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Abstract

This paper extends model-based diagnosis (MBD) (Reiter
1987; de Kleer & Williams 1987) to systems which convert,
move and process material. Examples of such systems are
printers, refineries and food processing plants. Such plants
present two challenges to model-based diagnosis: (1) the
plant may process 100s-1000s of items per minute so retain-
ing full details of behavior of all past objects is impracti-
cal, and (2) complex multi-way interactions can occur among
components operating on the same object. We address the first
challenge by synopsizing past behavior in a data structure of
fixed size. We address the second challenge by introducing
the notion of interaction fault which represents the situation
where a set of components operating on the same object dam-
age the object even though each component alone produces
no noticeable damage. Introducing interaction faults is much
simpler than introducing fine-grained models of component-
object interactions. We demonstrate the approach on a highly
redundant printer.

Introduction
Most existing approaches to model-based diagnosis presume
all information flow in a system as signals. They are good
for modeling systems that can be directly modeled as ODEs
such as in is characterized by system dynamics (Shearer,
Murphy, & Richardson 1971). However, most real world
systems transport and modify materials. For example, a re-
finery converts one kind of fuel into another with differ-
ent characteristics, a printer converts blank paper to paper
with marks on it, and a General Mills plant converts wheat
and cardboard into boxes containing donut-shaped objects
(Cheerios). Such systems need to reason about both the at-
tributes of the stuff (e.g., voltage, current, pressure) and their
properties (e.g., wrapped candy bar, unwrapped candy bar,
partially assembled automobile).

Plants present two challenges to model-based diagnosis:
(1) the plant processes 100s-1000s of items per minute so
retaining full details of behavior of all past objects is im-
practical, and (2) complex multi-way interactions can oc-
cur among components operating on the same object. This
paper outlines an integrated approach to both challenges.
First, we synopsize the results in a single fixed-size data
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structure. Necessarily some information will be lost and we
rely on high throughput rates to “make up” for any infor-
mation so lost. Second, we do not explicitly model the de-
tails of component-object-component behavior, but instead
introduce a new generic fault category of an interaction fault
which specifies some misbehavior has occured, but omitting
details on exactly how.

We draw many of our examples from a prototype printer
illustrated in Figure 1 ((Fromherz, Bobrow, & de Kleer
2003) provides more background).

Figure 1: Model of PARC’s prototype highly redundant printer. It
consists of 4 printers (large rectangles). Sheets enters on the left
and exit on the right.

Refineries, printers, manufacturing lines all run continu-
ously. They are expensive to halt so minor problems are ig-
nored or compensated for by later manual processing. Un-
like simple qualitative envisionments of one signal propa-
gated through the system, we intend to address a continuous
movement with large number of objects being processed at
any moment. The closest analog to this type of qualitative
reasoning is the parts-of-stuff ontology of (Collins & Forbus
1987). Although more difficult to analyze, continous oper-
ation has the advantage that it is possible to gather a great
deal of observations quickly and cheaply.

The fact that objects are being processed by the system
introduces a whole new set of fault types. For example,
we will often see situations where component A operates
correctly stand-alone, and component B operates correctly
stand-alone, yet fail when they both operate on the same ob-
ject. Consider a food processing line for candy bars. There
are multiple components wrapping and boxing candy bars.
It may be that component A leaves a tiny rip which is of no
consequence for the consumer, but boxing component B has
a small protrusion such that the rip sometimes catches and



destroys the candy bar. We call such faults interaction faults:
A and B are perfectly operational individually but will not
work correctly if A and B both process the same candy bar.
The classical model-based diagnosis approach would be to
consider both components A and B as faulted, but that is not
useful for the technician. The line can be restored to full op-
eration by either removing the protrusion on B or repairing
A. There is no need to replace both A and B. Such faults oc-
cur in digital circuits as well: Gates A and B may not work
well together as both may be “late”. Replacing either A or B
with one having an average gate delay restores the circuit to
full functioning.

A technician reasons about a system at multiple levels of
abstraction. A technician will make the simplest assump-
tions possible to diagnose a system and only when those as-
sumptions yield a contradiction will he/she choose a more
detailed model. We adopt the meta-diagnosis abstraction
framework of (de Kleer 2007). In this approach, the meta-
assumptions (of the modeling approach itself) are treated as
assumptions in a model-based diagnosis engine. The system
always picks one particular diagnosis as the current abstrac-
tion level.

