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Abstract 

Learning causal models is a central problem of qualitative 
reasoning.  We describe a simulation of learning causal 
models from exemplars that uses progressive alignment and 
qualitative process theory to derive plausible qualitative 
causal models from observations.  We show how 
protohistories can be created via progressive alignment and 
used to infer causality.  The result, a causal corpus, can 
make simple predictions and set the stage for more 
sophisticated qualitative models.  The simulation has been 
successfully tested with learning causal mechanisms of 
three physical scenarios, with encouraging results. 

Introduction 

Forbus & Gentner (1986) proposed decomposing learning 
of physical domains from experience into four stages.  (1) 
Protohistories are prototypical behaviors, generalized from 
multiple experiences.  (2) The causal corpus consists of 
fragmentary causal models, created from protohistories.  
(3) These fragmentary models are organized into a naïve 
physics, which regularizes the fragmentary causal models 
by postulating broadly applicable mechanisms.  (4) Expert 
understanding consists of deepening the naïve physics and 
tying it to mathematical and other formal models, typically 
culturally learned.  Importantly, these stages are localized 
within the understanding of particular phenomena.  For 
example, someone might have an expert understanding of 
electronics while having only a partial set of causal models 
for fluids. 

This paper focuses on learning initial causal models of a 
domain from observations.  We use qualitative process 
theory (Forbus, 1984) to formally represent causal models. 
Causal models are learned from symbolic representations 
of experiences via a combination of analogical processing 
(Gentner, 1983) and statistical methods.  The simulation 
has been successfully tested on three scenarios; we use 
understanding floating versus sinking as a running example 
for illustration.  We first review QP theory and the 
structure-mapping models we use.  Then we discuss how 
protohistories are learned from experience via progressive 
alignment, proposing generalization contexts as a means of 
organizing experience around salient questions.  Next we 
discuss quantity analysis strategies to develop fragmentary 

causal models by hypothesizing ordinal conditions, limit 
points, and new quantities.  We summarize results from 
our simulation and close by discussing other related work 
and future plans. 

Background 

Our theoretical framework uses qualitative process theory 

as its account of modeling mechanisms of change.  

Changes are caused by continuous physical processes, 

which provide the notion of mechanism for causality (cf. 

Chi et al 1994; Ahn et al 1995).  These changes propagate 

through the system via qualitative proportionalities which 

indicate causal relationships between quantities.  

Qualitative proportionalities provide only partial 

information about what will happen.  This makes them 

particularly appropriate for representing local causal 

models, since models learned from one set of experiences 

can be more easily combined with others.  

These causal laws are contextualized by belonging to 

either processes or views, and hold only when their 

conditions are true.  Conditions are typically ordinal 

relations, involving parameters of the entities participating 

in the process or view.  The values that a quantity is 

compared with in such relations are called limit points, 

since they help determine when processes start and stop, 

and when views hold or not.  Postulating the existence of 

limit points is an important challenge in learning QP 

models, since they are crucial for prediction. 

QP theory does not describe how these models are 

learned.  We claim that statistical accounts of causality (cf. 

Pearl, 2000; Gopnik et al 2004) can be harnessed to 

produce QP models.  We incorporate statistics via 

similarity, using structure-mapping operations to construct 

probabilities as a side-effect of assimilating experiences.   

The SEQL model of generalization (Kuehne et al 2000) 

constructs generalizations incrementally via analogical 

comparison.  We simulate analogical matching via SME, 

the Structure-Mapping Engine (Falkenhainer et al 1989; 

Forbus et al 1994).   Given two structured representations, 

the base and target, SME computes one or two mappings 

which describe how the base and target can be aligned.  



Mappings include a set of correspondences that detail 

exactly which entities and statements in one description go 

with entities and statements in the other, a structural 

evaluation score which indicates the overall quality of the 

match, and a set of candidate inferences that are 

conjectures about the target, using the correspondences to 

project partially unmapped base structures.  Candidate 

inferences allow predictions and explanations to be 

generated without rules, via analogy to prior experiences 

and explanations.  This makes them particularly important 

for accounts of learning like ours that postulate localized, 

incrementally generated models. 

