
A Report on QR-Based Testing

Harald Brandl and Gordon Fraser and Franz Wotawa ∗

Institute for Software Technology
Graz University of Technology

8010 Graz, Austria
{brandl,fraser,wotawa}@ist.tugraz.at

Abstract

As reactive and embedded systems continuously interact with
their environment, it is important to test as many as possible
interactions. The use of qualitative models of the environ-
ment and hardware has the potential to provide test cases that
might not be considered with traditional testing methods. We
present an approach that derives abstract test cases from such
models using qualitative reasoning, which is a well known
artificial intelligence technique to represent and reason about
physical behavior. For this purpose we introduce the underly-
ing concepts of qualitative reasoning, show the test case gen-
eration process, and provide the results of a case study.

Introduction

This paper extends the ideas proposed by Franz Wotawa
(Wotawa 2007) and presents first results for test case gen-
eration from QR-models.

The growing demand for smarter products with increased
functionality leads to a steady increase of the complexity of
systems and software. As an example, current cars typically
have more than 40 control units with many sensors and ac-
tuators on board; this number will further increase. Verifica-
tion and validation are therefore very important, and lead to
many issues related to the automation of test case generation
and execution. In the context of reactive and embedded sys-
tems, the difficulty of automated testing is further increased
because there is a high degree of interaction with the sur-
rounding environment. Because of this, correctness cannot
be guaranteed solely by testing the implemented functional-
ity, but also requires testing of the reactions to general stim-
uli originating from the environment. Although the behavior
upon certain wrong inputs is sometimes explicitly specified
in the case of reactive and embedded systems, it is unlikely
that all important cases are considered at design time. Con-
sequently, systems might fail in some cases when interacting
with the physical world.

∗Authors are listed in alphabetical order
Copyright © 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In order to overcome this problem it is necessary to consider
the behavior of the physical world and its interaction with
the system. Qualitative reasoning (QR), which originates
from the field of Artificial Intelligence (AI), provides us with
means for deriving all possible behaviors. QR was orig-
inally developed to model commonsense reasoning within
the physical world, e.g., to allow for generating answers to
questions like “If I throw a stone upwards, what will hap-
pen?” A QR simulator will not only provide us with one
answer like the stone will move up to a certain point and fall
down afterwards, but with all possible answers, including
that the stone might go up and up if thrown fast enough.

In general, model based testing techniques use some kind of
formal specification describing a system’s expected behav-
ior in order to determine whether an implemented system is
correct. The specification is used to derive test cases and
also serves as oracle, which decides if an executed test case
detected an error. For more details on test based on for-
mal specifications we refer to existing surveys on the topic;
e.g., (Hierons et al. 2008). The semantic model of most of
these formal languages can be interpreted as a kind of tran-
sition system representing a system’s time variant behavior.
Unlike traditional formal specifications, QR techniques al-
low to describe a system in a declarative manner by a set of
qualitative differential equations (QDEs). From this com-
pact representation a QR engine derives a transition system
which represents all possible behaviors that can evolve over
time starting from an initial scenario.

QR modeling tools like Garp3 (Bredeweg et al. 2006) are
well suited when specifying physical systems on an abstract
behavioral level. Especially when there is already a mathe-
matical description of the system available (set of differen-
tial equations), the mapping can be done in a straightforward
way. Therefore, a focus of the presented approach lies on
control systems. The continuous domain of control systems
(or integer domain for digital controllers) can be transferred
via qualitative abstraction and simulation to a transition sys-
tem (TS).

In this paper, we briefly introduce the basic concepts of QR.
As a running example we use a system that sends GPS data
to a base station via GSM on a regular basis (Figure 1); such



Figure 1: Block Diagram of a container tracking unit.

Figure 2: The implemented prototype of the container track-
ing unit.

systems can for example be found in the logistics domain.
To increase mobility the system has a solar panel which
charges a battery. The system monitors the state of the bat-
tery and the solar panel and acquires other environmental pa-
rameters like the temperature via its sensors. Once new data
has been collected, the system decides upon the next actions
or if it should go to a power saving mode. A near field com-
munication module allows data exchange with other devices
within range.