Example: Simplest Meta-Diagnosis Failing
For simplicity, we presume that if components are persis-
tent faulty they will always manifest bad behavior. This as-
sumption can also be a meta-assumption, but this makes the
examples too complicated.

The three initial meta-assumptions we make are: (1) the
system does not have multiple faults “M” (vs. single fault),
(2) the fault is not intermittent “I” (vs. persistent), (3) the
fault is not interactive “N.” This corresponds to the bottom
node of Figure 2(a).
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Figure 2: Meta-Diagnosis lattice

Consider only the components A, B, C. Suppose we ob-
serve the following plans:

time plan observation conclusion
1 A,B fail ¬M exonerates C

2 B,C success ¬I exonerates B, C

3 A success ¬I exonerates A

A plan pi = [c1, c2, . . . , cn] is a sequence of components
involved in an execution. Plan 1 (A, B) fails, therefore if the
system does not contain a multiple fault, one of A or B must

be faulted and C cannot be faulted. Plan 2 (B, C) succeeds,
therefore given the system is not intermittent B and C must
be functioning correctly. Plan 3 (A) succeeds so A cannot be
faulted. At this point no single fault, non-intermittent, non-
interaction faults exist. This results in the meta-conflict:

ABa(M) ∨ABa(I) ∨ABa(N).

Analysis must consider retracting one of these three meta-
assumptions. Consider multiple faults. Plan 2 exonerates
B, C and plan 3 exonerates A with no dependence on the
single fault assumption. Therefore, the meta-conflict is:

ABa(I) ∨ABa(N).

Figure 2(b) illustrates the resulting meta-diagnosis lattice.
The system can contain either an intermittent fault or an

interaction fault. For example, component A can be intermit-
tently failing, producing a bad output at time 1 and a good
output at time 3. The system can also contain an interaction
fault. For example, the system can contain the interaction
fault [AB]. An interaction fault is one in which both compo-
nents might individually be working correctly, but produce
faulty behavior when combined. We use [...] to indicate the
interaction fault which occurs only when all of the compo-
nents operate on the same object. Plan 1 is the only plan in
which A and B co-occur, therefore the interaction fault ex-
plains all symptoms.

Meta-Inferences
As in conventional model-based diagnosis, a tentative diag-
nosis is represented by the set of failing components. When
a plan p succeeds the following inferences can be drawn:
• If there are no intermittent faults (¬ABa(I)), then every

component mentioned in the plan is exonerated.
• If there are interaction faults (ABa(N)), then every diag-

nosis containing a interaction fault which contains only
components from p is exonerated.
When a plan p fails the following inferences can be

drawn:
• Every diagnosis not containing a component in p is exon-

erated.
Initially, all subsets of components can be diagnoses. With

the introduction of interaction faults, any combination of
components can also be a fault. Therefore, if a system con-
sists of n components, there are O(22n

) possible diagnoses
(Eiter & Gottlob 1995).

Figure 3 shows a fraction of the diagnosis lattice for a sim-
ple system with components three components: {A, B,C}.
For simplicity we assume non-intermittent faults, but mul-
tiple and interaction faults are allowed. Consider the prior
example again. Plan 1 which used A, B produced a failure.
By the preceeding rules, C alone cannot explain the symp-
tom, neither can [AC], [BC] or [ABC]. The only minimum-
cardinality diagnoses are {A}, {B} and {[AB]}. The suc-
cessful plan 2 exonerates B and C. Therefore any diagnosis
which contains B or C is exonerated. In addition, any di-
agnosis containing the interaction fault [BC] is exonerated.
Finally, when Plan 3 is observed to succeed, A is exonerated.
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Figure 3: Fragment of diagnosis lattice for the simple 3 com-
ponent system A, B,C. Includes multiple and interaction
faults. The numbers indicate which plan eliminates that di-
agnosis.

The only minimum cardinality diagnosis which explains the
symptoms is the interaction fault [AB].