SEQL operates by maintaining a list of generalizations 

and exemplars.  Given a new exemplar, SEQL compares it 

with existing generalizations.  If it is sufficiently similar to 

one of them, it is assimilated into that generalization.  

Otherwise, it is compared against the list of unassimilated 

exemplars.  If a pair of exemplars is sufficiently similar, 

they are combined to form a new generalization. 
We call a set of generalizations and exemplars that are 

being processed together by SEQL a generalization 
context.  Generalization contexts can be defined bottom-
up, via similarity-based retrieval, or by labeling, e.g., a 
learner might use a generalization context to process all 
examples that have been given a verbal label, like “cat”. 

Learning Protohistories 

Protohistories are generalizations of specific observed 
behaviors.  Observed behaviors are typically rich with 
perceptual information, and in new domains, impoverished 
with regard to explanations.  We postulate that analogical 
generalization, as modeled in SEQL, is used to construct 
prototypical behaviors.  Below is an example observation 
given to our simulation.  It describes an adult female 
human, swimming (gliding) in a still pond, and floating: 
 
(isa bodyInLiquid0 AdultFemaleHuman) 

(isa container0 Pond) 

(isa liquid0 (LiquidFn Water)) 

(in-UnderspecifiedContainer liquid0 container0) 

(massOfObject bodyInLiquid0 (Kilogram 60)) 

(volumeOfObject bodyInLiquid0 (CubicCentimeter 62039)) 

(isa gliding0 MovementEvent) 

(primaryObjectMoving gliding0 bodyInLiquid0) 

(isa stillLiquid0 StandingStill) 

(doneBy stillLiquid0 liquid0) 

(in-Floating bodyInLiquid0 liquid0). 

 
The vocabulary of concepts and relations is drawn from 

the ResearchCyc knowledge base1, an independently 
developed representation system for common-sense 
knowledge.  The predicate calculus was produced using a 
natural-language understanding system (Kuehne & Forbus, 
2004) from simplified English, to reduce tailorability. 

The simplified English that generates the above 
predicate calculus observation is: 

                                     
1
 h t t p :/ / r e se a r ch .cy c.co m /  

 
The woman bodyInLiquid0 floats in water liquid0 in a 
pond container0. The mass of the woman 
bodyInLiquid0 is 60 kilograms.  The volume of the 
woman bodyInLiquid0 is 62039 cubic centimeters. 
The woman bodyInLiquid0 is moving but the water 
liquid0 is standing still. 

 

For SME processing, isa statements are automatically 

translated into attributes (i.e., (AdultFemaleHuman 

bodyInLiquid0)).  SEQL generalizations abstract specific 

individuals (e.g., bodyInLiquid0) into anonymous 

individuals, not variables.  Numerical parameters (e.g., 

(Kilogram 60)) are also abstracted into anonymous 

individuals, but their values are preserved in a distribution 

for each quantity in the generalization.  These distributions 

are used to conjecture limit points below.  We ignore 

memory retrieval in this simulation, and provide as input a 

stream of observations like the above.   

How many generalization contexts should be used?  

Since SEQL automatically constructs multiple 

generalizations according to similarity, one possibility is to 

use a single context.  The drawback with a single context is 

that it may not provide enough discrimination for learning.  

For example, to learn why things float, the learner must 

distinguish between floating and sinking examples.  We 

have observed that SEQL may, because of attribute 

information, cluster cases from both types of situations into 

the same generalization.  Consequently, we create separate 

generalization contexts for each possibility.  Every 

generalization context incorporates a set of entry patterns 

that are tested against new exemplars.  When a new 

exemplar satisfies the entry pattern for a generalization 

context, it is processed in that context.  The same example 

can be processed in multiple contexts, since a learner might 

be learning multiple concepts at once. 

Consider a learner trying to understand the distinction 

between floating and sinking, as well as sailboats sailing.  