The running example will be used to introduce the basic
concepts of generating test cases from QR models, and as
a case study to evaluate the feasibility of the presented ap-
proach. The possible behaviors inferable from QR models
are represented as labeled transition systems (LTS). Manu-
ally specified test purposes are used to derive test cases from
the LTS. For example, from the requirement that the sys-
tem should not run out of battery we create a test purpose
that expresses that we do not allow a battery to completely
discharge. Traditional LTS conformance testing techniques
are adapted to be applicable to QR based models, allowing
derivation of test cases from the synchronous product of the
system LTS and the test purpose. As the obtained test cases
are abstract they have to be refined in order to be executable
on an implementation under test (IUT). This is realized by
applying abstraction/refinement relations to the information
exchanged between a test case and an IUT.

The main contributions of this paper are as follows:

• Models that are close to hardware are used for test case
generation.

• The underlying models can include the system hardware,
the part of the software which interacts with the environ-
ment, and the environment itself.

• The use of environmental models ensures that all possi-
ble behaviors are covered, while during manual test case
generation some details may be missed.

• We adapt the input-output conformance testing theory
(ioco)(Jard and Jeron 2004) to transition systems derived
from QR models.

The remainder of the paper is organized as follows. First,
we introduce the basic concepts of QR and the modeling of
our running example. Then we present our approach of test
case generation from QR models in detail and present the
first results of our case study. Finally, we discuss related
research and conclude the paper.

QR Modeling with Garp3

Garp3 provides every means to build and inspect QR mod-
els. A detailed description of the functions can be found in
the user manual (Bouwer, Liem, and Bredeweg 2005), and
there is an elaborate user guide (Bredeweg et al. 2005) for
building QR models.

A Garp3 model consists of a set of model fragments, which
are the basic units that describe behavior. Two main types
of fragments can be distinguished: static and process model
fragments. A third fragment type called agent can be used to
model exogenous influences on the system. Static fragments
represent behavior that is invariant with regard to time, such
as proportional relations between quantities, like, for ex-
ample, “the amount of water in a vessel is proportional to
the water level”. A dynamic fragment introduces changes
via influences between quantities, for example “a positive
flow rate into a vessel will increase the amount of liquid and
hence the liquid level over time”.

Usually, systems consist of several model fragments that are
activated when certain boundary conditions are met. Garp3
uses colors to represent information like, e.g., the identifica-
tion of conditional elements in a model. Garp3 adds the con-
sequences of a model fragment as new facts to the knowl-
edge base, unless they contradict existing facts. Model frag-
ments enable the designer to partition the system domain
into qualitative equivalence classes that capture certain be-
havior. During simulation the set of fragments collected in
a library changes between being active and inactive as the
system evolves over time.

Within a model fragment the main modeling primitives are
entities, quantities, proportionalities, and a set of ordinal re-



lations. In dynamic model fragments there are additional
influences. Entities are the components of the system that
have certain properties expressed through associated quanti-
ties. For example, the entity battery has the quantities ”volt-
age”, ”current”, and ”charge”.

Proportionalities establish a mathematical relation between
two quantities in the form of a monotonic increasing or de-
creasing function. The notation P+ (Q1;Q2) expresses that a
change of Q2 causes a change of Q1 in the same direction.
A proportionality with a minus sign states that a change of
the cause quantity induces a change in the opposite direction
of the effected quantity.

Ordinal relations called inequalities provide means to con-
strain possible behavior. Influences cause dynamic changes
of the system and provide means for integration. For in-
stance, I+ (Q1,Q2) means that the value of Q2 determines
the change of direction of Q1. If Q1 is positive Q2 increases,
if Q1 is zero Q2 does not change, and if Q2 is negative Q1
decreases. The graphical notation used in Garp3 states rela-
tions with arrows between quantities.

The initial state of the system is captured with scenarios.
This initial state and the model fragments serve as input
to the simulation engine. Simulation is used to generate
the behavior of a QR system. The simulation engine de-
rives everything that does not contradict the boundary con-
ditions, i.e, inequalities between quantities. QR models can
only describe systems with continuously changing quanti-
ties, as stated by the continuity law (Forbus 1984). In gen-
eral, model creation is an iterative process: One has to find
the right level of abstraction and check if the simulation out-
put satisfies the requirements. If there are discrepancies, the
model has to be adapted and simulated again.

