
Supporting Conceptual Knowledge Capture Through Automatic Modelling:
A Preliminary Progress Report

Jochem Liem and Hylke Buisman and Bert Bredeweg
Human Computer Studies Laboratory, Informatics Institute, Faculty of Science,

University of Amsterdam, The Netherlands. Email: {jliem,bredeweg}@science.uva.nl, hbuisman@gmail.com

Abstract

Building qualitative models is still a difficult and
lengthy endeavour for domain experts. This paper dis-
cusses progress towards an automated modelling algo-
rithm that learns Garp3 models based on a full qual-
itative description of the system’s behaviour. In con-
trast with other approaches (Bridewell et al. 2008;
Bratko and Šuc 2004), our algorithm attempts to learn
the causality that explains the system’s behaviour. The
algorithm achieves good results when recreating four
well-established models.

Introduction
In this paper we focus on the ground work required to ad-
vance towards an automated modelling program. The input
is considered to have a qualitative representation, i.e. a state
graph that represents the possible situations that can emerge
from a system, and the values of the quantities in each sit-
uation. Furthermore, the input is assumed to have no noise
nor any inconsistencies. The completed algorithm is envi-
sioned to support researchers in articulating their conceptual
understanding. As such it will help to establish theories that
explain the phenomena provided as input data.

QR Model and Simulation Workbench: Garp3
The automatic model building algorithm is implemented in
Garp31 (Bredeweg et al. 2006). Garp3 allows modellers to
represent their knowledge about the structure and the impor-
tant processes in their system as model fragments, which can
be considered formalisations of the knowledge that applies
in certain general situations.

Next to model fragments, different scenarios can be mod-
elled. These represent specific start states of a system.
Garp3 can run simulations of models based on a particular
scenario. The result of such a simulation is a state graph, in
which each state represents a particular possible situation of
the system, and the transitions represent the possible ways a
situation can change into another.

The simulation engine takes a scenario as input, and finds
all the model fragments that apply to that scenario. The con-
sequences of the matching model fragments are added to the

1http://www.garp3.org

scenario to create a state description from which new knowl-
edge can be inferred such as the derivatives of quantities.
Given the completed state description, the possible succes-
sor states are inferred. The complete state graph is generated
by applying the reasoning to the new states.

In Garp3 the structure of a system is represented using
entities (objects) and configurations (relations). For exam-
ple, a lion hunting on a zebra would be represented as two
entities (lion and zebra) and a configuration (hunts).

Quantities represent the features of entities and agents
that change during simulation. A quantity has a magnitude
and a derivative, which represent its current value and trend.
The magnitude and derivative are each defined by a quantity
space that represents the possible values the magnitude and
the derivative can have. Such a quantity space is defined by
a set of alternating point and interval values.

We use Mv(Q1) to refer to the current value of the mag-
nitude of a quantity. Ms(Q1), the sign of the magnitude,
indicates whether the magnitude is positive, zero or negative
(Ms(Q1) ∈ {+, 0,−}). Dv(Q1) refers to the current value
of the derivative of a quantity, which has a value from the
predefined derivative quantity space (Dv(Q1) ∈ {−, 0, +}).
Ds(Q1) refers to the current sign of a derivative. Note that
the predefined values of derivatives completely correspond
to the possible signs of the derivative.

Causality
Garp3 explicitly represents causality using indirect and di-

rect influences. Direct influences are represented as Q1
I+→

Q2. Influences can be either positive (as above) or negative.
The positive influence will increase Dv(Q2) if Ms(Q1) =
+, decrease it if Ms(Q1) = −, and have no effect when
Ms(Q1) = 0. For a negative influence, it is vice versa.

The indirect influences, called proportionalities, are rep-

resented as Q1
P+→ Q2. Similar to influences, proportion-

alities can be either positive or negative. The positive pro-
portionality will increase Dv(Q2) if Ds(Q1) = +, have no
effect if it is stable, and decrease if it is below zero. For a
negative proportionality, it is vice versa.

Other Behavioural Ingredients
Other behavioural ingredients in Garp3 are operators, in-
equalities, value assignments and correspondences. Opera-



tors (+ and -) are used to calculate the magnitude value of
quantities (e.g. Q1 − Q2 = Q3, to indicate Mv(Q1) −
Mv(Q2) = Mv(Q3)). Inequalities can be placed be-
tween different model ingredient types: (1) magnitudes
(Mv(Q1) = Mv(Q2)), (2) derivatives (Dv(Q1) < Dv(Q2),
(3) values Q1(point(Max)) = Q2(point(Max)), (4) oper-
ator relations (Mv(Q1) −Mv(Q2) < Mv(Q3) −Mv(Q4),
(5) combinations of the 1, 2, 3 and 4 (although only be-
tween either magnitude or derivative items). Value assign-
ments simply indicate that a quantity has a certain quali-
tative value (Mv(Q1) = Q1(Plus)). Finally, correspon-
dences indicate that from certain values of one quantity, val-
ues of another quantity can be inferred. There are quantity