Figure 1 illustrates the three example generalization 

contexts that would be used.  If an exemplar arrives with 

(SinkingEvent sinking0) as a constituent fact, with no 

mention of floating, it will be incorporated into the 

rightmost context alone.  If another exemplar arrives with 

(isa boat0 SailBoat) and (floating-in boat0 

(LiquidFn Water)) as constituent facts, it will be 

incorporated into both leftmost and middle contexts.   

 



 
Figure 1: Example contextual protohistory organization 

 

Learning a Causal Corpus 

The causal corpus consists of a set of causal models 

grounded in, and connecting, protohistories.  These causal 

models are local to particular protohistories or collections 

of protohistories.  Restructuring these local models into 

general domain theories, of the kind typically used in 

qualitative reasoning, occurs only after a reasonable causal 

corpus has been constructed (Forbus & Gentner 1986).  

Even fragmentary causal models are quite powerful: 

Understanding what qualitative proportionalities hold in a 

protohistory yields a means of predicting the immediate 

consequences of parameter changes.  Similarly, 

understanding quantity conditions that determine which 

protohistory represents the behavior that occurs in a 

situation enables predictions of state changes.   

Our simulation uses three causal learning strategies – 

procedures that take protohistories and quantities as input, 

and generate causal hypotheses, expressible using the 

vocabulary of QP theory.  We also describe a method for 

deriving complex quantities from constituent input 

quantities.  We do not view this set of strategies as 

complete, but we believe they are a good starting point. 

 Analyzing quantity values enables us to hypothesize 

limit points, quantity conditions, and qualitative 

proportionalities.  The quantity condition strategy 

identifies relevant ordinal relationships.  The limit point 

strategy hypothesizes new causally-relevant values.  The 

quantity derivation strategy hypothesizes compound 

quantities.  We discuss each in turn. 

 

Quantity Condition Strategy.  Conditions for processes 

and views typically include ordinal relations between 

quantities.  For instance, for a body to be floating in a 

liquid, its density must be less than the liquid’s density.  

Quantity conditions are conjectured as follows:  

1. Protohistories that summarize experience related to 

the target phenomenon are divided into two groups: those 

that express it (P+) and those that do not (P-). 

2. For each protohistory pi within (P+  P-), the ordinal 

relationships Ri = {r1, r2, …, rn} are identified that hold for 

every exemplar within Pi.  The ordinal relationships tested 

are =, >, <, , and , over the set of exemplars that were 

used in forming Pi. 

3. Conditions are identified that pertain to the entirety of 

P+ and P-, such that R+ = {R+
1  …  R+

n} and R- = {R-
1 

 …  R-
n}. 

4. Conditions that coincide with the phenomenon are the 

set Rcause = R+ - R-.  Relationships that coincide with the 

absence of the phenomenon are the set Rprevent = R- - R+. 

We use exemplars in step 2 because our encoding 

process does not automatically generate ordinal 

relationships from numerical values in observations.  (The 

quantity value distribution information stored with 

generalizations cannot be used to compute this, because 

links to particular exemplars is not included.)  This is a 

simplification: We believe that psychologically, encoding 

choices are driven in part by learning goals, which would 

propose encoding particular ordinal relationships in order 

to test conjectures via this strategy.  Such goals might be 

generated based on trying various ordinals on a small 

number of exemplars, but that is left for future work. 

 

Limit Point Strategy.  Some physical phenomena occur 

when a quantity’s value is above or below a specific limit 

point.  Like the quantity condition strategy, the limit point 

strategy assumes that two sets of protohistories have been 

identified, such as water being heated and boiling and 

water being heated and not boiling.  Recall that 

protohistories preserve the set of exemplar values {v1, v2, 

…, vn} for each quantity.  This information can be 

summarized via an interval V, where V = [min(v1, v2, …, 

vn), max(v1, v2, …, vn)]. 