The very large size of this diagnosis lattice prompts a new
diagnostic algorithm more akin to what a technician would
use when diagnosing the system. It is also much more effi-
cient for on-line diagnosis.

Diagnostic Algorithm
In this section we present a new diagnostic algorithm which
differs from classical model-based diagnostic algorithms in
significant ways. The new diagnostic algorithm maintains
set of mutually exclusive sets: diagnostic foci, good com-
ponents, bad components and unknown components. Intu-
itively, each diagnostic focus represents a set within which
we are sure there is a fault. Technicians will typically ex-
plore one focus at a time. As the printer or manufacturing
line runs continuously there are far too many observations
to record in detail. Therefore, the current foci together with
the set of bad components and unknown components com-
bined with a fixed size buffer will represent the entire state of
knowledge of the faultedness of system components. Some
information from prior observations will be discarded. The
algorithm we describe may take more observations to pin-
point the true fault(s), but it will never miss faults.

Multiple Faults Case
In what follows we discuss an algorithm for diagnosing
multiple simultaneous faults. Our algorithm allows variable
amount of observation data (which can be obtained through-
out execution of plans) to be retained.
A system Sys is a tuple < C,P, Z > where:
• C is the set of all components.
• P is a list of plans. A plan pi = [c1, c2, . . . , cn] is a se-

quence of components involved in the plan.
• Z is a list of observations. A observation zi ∈ {f, s} is

associated with plan pi. We denote a plan failure as f and
a normal plan execution as s.

A state of knowledge SK is a tuple < g, b, x, DF > where:
• g ⊆ C is the set of good components.
• b ⊆ C is the set of bad components.
• x ⊆ C is the set of unknown components which are not

under suspicion.

• DF is the set of diagnosis foci. A diagnosis focus dfi ⊆ C
is a set of suspected components with at least one faulted
component in it.

Algorithm 1: Multiple (Interaction) Faults Algorithm with
Memory

foreach pj : P do
if !multipleFaults(pj,zj) then

memorize(pj, zj, memorysize);
else

evaluateMemorizedPlans();

Algorithm 1 executes Procedure 2 (or for the interac-
tion fault case Procedure 4) for each plan and observation
pair. The algorithm updates the entire state of knowledge
of the faultedness of system components. We focus on high
throughput systems (100s-1000s/min) and therefore the al-
gorithm we describe may take more observations to pinpoint
the true fault(s), but it will never miss faults. We include a
memory extension to mitigate the loss of diagnosis informa-
tion. There are two cases in which the evaluation of an ob-
servation could lead to information loss: (1) two intersecting
plans fail due to different faults or, (2) a failing plan inter-
sects two diagnosis foci. In the first case we might not know
at evaluation time if two intersecting plans fail because of
the same fault or two different faults and therefore we keep
the plan to later re-evaluate it. In the second case we can
not extract any information before we reduce the diagnostic
foci until the failing plan intersects only one diagnosis foci.
Note that this might not be possible. Failing plans of either
case can be helpful if they are re-evaluated later. Note that
we are able to configure the memory size to address memory
limitations.

Let Sys be a simple system with five components C =
{A, B, C,D, E}. Again we assume that we are able to ex-
ecute any combination of components as a plan. Suppose
component B and D are faulted.

In Table 1 we show for each time step t the entire state of
knowledge.

Again note that every component will be a member
of exactly one of the sets of the current SK. Con-
sider the sequence of plans illustrated by Table 1. Plan 1
(ABCDE) fails. Therefore we focus on the fact that one
of {A, B,C, D, E} is faulted. Plan 2 (ABC) fails. There-
fore, we narrow the focus to the fact that one of {A, B, C}
is faulted, and we don’t know anything about {D,E}. Plan 3
(ADE) fails. Therefore the focus narrows to A, while there
may be a fault in {B, C} (But the scope is still {A, B, C}).
Plan 4 (A) succeeds. Therefore, A is exonerated. At this
point we backtrack and move the focus to {B, C}. Plan
5 (ADE) fails. Therefore, given that A is exonerated, we
can introduce a new focus on the fact that one of {D,E} is
faulted. Plan 6 (AC) succeeds. Therefore, C is exonerated
and B is the only component left in focus 1. Therefore we
know B is faulted. We close focus 1. Plan 7 (ADC) fails.
Therefore, given that A, C are exonerated, D is faulted. We
close focus 2 and move the remaining components (here E)
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Function multipleFaults(plan pj , obs zj)