We use Garp3 models to describe hybrid systems, i.e., sys-
tems that combine discrete and continuous behavior, in a
qualitative fashion. Control modes of hybrid systems can
be captured with sets of model fragments that define a cer-
tain control mode when applied. Whenever a model frag-
ment is activated or deactivated during simulation the sys-
tem switches to a different mode. Garp3 models represent
a restricted form of hybrid systems, i.e., they require that
changes of variables between control modes follow the con-
tinuity law.

Example Model

Our example of a container tracking unit (see Figure 1) con-
sists of a solar panel, a battery, and the controller board
drawing some load current. In addition, there are external
quantities such as temperature and light conditions.

Figure 3 shows the model fragment for the solar panel. It is
a static fragment that defines the main proportionalities (P-
arrows) and correspondences (arrows with V for value-, and

Figure 3: Solar Panel.

Figure 4: Battery.

Q for quantity space-correspondences) between its quanti-
ties. A second fragment of the solar panel not shown here
is a conditional one that becomes active when the current
drawn from the panel is greater than the generated current.
If this condition is met, the fragment introduces a negative
feedback (P-) from the calculated Diff quantity to the draw-
ing current. This limits the maximum current that the panel
can deliver due to the current light conditions. A further
property the model reflects is that the voltage decreases with
increasing load current (P-). In the case of a short circuit the
voltage changes to zero while the maximum load current is
provided.

Certain corresponding boundary values are stated with di-
rected or undirected value correspondences. A directed
value correspondence (V) from Current light = zero to Volt-
age = zero indicates that the voltage is zero if the current
light is zero. This restricts the state space to allowed behav-
ior. The model fragment has two interface quantities Cur-
rent light and Current that can be referenced by other model
fragments or exogenous quantities.



The model fragment in Figure 4 depicts the discharging be-
havior of a battery. The fragment is activated if the charge
level of the battery is greater than zero. Furthermore, a dis-
charge rate greater than zero is defined (the arrow on the
plus value) which is directly proportional to the temperature.
The discharge rate and the load current decrease the battery’s
charge level as stated by the negative influences. The corre-
spondence (Q arrow) and proportionality (P arrow) between
charge and voltage causes Voltage to take on the same value
as Charge.

Figure 5 shows the compound model fragment of our sys-
tem comprising the solar panel, the battery, and the container
tracking unit represented as current drawing load. The frag-
ment is active when the voltage of the solar panel is greater
than the battery’s voltage, causing the flow of a charge cur-
rent from the panel to the battery. The arrow on the solar
panel’s current quantity requires the charge current to be
greater than zero. Note that the system software has to cap-
ture the behavior of the physical world as far as the specifi-
cation is concerned.

Test Case Generation

When testing reactive systems it is important that the sys-
tem model includes the behavior of the environment. To see
why this is so, consider an analogy from control theory: The
combination of the control process with the controller forms
the whole system. These two components influence each
other, and many important conclusions like stability of the
closed loop system cannot be drawn when looking at them
separately. This also applies to testing, where both the sys-
tem state and the environmental conditions have to be con-
sidered. This section shows a method for deriving test cases
from QR models and a technique to minimize them.

Deriving Test Models from Garp3 Models

We classify systems based on how they interact with the en-
vironment. The first type comprises conventional control
systems interacting in both directions with sensors that per-
ceive the environment and actuators that change it. The sec-
ond type are systems that only perceive their environment
without changing it. The gathered information is used to
adapt the internal behavior, which is not directly observable
from the outside world. In this context the term environment
comprises anything but the system software. As software is
not well suited for modeling with Garp3 we draw this line
between software and the physical world.

Garp3 is suitable to model systems that can be completely
specified by their observable external behavior. If there are
additional requirements on the internal system state (e.g.,
“the CPU has to operate in low power mode”), it is neces-
sary to monitor the execution of the software. We propose to
annotate the system software with assertions that can check

whether certain conditions are fulfilled. A test case can only
lead to a pass verdict if there was no assertion violation.

During test case execution the system software may influ-
ence the environment and hence any trace in the environ-
mental model that serves as test case. Therefore, we de-
fine interaction points as a subset of the quantities in the
Garp3 model. The quantities Q are partitioned into three
sets, viewed from the system side: input, output, and hidden.
Input quantities are refined to concrete sensor inputs for the
system, and system outputs are abstracted to output quanti-
ties influencing the environment. Consequently, the set of
interaction points is the set of all but the hidden quantities.