After calculating quantity intervals for individual 

protohistories, we first compute possible limit points by 

grouping protohistories into two sets: those that express the 

given phenomena P+ = {p+
1, p

+
2, …, p+

n} and those that do 

not P- = {p-
1, p-

2, …, p-
n}.  For each quantity-type q, we 

merge the protohistory intervals so that 

 

P+
q = [min(p+

1q, p
+

2q, …, p+
nq), max(p+

1q, p
+

2q, …, p+
nq)] 

P-
q = [min(p-

1q, p
-
2q, …, p-

nq), max(p-
1q, p

-
2q, …, p-

nq)]. 

 

If the intervals P+
q and P-

q do not overlap for a quantity, 

it could be the case that a limit point exists within the 

interval [max(min(P+
q, P-

q)), min(max(P+
q, P-

q))], or 

between the maximum point of the lower interval and the 

minimum point of the higher interval.  This interval is then 

added to the causal corpus, as a limit point approximation. 

If the intervals P+
q and P-

q overlap, there could still be an 

uninterrupted interval [qmin, qmax] that represents a 

condition under which the phenomenon occurs. Instead of 

merging protohistory intervals into P+
q and P-

q, we test for 

exclusiveness, such that no protohistory intervals in P+ 

overlap protohistory intervals in P- for a quantity q.  



Uninterrupted intervals in q are then added to the causal 

corpus as possible conditions for the target phenomenon. 

 

Quantity Derivation Strategy.  Understanding many 

physical phenomena requires introducing quantities 

beyond those observed.  To understand why something 

floats versus sinks, for example, requires introducing the 

idea of density.  If the quantity analysis fails to distinguish 

between two behaviors within the encoded quantities, the 

quantity derivation strategy proposes new quantities that 

are then searched for limit points and ordinal relationships.  

For all explicitly mentioned quantities a and b such that a 

 b, a set of new quantities C is derived: 

 

C = {a/b, b/a, a*b, a+b, a-b, b-a}. 

 

The units for the derived quantities may be identical to 

their constituent quantities (kg + kg = kg), or they may be 

combinations of their constituent units (kg/cc = kg/cc). 

Simulation Results 

We demonstrate how these methods combine to produce 

plausible causal corpus elements from a set of 

observations.  We first go through a single learning task in 

detail, then summarize the results of others.   

To investigate learning floating versus sinking, we 

encoded 30 unique exemplars – 16 floating and 14 sinking 

– in simplified English, which were fed into our natural 

language understanding system to automatically produce 

predicate calculus descriptions like our earlier example.  

Many factors used in the scenarios were based on Piaget’s 

(1930) interviews with children: the motion of the water 

(still or wavy); the body in water (man, woman, log, cruise 

ship, or tree branch); the body of water (ocean, sea, lake, 

pond, bath-tub, or bowl); and autonomous motion of the 

body (moving/gliding or still).  In all scenarios, a body 

floats when the body’s density is less than 1 g/cc. 

The simulation first generates protohistories from the 

exemplars.  Two generalization contexts were used, with 

entry patterns (in-Floating ?x ?y) and (isa ?x 

SinkingEvent), to model the focus on understanding when 

something floated or sank.  The assimilation threshold for 

SEQL was set to 0.75.  This yielded six protohistories, five 

for floating and one for sinking.  All exemplars were 

assimilated into a generalization.  Table 1 shows the 

protohistory abstractions with the generic entities in bold, 

and the protohistory size, |P|.  Protohistories P1 and P4 

preserved tree branch and cruise ship in their abstractions, 

respectively; the rest contain only generic entities. 

The abstractions for P2 and P3 are identical, yet they are 

still distinct.  This is due to uncertain facts within the 

generalization.  Specifically, in P2, P(body = man) = .66, 

and in P3, P(body = woman) = .66.  Thus, although the 

abstractions are identical, the underlying representations 

differ.  Low-probability facts are considered for similarity 

processing, so they remained distinct. 