if zj == f then
rpj = pj − g;
if rpj ∩ b = ∅ then

if |rpj | == 1 then
b = b ∪ rpj ;
foreach dfi : DF do

if dfi ∩ rpj 6= ∅ then
x = (x ∪ dfi)− b;
DF.remove(dfi);

else
if rpj ∩

⋃
k dfk = ∅ then

dfnew = rpj ;
x = x− rpj ;

else
foreach dfi : DF do

if rpj ∩ dfi 6= ∅ ∧ rpj 6= dfi then
if rpj − dfi ⊆ x then

if |rpj | < |dfi| then
x = (x ∪ dfi)− rpj ;
dfi = rpj ;

else
return false;

else
return false;

else
g = g ∪ pj ;
x = x− g;
foreach dfi : DF do

dfi = dfi − g;
if |dfi| == 1 then

b = b ∪ dfi;

return true;

in the unknown set. Plan 8 (ACE) succeeds, thus ACE is
exonerated.

Multiple Interaction Faults Case
Definition: Let X = {x1, . . . , xn} be a set of elements.

• P (X) is the power set over X , e.g.
X = {x1, x2} ↔ P (X) = {{}, {x1}, {x2}, {x1, x2}}.

• X ≡ P (X) represents the power set of X .

• {Y } t {X} ≡

 {Y } : if X ⊆ Y
{X} : if Y ⊆ X

{Y , X} : otherwise

• P (X) ≡
⋃

Y⊆X Y is the set of all power sets over all
possible subsets of X .

• E(X) is the set of all individual components mentioned
in X , e.g. X = {{a, b, c}, {a, d, e}, {g}} ↔ E(X) =
{a, b, c, d, e, g}.

A system Sys is a tuple < C,P, Z > as defined in the mul-
tiple fault case.
A state of knowledge SK is a tuple < g, b, x, DF > where:

• g ⊆ P (C) represents all global good diagnosis candi-
dates. A diagnosis candidate is a set of components that

t p z g b x df1 df2
0 ABCDE
1 ABCDE f ABCDE
2 ABC f DE ABC
3 ADE f DE ABC
4 A s A BC
5 ADE f A BC DE
6 AC s AC B DE
7 ADC f AC BD E
8 ACE s ACE BD

Table 1: System with five components C =
{A, B, C,D, E} where B and D are faulted.

can cause a failure. Let X ⊆ C be a set of compo-
nents, than X ∈ P (C) represents all diagnosis candidates
dc ∈ P (X).

• b ⊆ P (C) is the set of bad diagnosis candidates.
{A, [DE]} denotes that A and the diagnosis candidate
[DE] (interaction fault) are bad.

• x ⊆ P (C) is the set of unknown diagnosis candidates
which are not under suspicion.

• DF is the set of diagnosis foci. A diagnosis focus dfi is a
tuple < sui, lgi > where:
– sui ⊆ P (C) is the set of suspected diagnosis candi-

dates in the diagnosis focus dfi.
– lgi ⊆ P (C) represents all local (relevant) good diag-

nosis candidates.
Consider the following example. Let Sys be a simple sys-

tem with five components C = {A, B,C, D, E}. Suppose
component B and D are faulted. In Table 2 we show walk
through the example.

t p z g b df1 df2
su1 lg1 su2 lg2

1 ABCDE f ABCDE
2 ABC f ABC
3 ADE f ABC
4 A s A BC A

5 ADE f A BC A DE A

6 AC s AC B AC DE A

7 ADC f AC D B AC

8 ACE s ACE D B AC

9 B s ACE,B D [AB][BC] AC, B

10 AB f ACE,B [AB],D

Table 2: System with five components C =
{A, B, C,D, E} where [AB] and D are faulted.