The simulation output of a QR model is a state space
representation of all possible behaviors that may evolve
over time, starting from an initial scenario. We define
this output as a QR transition system (QR TS) M =
(S, T, s0, Q, qs,QS, v, δ), where S is the set of states, T is
the transition relation T ⊆ S × S, and s0 ∈ S is the initial
state.

Every quantity in the set of quantities Q of the simulation
output has an associated quantity space. QS denotes the
domain of quantity spaces, and the function qs : Q → QS
maps each quantity to its associated quantity space. Each
state in the state space binds all quantities to a distinct value
and delta. The value v for quantities in Q and states in S is
defined as v : S × Q → qs(Q), and the delta δ is defined
as δ : S × Q → {min, zero, plus}. The delta of a value
stands for its direction of change over time, δ ∼ ∂value

∂t .

If there is a transition between two states, then either a value
or a delta for some quantity changes. The continuity rule
proposed by De Kleer and Brown (Kleer and Brown 1984)
states that a qualitative value as a function of time cannot
jump over values in its domain but has to change continu-
ously. As all state transitions computed by the QR engine
adhere to this rule, it follows that on every transition from
a state to a successor state at least one quantity changes its
value or direction; otherwise, the two states are qualitatively
equivalent.

Test Purposes for QR Models

In order to generate test cases from QR TS derived from
QR models, we adapt techniques from LTS testing. An LTS
extends a transition system with a set of labels P and a func-
tion L mapping transitions to labels: L : T → 2P , where P
is a set of atomic propositions. Garp3 is able to enumerate
the complete state space because of qualitative abstraction
as is possible for LTS, but in contrast to LTS, QR TS com-
prise states with simultaneously changing inputs and out-
puts. Consequently, the behavior of interest is not only spec-
ified via the occurrence of some state sequences. In addition
we are interested in the relations between quantities.



Figure 5: Container Tracking Unit.

Therefore, we define properties on the quantities, and use
these properties to define test purposes. The idea is to for-
mally specify both test purpose and test model as LTS, and
then to derive test cases by computing the synchronous prod-
uct of the specification and a test purpose, as initially pro-
posed by Jard and Jeron(Jard and Jeron 2004). A test pur-
pose describes some aspect of the specification that is of in-
terest for testing. It is defined as a regular expression over
symbols that represent properties of model quantities. A
property set represents the conjunction of several proper-
ties. To remove redundancy one can define global proper-
ties, which can optionally be added to property sets. The
set of all such property sets represents the set P of possible
transition labels.

As an example, consider the property of a battery that its
charge is greater than zero: battery : charge > zero,
where battery is the entity name and charge the name of
the quantity. This property denotes a value relation where
zero is a value in the quantity’s space. A second type of re-
lation considers the δ of quantities using the operator dx. As
an example, the property battery : charge dx = min states
that the battery charge decreases.

The regular expression that completely specifies the test pur-
pose consists of the defined symbols and operators allowed
in regular expressions. The equivalent deterministic automa-
ton accepts all symbol sequences that lead to an accept state.
This automaton represents an LTS with labels correspond-
ing to properties of the test purpose. Suppose we are inter-
ested in the the cyclic occurrence of a property a, e.g., for
three times and thereafter a path leading to property b. The
regular expression ([ˆa] ∗ a){3}. ∗ b describes such a test
purpose. Although theoretically possible, our current imple-
mentation does not make use of reject states, which are used

in LTS testing to consider only parts of the state space. As
QR models have discrete, commonly only small value do-
mains the models’ state spaces usually are not very big, and
reject states might not be necessary at all. Avoiding reject
states in test purposes has the effect that test case execution
cannot be inconclusive.

Once a test purpose is defined, we use the properties defined
in this test purpose as symbolic labels for the transitions of
our transition system. We annotate all transitions in the QR
TS with labels, where the properties represented by the la-
bels of a transition have to be satisfied in the target state of
the transition. This augmentation of the QR TS is necessary
for computing the synchronous product with a test purpose.
Algorithm 1 describes the annotation process. The LTS is
created simply by adding labels to the existing QR TS. The
conversion from QR TS to LTS is done by iterating through
the set of states. For each outgoing transition all symbols of
a given test purpose are considered. Each symbol represents
a set of conjunctively combined properties. If all properties
in the set are satisfied, the current symbol is added as transi-
tion label. In addition, a property set can have a global flag,
which requires that all global properties have to be satisfied
in addition to the properties of the set. Consequently, if the
global properties are not satisfied and the global flag is set,
the algorithm rejects the currently considered symbol for the
current transition. If the global properties are satisfied, the
reserved symbol y is added as a transition label. The algo-
rithm always terminates because the number of states in a
QR transition system is finite (The domains of the QR vari-
ables are finite).