correspondences (Q1
Qqs↔ Q2) and value correspondences

(Q1(Plus)
Qv→ Q2(Plus)), which can both be either di-

rected or undirected. The value correspondence indicates
that if Mv(Q1) = Q1(Plus), Mv(Q2) = Q2(Plus). If the
value correspondence is bidirectional, the reverse inference
is also possible. Quantity correspondences can be consid-
ered a set of value correspondences between each consecu-
tive pair of the values of both quantities. There are also in-

verse quantity space correspondences (Q1

Q−1
qs↔ Q2) that in-

dicate that the first value in Q1 corresponds to the last value
in Q2, the second to the one before last, etc.

Algorithm Requirements and Approach
Assumptions and Scoping
The goal of the automatic model building algorithm is to
take a state graph and a scenario as input, and generate the
model that provides an explanation for the behaviour. Our
approach focusses on the generation of causal explanation.
Several assumptions are made to scope the work. In further
research these assumptions can be alleviated. Firstly, input
is assumed to have no noise or inconsistencies. Secondly,
the state graph is assumes to be a full envisionment of the
system’s behaviour.

The second assumption is that a model can be build using
a single model fragment. From a causal explanation point
of view, it is reasonable to assume that influences and pro-
portionalities never disappear, but that their effects are only
nullified when quantities become zero or stable.

Thirdly, the algorithm is focussed on causal explanation
and less on structure. Therefore, the entity hierarchy is as-
sumed known.

Input and Output
The algorithm takes a complete state graph as input, which
includes (1) the quantity names, (2) the quantity spaces, (3)
the magnitudes and derivatives of the quantities in different
states, (4) the observable inequalities, and (5) the state tran-
sitions. Furthermore, the algorithm is provided with the sce-
nario that should produce the state graph, which consists of:
(1) the entities, agents and assumptions involved, (2) struc-
tural information about the configurations between them, (3)
the quantities and their initial values, and (4) the inequalities
that hold in the initial state.

The output of the algorithm is one or more Garp3 qualita-
tive models that explain (are consistent with) the input that
can be immediately simulated.

Algorithm Design Approach
Since the semantics of model ingredients are formally de-
fined, one would assume that it is clear how each ingredient
manifests itself in the simulation results of a model. Other-
wise, how would the implementation of a simulation engine
have been possible? However, in practice, it is hard even for
expert modellers to pinpoint the model ingredients that are
responsible for certain (lack of) behaviour. This has several
reasons. Firstly, a large set of inequalities are derived dur-
ing qualitative simulation, of which the implications (other
inequalities) are difficult to foresee. Secondly, the engine
has a lot of intricacies (such as second order derivatives)
which makes simulation results hard to predict. Thirdly, the
branching in the state graph that results from ambiguity is
difficult for people to completely envision.

For these reasons, an iterative algorithm design approach
is chosen. Well-established models are ordered by complex-
ity, and attempts are made to generate them using their own
output. Each of the models requires a different (and increas-
ingly large) set of considerations that must be dealt with.

The models chosen are Tree and Shade, Communicating
Vessels, Deforestation, Population Dynamics and a set of
other even more complex models2. Tree and Shade is the
least complex model, containing only a few quantities, and
causal dependencies, and no conditions, causal interactions,
inequalities or operator relations. Communicating vessels is
more complex, as it contains causal interactions, an oper-
ator, and inequalities. The deforestation model is different
from the previous models as it contains many clusters linked
to each other by proportionalities. Population dynamics is
again more complex, due to the large amount of quantities,
interactions and conditions.

Causality and Clusters
Causal Paths Important for the algorithm is the concept
of causal paths. These are series of quantities connected by
influences and proportionalities. A causal path is defined as
a set of quantities that starts with an influence, and is fol-
lowed by a arbitrary number of proportionalities. For exam-

ple: Q1
I+→ Q2

P+→ . . .
P−→ Qn−1

P+→ Qn. A quantity that has
no proportionalities leading out of it ends the causal path. If
a quantity has more than one proportionality leading out of
it, multiple causal paths can be defined.

Since each influence represents the causal effect of a pro-
cess, a causal path can be seen as the cascade of effects of
a process. Given this perspective, certain successions of
causal relations become unlikely. For example the causal

path Q1
I+→ Q2

I+→ Q3
P−→ Q4

I+→ Q5 would imply there are
many active processes with short or no cascading effects.