 

Context # Protohistory Abstraction |P| 

Floating 1 Idle tree branch, wavy water 2 

2 Moving body 3 

3 Moving body 3 

4 Moving cruise ship 3 

5 Wavy water 5 

Sinking 6 Idle body, still water 14 

Table 1: Protohistories for floating and sinking 

 

To generate causal corpus information for these 

protohistories, the strategies defined above were executed 

in the order given. 

Given a set of protohistories, the simulation proceeds to 

analyze its quantities, searching for limit points and 

quantity conditions that help explain floating.  The 

observable quantities yielded no causal hypotheses, so the 

simulation used the quantity derivation strategy to create 

new quantities and try again.    One of the derived 

quantities does yield a limit point, as shown in Table 3.  

Since this limit point (which we know as density) was 

derived as the ratio of mass and volume, we also obtain the 

qualitative proportionalities shown in Table 3, imposing a 

causal direction on what was an algebraic relationship by 

assuming that observable parameters are more primitive 

than derived parameters.  (This is a heuristic, of course, 

that could be incorrect – consider heat derived from 

temperature, for example.)   

 

Causal Hypothesis Type Formula 

Derived Quantity q = massbody/volumebody 

Limit Point q < [0.001, 0.00102] kg/cc 

Qualitative Proportionality floatability Q- q 

 
q Q+ massbody 

 
q Q- volumebody 

 
floatability Q- massbody 

 
floatability Q+ volumebody 

 
Table 3: Causal hypotheses generated about floating 

 

In addition to floating/sinking, we tested the simulation 

on two other learning scenarios.  This involved creating 

new stimuli descriptions and changing the entry patterns of 

the generalization contexts to suit the scenarios.  The 

remainder of the learning process remained the same. 

To model learning how balance scales work (Siegler, 

1983), we encoded nine scenarios using the methodology 

above, varying the kinds of objects on the balance and the 

posture of the object (e.g., sitting or kneeling or upright).  

Using two generalization contexts, one for right-side 

sinking and one for left-side sinking, the simulation 

generated two protohistories for each context.  The 



quantity condition strategy creates the sensible quantity 

hypothesis 

 
(> (massOfObject leftside0) (massOfObject rightside0)) 

 

to predict when the left side will sink.   

In another learning experiment conjecturing when 

boiling would occur, six exemplars were encoded using the 

methodology above.  The limit point strategy conjectures a 

limit point for temperature to predict when boiling occurs: 

 
  Hypothesis: phenomena occurs when 

   (temperatureOfObject kettle0) 

   is above some point in the range: 

   [95.0-100.0] DegreeCelsius. 

 

The lower bound of the range could be refined by more 

experience.   

While the number of learning experiments conducted to 

date is small, the results obtained so far are very 

reasonable.   

Related Work 

The closest previous simulation is COBWEB (Fisher, 

1987) which utilized conceptual clustering, but did not 

introduce causal models, nor was it tested on semi-

automatically generated stimuli.   Our quantity derivation 

strategy is inspired by Langley’s (1981) BACON 

simulation. 

Some of diSessa’s (1983) p-prims (for 

“phenomenological primitives”) can be viewed as causal 

corpus elements while others may be viewed as 

protohistories.  No computational model for learning them 

was ever implemented. 

Discussion and Future Work 

Our simulation combines symbolic, relational 

representations with quantity analysis to learn causal 

models.  We think this is a very promising approach to 

developing deep qualitative models of physical domains. 

In cognitive psychology, many advocates of statistical 

accounts of causality do not include any notion of 

mechanism, and we obviously (along with Chi et al 1994; 

Ahn et al 1995) do not believe that is sufficient.  As 

demonstrated in this paper, generalization and quantity 

analysis can be used to generate fragmentary qualitative 

models of these causal mechanisms. 

This simulation is obviously only a beginning.  In 

addition to testing the simulation on a broader range of 

learning problems, we also plan to incorporate retrieval, 

using MAC/FAC (Forbus et al 1995).   Having the 

simulation generate its own distinctions to explore, perhaps 

via failed predictions made with protohistories, is also an 

important problem to investigate. 
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