As an example, Figure 6 shows a QR TS consisting of three
QR states. There are three symbols a, b, and c denoting three
different properties on the state variables. The QR TS is la-



Algorithm 1 QRSTATEGRAPH2LTS()
1: for all states in QR TS do
2: for all outgoing edges do
3: for all symbols of the test purpose do
4: get property set PS corresponding to

current symbol
5: get state S pointed to by current outgoing

edge
6: if S satisfies global properties then
7: add label ’y’ to current edge
8: else if PS has global flag set to true

then
9: continue with next symbol

10: end if
11: if S satisfies PS then
12: add current symbol to current edge
13: end if
14: end for
15: end for
16: end for

beled using these properties. As state s1 satisfies property
a but not properties b and c, the transition from s0 to s1 is
only labeled with a. State s2 satisfies all properties, there-
fore the transition from s0 to s2 is labeled with all symbols.
If there is more than one symbol in a label, this is interpreted
as the disjunction of the represented properties. Finally, s3
satisfies a and b and the transition from s0 to s3 is labeled
accordingly.

Figure 6: Labeled QR TS.

Test Case Generation with Test Purposes

With the converted LTS and a given test purpose we have
two LTS with the same alphabet, and hence the synchronous
product (Jard and Jeron 2004) can be computed; this is done
with a Depth First Search (DFS) algorithm. Starting from
the initial states of both LTS we match common labels on
all outgoing edges between the current states both LTS are
in. For every match found we get a state tuple by follow-
ing both edges to states. If this tuple is a new state in the
product LTS we add it with an edge. In addition the new
state is pushed onto a stack. The algorithm terminates when
the stack gets empty. In worst case this happens after all
state tuples QM1 ×QM2 have been visited. On average this

algorithm performs better than the simple approach of con-
sidering all state tuples.

The synchronous product is a new LTS, to which Tarjan’s al-
gorithm as a framework (Thierry Jeron 2004) for determin-
ing the set of states leading to an accepting state is applied.
It computes the set of strongly connected components while
updating reachability information for the visited states. A
state can reach an accepting state if itself or another state
in the same SCC can reach an accepting state. A strongly
connected component is defined as a subset of graph states,
inside which every pair of states can reach each other via
transitions to states inside the set. A directed graph with
possible cycles partitioned in its SCCs is a directed acyclic
graph (DAG) with the set of SCCs as nodes. The computed
subgraph is called Complete Test Graph (CTG). For each
state of the CTG, quantities can be mapped to actual values
with the v and δ functions (see Section ), to serve as test data
and expected output.

Although input and output information is not contained in
labels but in states, it is possible to adapt existing confor-
mance relations to QR models. As an example, in order to
determine the conformance of a system to a QR model we
adapt the input/output conformance relation (ioco) (Jard and
Jeron 2004):

i ioco s↔ ∀σ ∈ traces(s) : out(i after σ) ⊆ out(s after σ)
where i is an IUT, s is the specification (the LTS derived
from the QR model), traces(s) = {σ = 〈t0, t1, . . .〉 | t0 =
s0∧∀i ≥ 0 : ti ∈ S∧(ti, ti+1) ∈ T}, and the set s after σ =
{s′ ∈ S | σ = 〈t0, ..., tn〉 ∧ ti ∈ S, (tn, s′) ∈ T}. In this
definition, out(s) describes the state s ∈ S with its output
quantities output(Q) ⊂ Q, and their values and deltas:

out(s) =def

⋃
{(q, v(s, q), δ(s, q)) | q ∈ output(Q)}

This relation considers all traces of the implementation that
are also contained in the specification (QR TS). The val-
ues and deltas of all quantities of the implementation after
a trace σ have to be a subset of the ones contained in the
specification after the same trace. During test case execu-
tion when the implementation changes to a state not defined
in the specification, meaning that after some trace the con-
formance relation is violated, we get a fail verdict.

