derivatives) the task of the third step may
be too complex. In the current implementation, this would
result in a suboptimal, yet still qualitatively faithful solution.
We are working on replacing the Reduce function with prob-
abilistic alternatives.

When the solution includes periodic functions, these can
generate a lot of local minima, which the minimization pro-
cedure can fall into. We do not yet know whether this will
cause any real problems and whether restarting the mini-
mization from different initial points will amend them.

The algorithm needs a few minutes on an average PC for
solving rather simple problems (gravitational acceleration,
XPERO robot data) and does not seem to scale well. This is
again due to the complexity of the Reduce function. Besides
replacing it, the algorithm can also be accelerated by using
exact or heuristic methods to eliminate as many functions as
possible before they reach the third step of the algorithm.

Conclusion
We described an algorithm called EDGAR which discov-
ers symbolic equations that fit the given data as well as
possible and, at the same time, match the given qualitative

constraints. The algorithm is conceptually simple and was
easy to implement using the existing functions for deriva-
tion, quantifier elimination and minimization available in
Mathematica. The successful tests on a few simple domains
show the algorithm as promising, yet there remain quite a
few technical problems to be solved before it will also be
practically useful.
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