Consider the sequence of plans illustrated by Table 2.
Plan 1 (ABCDE) fails. Therefore we focus on the fact
that one of {A, B,C, D, E} is faulted. Plan 2 (ABC) fails.
Therefore, we can narrow the focus to the fact that one of
{A, B, C} is faulted, and we don’t know anything about
{D,E}. Plan 3 (ADE) fails. Therefore the focus narrows
to A, while there may be a fault in {B, C} (But the scope is
still {A, B,C}). Plan 4 (A) succeeds. Therefore, A is exon-
erated. At this point we backtrack, move the focus to {B, C}
and keep A as a local (relevant) good ({A}). The scope is
now {B, C}. Plan 5 (ADE) fails. Therefore, given that A is
exonerated, we can introduce a new focus on {D,E}, but we
keep A as a local (relevant) good ({A}). Plan 6 (AC) suc-
ceeds. Therefore, A, C,AC are exonerated, denoted as AC.
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The new global goods are {AC}, because {A} t {AC} =
{AC}. We update the local (relevant) goods in focus 1 to
AC, because A, C,AC are relevant to focus 1. B is the
only diagnosis candidate left in focus 1. Plan 7 (ADC)fails.
Therefore, given that A, C are exonerated, D is faulted, be-
cause it is a minimal diagnosis candidate. We close focus 2.
Plan 8 (ACE)succeeds, thus A, C,E, AC,AE, CE,ACE
are exonerated, denoted as ACE. The new global goods
are {ACE}, because {AC} t {ACE} = {ACE}. Plan
9 (B) succeeds, thus B is exonerated, denoted as B. The
new global goods are {ACE, B}, because {ACE}t{B} =
{ACE, B}. At this point we know that the diagnosis candi-
dates A, B,C, AC relevant to focus 1 are goods. Therefore
generate all minimal diagnosis candidates form the local
goods {[AB], [BC]} and move the focus to them. Plan 10
(AB)fails. Therefore, given that A, B are exonerated, [AB]
is faulted, because it is a minimal diagnosis candidate.

Function multiInteractFaults(plan pj , zj) descripes the al-
gorithm for multiple interaction faults in more detail.

Functioncandidates and minimalCandidates
minimalCandidates(Set<Comps> C,P(Set<Comps>) PC)

Beginn
CA = candidates(C, PC);
minCar = |E(CA)|;
MCA = ∅;
foreach cai : CA do

if |cai| = minCar then
MCA = MCA ∪ cai;

if |cai| < minCar then
MCA = ∅;
MCA = MCA ∪ cai;

return MCA;
Ende
candidates(Set<Comps> C, P(Set<Comps>) PC)

Beginn
CA = P (C);
foreach pci : PC do

CA = CA− pci;
return CA;

Ende

Conclusions
This paper is a first step towards an integrated qualitative di-
agnostic approach to systems which process material such
as manufacturing lines and printers. It presents a novel algo-
rithm for diagnosing multiple interaction faults which is far
more memory efficient than the traditional model-based al-
gorithms. The overall approach is similar to how technicans
address troubleshooting.
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Function multiInteractFaults(plan pj , obs zj)

if zj == f then
CAj = candidates(pj, g);
if CAj ∩ b == ∅ then

if |CAj | == 1 then
b = b ∪ CAj ;
foreach dfi : DF do

if CAj ∩ sui 6= ∅ then
DF.remove(dfi);

else
MCAj = minimalCandidates(pj,g);
if CAj ∩

⋃
k suk == ∅ then

foreach c ∈ g do
lgnew = lgnew t (E(c) ∩ pj);

sunew = MCAj ;
else

foreach dfi : DF do
if MCAj ∩ sui 6= ∅ ∧MCAj 6= sui then

if MCAj ∩
⋃

k,k 6=i suk == ∅ then
if |MCAj | < |sui| then

foreach c ∈ g do
lgi = lgi t (E(c) ∩ pj);

sui = MCAj ;
else

return false;

else
return false;

else
g = g t pj ;
foreach dfi : DF do

lgi = lgi t (E(lgi) ∪ E(sui)) ∩ pj ;
sui = minimalCandidates(sui,lgi);
if |sui| == 1 then

CAlgi
= candidates(E(lgi),lgi);

if |CAj | == 1 then
b = b ∪ CAj ;
foreach dfi : DF do

if CAj ∩ sui 6= ∅ then
DF.remove(dfi);

else
sui = minimalCandidates(E(lgi),lgi);

return true;
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