State Space Minimization

As hidden quantities cannot be observed during test case ex-
ecution they are not relevant in the context of test case gen-
eration. When we find two connected states that only differ
in their non-relevant quantities we can merge them and up-
date the unconnected edges of the removed state. Two states
s1 and s2 of a TS M = (S, T, s0) are equivalent, if the fol-
lowing condition holds, where rel(Q) ⊂ Q denotes the set
of non-hidden quantities:

(s1, s2) ∈ T ∧ ∀q ∈ rel(Q) :
v(s1, q) = v(s2, q) ∧ δ(s1, q) = δ(s2, q)



Figure 7(a) shows an example state space with three states
and three quantities. Assume that quantity a is hidden and
thus not relevant. Consequently, states s2 and s3 are equiva-
lent and can be merged. Figure 7(b) shows the result of this
merge, with the updated transitions. Now a problem of non-
determinism arises in state s2, as the successor states s1 and
s4 are equivalent but cannot be merged because there is no
transition between them.

a = 6

b = 1

c = 2

s5

a = 1

b = 1

c = 1

s0

a = 2

b = 2

c = 1

s2

a = 3

b = 2

c = 1

s3

a = 5

b = 2

c = 2

s1

a = 4

b = 2

c = 2

s4

(a) Original TS.

a = 6

b = 1

c = 2

s5

a = 1

b = 1

c = 1

s0

a = 2

b = 2

c = 1

s2

a = 5

b = 2

c = 2

s1

a = 4

b = 2

c = 2

s4

(b) Minimized TS.

Figure 7: State Space Minimization.

If all hidden quantities are constant the minimized CTG re-
mains deterministic. This is because constant quantities can-
not discriminate two states. Otherwise the CTG in terms of
relevant quantities may become non-deterministic. At the
end of the minimization we convert the possibly nondeter-
ministic CTG to its equivalent deterministic CTG using the
standard finite automaton technique.

Dealing with Controllability

Test cases have to be controllable. This means that on ev-
ery node in the CTG where a decision between different in-
puts for the implementation is possible every branch taken
leads to a new test case. As most systems like ours are
not controlled by their environment, the implementation can
be non-deterministic. Consequently, test cases are not lin-
ear sequences but transition systems that can handle alter-
native outputs. The set of input quantities splits a state’s
outgoing transitions into partitions where the input quanti-
ties all have same values and deltas. The implementation
has the possibility to react with the according output quan-
tity assignments in that partition. In the example of Fig-
ure 6 the set of input quantities {i1, i2} splits the outgo-
ing transitions of state s0 into the partitions {(s0, s2)} and
{(s0, s1), (s0, s3)}. For the second partition the implemen-
tation side decides which branch is taken next. The states
of a test case have only outgoing transitions of one of its
partitions which ensures controllability.

To achieve controllability we extract test cases from the
CTG as follows: For every uncovered transition in the CTG
we create a complete path by searching backwards to the
start state and forward to an accept state. Then we traverse
the path and add all parts of the CTG that are reachable
considering the implementation’s nondeterministic outputs

to the test case TS. This approach returns test cases until all
transitions in the CTG are covered.

Test Case Execution

A test case is a QR TS. All information needed for its ex-
ecution is stored in its states. A QR state comprises a set
of quantities with their current values and deltas. This ab-
stract information has to be mapped to concrete quantity
values, e.g., voltage with value = plus and delta =
positive is mapped to a time variant function like voltage =
start(voltage)+k ·t. When the state is entered the concrete
voltage value is updated regularly on some time step ∆t as
long as all state quantities fulfill the state’s conditions. The
start(voltage) denotes the starting value of voltage when
the state is entered. In this way we proceed with all in-
put quantities and simultaneously observe the conditions of
the output quantities. The behavior of the output quanti-
ties decides in which state of a branch we are in. If there
is no matching state the implementation fails the test case.
A state is left when it gets inconsistent with the observed
output quantities. The current values of the output quanti-
ties have to be transferred to the successor state so that the
according functions have initial values to compute further
output values. When an accepting state is reached we get a
pass verdict. The next section contains an example test case
to illustrate this.

Demonstration and Results

For demonstration purposes we simplify the model of our
system by replacing the solar panel with an exogenous sine
quantity, which emulates a charging current changing with
light conditions. With the load also emulated as a sine
changing current, our model reduces to the battery model
fragment shown in Figure 4. The temperature is defined as
constant exogenous quantity. Simulation of the QR model
results in a QR TS with 70 states and 228 transitions.

Assume we are interested in the behavior that leads to an
empty battery. For this, we define the two property sym-
bols a for battery : charge > zero and b for battery :
charge = zero ∧ battery : charge dx = zero. The reg-
ular expression describing the test purpose is a*b. This test
purpose is fulfilled by paths containing any number of states
where the battery charge is greater than zero (a), followed
by a state where the battery charge is zero and the battery is
not charging (b).

Next we define input- and output-quantities for our QR TS.
The battery’s current drawn by the system is an output. The
system acquires the battery’s voltage as indicator for the ac-
tual charge level as input. These two quantities are relevant
for test case generation. From the test case view inputs and
outputs of the specification are reversed. In a first step we
augment the QR TS with labels and subsequently compute



0

9

18

27

45

28

34

13

1

49

14

2

25

26

57

58

52

Figure 8: Test Case.

the synchronous product with the test purpose. After that
Tarjan’s algorithm for computing reachability information is
applied to the product LTS which reduces search space for
later test case extraction to 59 states and 207 transitions. We
minimize the obtained graph with regard to relevant quanti-
ties and ensure determinism. Now we have the CTG ready
for test case extraction comprising 26 states and 72 transi-
tions. As the state space is not big the computation time for
all this steps is about 2 seconds.

The simplified model results in 16 test cases which cover
71 transitions in the CTG. One transition cannot be covered
because when chosen during resolving a controllability con-
flict it never leads to an accepting state. In total, the 16 test
cases cover 31% of the transitions of the QR TS.

Figure 8 shows an example test case for this test purpose.
States are annotated with their state IDs as used in the QR
TS. The test case has cyclic behavior in states {27, 34, 58,
25, 26}. Figure 9 shows one possible execution sequence
through the test case leading to an empty battery. The verti-
cal separation lines denote sets of outgoing transitions start-
ing with the initial state on the left side. The arrows mark
which transition has been taken during the execution.

Table 1: Characteristics of example test purposes.
Test Purpose CTG # TCs tr coverage

battery is empty 55 55 82%
battery is full 53 38 65%

Σ 93 90%

Figure 9: Value History: Test Case leading to an empty Bat-
tery.

Table 1 depicts some characteristics for two test purposes
considering Battery : Charge and Supply : Current as
input and Battery : Current as output, applied to the full
example model. The CTG column specifies the number of
states in the CTG, and #TC the number of test cases ex-
tracted from the CTG. The last column denotes the transition
coverage for the test suites measured on the QR TS.

Related research

Tretmans (Tretmans 1996) described test case generation for
Labeled Transition Systems (LTS). The paper focused on
Input-Output-LTS (IOLTS) and introduced conformance re-
lations for them. The proposed testing theory also deals with
states where quiescence is allowed. Jard and Jeron (Jard and
Jeron 2004) presented a tool for automatic conformance test
generation from formal specifications. They used IOLTS as
formal models and defined the ioco conformance relation for
weak input enabled systems. Test cases are generated using
defined test purposes.

Auguston et al. (Auguston, Michael, and Shing 2005) intro-
duced the use of attributed event grammars for generating
test-cases from environment models for reactive systems. In
the paper the authors use the grammar for representing an
event-based model. Possible execution traces of the model



form the test-cases. Insofar the underlying idea for test-
case generation as described in this paper is very similar, but
can be distinguished with respect to the underlying model-
ing language. Whereas Auguston et al. are using attributed
event grammars, in this paper we are proposing the use of
qualitative models for test-case generation.

Conclusions

In this paper we introduced an automated test case genera-
tion approach which relies on qualitative models. Qualita-
tive models are well suited for modeling in the embedded
systems domain. Especially when such systems strongly
interact with their physical envirnoment this approach is a
good choice.

Qualitative models represent all possible physical behaviors
of systems and their environments, and can be used to find
test cases which might not be considered when only using
a system’s specification. Similar to previous approaches we
make use of test purposes in order to generate tests.

The following steps lead from a QR model to a test suite:
(1) simulation of the QR model→ QR TS, (2) conversion of
the TS into a LTS according to a test purpose, (3) product of
the system LTS with the test purpose, (4) minimization and
ensuring determinism→ CTG, and finally (5) extraction of
controllable test cases from the CTG.

The first results indicate that useful test cases can be au-
tomatically generated from QR models. However, a more
in-depth analysis is still required. In general, the approach
is well suited when a physical model is available, e.g., in
the embedded systems area. We are currently in the process
of evaluating the approach on models derived from Matlab
Simulink models via qualitative abstraction. First experi-
ments indicate a sound test case execution, and resulting test
cases exercise the interactions of a system under test with
its environment. Future work will include application of the
presented methods to larger models. This represents new
challenges for the QR simulation tools, as for example in the
case of weakly constrained Garp3 models. Here, the simula-
tion output may become quite big (several thousand states)
with many transitions, which leads to very long computa-
tion times (several days) and memory problems with current
versions of Garp3.

Acknowledgements This work has been supported by the
FIT-IT research project Self Properties in Autonomous Sys-
tems(SEPIAS) which is funded by BMVIT and the FFG, and the
EU project ICT-216679, Model-based Generation of Tests for De-
pendable Embedded Systems (MOGENTES). The research herein
is partially conducted within the competence network Softnet Aus-
tria (www.soft-net.at) and funded by the Austrian Federal Min-
istry of Economics (bm:wa), the province of Styria, the Steirische
Wirtschaftsförderungsgesellschaft mbH. (SFG), and the city of Vi-

enna in terms of the center for innovation and technology (ZIT).

References

Auguston, M.; Michael, J. B.; and Shing, M.-T. 2005.
Environment behavior models for scenario generation and
testing automation. In International Workshop on Ad-
vances in Model Based Testing (A-MOST 2005). St. Louis,
Missouri, USA: ACM.
Bouwer, A.; Liem, J.; and Bredeweg, B. 2005. User Man-
ual for Single-User Version of QR Workbench. Naturnet-
Redime, STREP project co-funded by the European Com-
mission within the Sixth Framework Programme (2002-
2006). Project no. 004074. Project deliverable D4.2.1.
Bredeweg, B.; Liem, J.; Bouwer, A.; and Salles, P. 2005.
Curriculum for learning about QR modelling. Naturnet-
Redime, STREP project co-funded by the European Com-
mission within the Sixth Framework Programme (2002-
2006). Project no. 004074. Project deliverable D6.9.1.
Bredeweg, B.; Bouwer, A.; Jellema, J.; Bertels, D.; Lin-
nebank, F. F.; and Liem, J. 2006. Garp3 - a new workbench
for qualitative reasoning and modelling. In Proceedings
of 20th International Workshop on Qualitative Reasoning
(QR-06), 21–28.
Forbus, K. D. 1984. Qualitative process theory. Artif.
Intell. 24(1-3):85–168.
Hierons, R. M.; Bogdanov, K.; Bowen, J. P.; Cleaveland,
R.; Derrick, J.; Dick, J.; Gheorghe, M.; Harman, M.;
Kapoor, K.; Krause, P.; Luettgen, G.; Simons, A. J. H.;
Vilkomir, S.; Woodward, M. R.; and Zedan, H. 2008. Us-
ing formal specifications to support testing. ACM Comput-
ing Surveys.
Jard, C., and Jeron, T. 2004. TGV: theory, principles and
algorithms. International Journal on Software Tools for
Technology Transfer (STTT) 7(4):297–315.
Kleer, J. D., and Brown, J. S. 1984. A qualitative physics
based on confluences. Artif. Intell. 24(1-3):7–83.
Thierry Jeron, P. M. 2004. Test generation derived from
model-checking. Computer Aided Verification: 11th In-
ternational Conference, CAV’99. Trento, Italy, July 1999.
Proceedings 1633/1999(4):682.
Tretmans, J. 1996. Test generation with inputs, outputs,
and quiescence. In TACAS ’96: Proceedings of the Sec-
ond International Workshop on Tools and Algorithms for
Construction and Analysis of Systems, 127–146. Springer-
Verlag.
Wotawa, F. 2007. Generating test-cases from qualitative
knowledge – preliminary report. In Proceedings of the 21st
Annual Workshop on Qualitative Reasoning.