Direction of Causality An important issue in scientific
enquiry is the problem of correlation and causality. This

2The models are available at http://www.garp3.org



issue appears when trying to derive causal relations from the
state graph. For example, Ds(Q1) = Ds(Q2) can be an

caused by Q1
P+→ Q2, Q2

P+→ Q1, or even Q3
P+→ Q1 and

Q3
P+→ Q2. Another example of this is in the communicat-

ing vessels model. Ideally, a model capturing the idea of a
contained liquid would distinguish between Volume, Height
and Bottom pressure, and have a particular causal account

(V olume
P+→ Height

P+→ Bottom pressure). However,
from the model’s behaviour this causality may not be deriv-
able, e.g. when the width of the containers doesn’t change.
As a result, the unique role of the quantities involved can
only be inferred when the required variation for that is ap-
parent in the input state-graph. Therefore, it is considered
the modeller’s responsibility to provide simulation examples
which will allow the algorithm the make these critical dis-
tinctions. However, it can be considered the responsibility
of the tool to indicate to the modeller that the causality be-
tween certain sets of quantities cannot be derived, and that
examples showing these differences should be provided.

Clusters The algorithm makes use of a specific subset of
causal paths called clusters. We define clusters as groups of
quantities that exhibit “equivalent” behaviour. More specif-
ically, a set of quantities constitute a cluster if their val-

ues either correspond (Q1
Qqs↔ Q2) or inversely correspond

(Q1

Q−1
qs↔ Q2) to each other. Additionally, the correspond-

ing derivatives should be equal (Dv(Q1) = Dv(Q2)), while
inversely corresponding derivatives should be each other’s
inverse (Dv(Q1) = −Dv(Q2)).

A further constraint is that the corresponding quantities
(not inverse) in a cluster must be completely equivalent.
Therefore, Mv(Q1) = Mv(Q2) must always hold. If an
inequality holds between two quantities, they are considered
not to belong to the same cluster.

During implementation it became obvious that clusters
are not meaningful when quantities within a cluster belong
to different entities. The reason for this originates from the
idea of ‘no function in structure’. Clusters involving multi-
ple entities would integrate causality across individual struc-
tural units, which is undesired. Therefore, clusters can only
contain quantities that belong to the same entity.

Quantities cannot be a member of more than one cluster.
If Q1 and Q2 are in a cluster, and Q1 and Q3 are in a cluster,
then Q1, Q2 and Q3 must be in the same cluster. After all,
if Q1 and Q2 have equivalent behaviour, and Q1 and Q3

have equivalent behaviour, by transitivity Q2 and Q3 have
to exhibit equivalent behaviour.

Minimal Covering
The key requirement of the model building algorithm is that
it explains the input behaviour. However, a second require-
ment is that the algorithm does not contain redundant depen-
dencies. That is, the algorithm should return the minimal set
of dependencies that explains the behaviour.

Two dependencies are considered substitutionary if they
have the same effect on the simulation result (i.e. remov-
ing one of them would have no effect, however removing

both would). Complementary dependencies are responsible
for different aspects of the behaviour, and both have to be
present to explain the data. The aim is to create an algo-
rithm that is minimally covering, i.e. it should only contain
complementary dependencies.

Algorithm
Finding Naive Dependencies
The goal of this step is to find (non-interacting) dependen-
cies that are valid throughout the entire model (i.e. are not
conditional). These causal relations are called naive depen-
dencies, and provide the basis for the rest of the algorithm.

Consistency Rules Naive dependencies are identified us-
ing consistency rules. Each pair of quantities is checked
using these rules to determine which of them potentially
holds throughout the state graph. These rules make use of
Mv(Qx), Ms(Qx), Dv(Qx), Ds(Qx) of each quantity in a
pair, and inequalities that hold between them. These state-
ments are referred to as the state information of a quantity.

The consistency rules are derived from the semantics of
the causal dependencies (see Section on Garp3). Examples
of rules (that should hold throughout the state graph) are:

Q1
I+→ Q2 if Ms(Q1) = Ds(Q2) (1)

Q1
I−→ Q2 if Ms(Q1) = −Ds(Q2) (2)

Q1
P+→ Q2 if Ds(Q1) = Ds(Q2) (3)

Q1
P−→ Q2 if Ds(Q1) = −Ds(Q2) (4)

Q1(Vx)
Qv↔ Q2(Vy) if

Mv(Q1) = Q1(Vx) =⇒ Mv(Q2) = Q2(Vy)(5)

Q1
Qqs↔ Q2 if ∀Vn(Q1(Vn)

Qv↔ Q2(Vn)) (6)

Redundancy The set of dependencies that are found con-
tain a lot of redundancy, i.e. many dependencies are substi-
tutionary. For example, in the communicating vessels model

height
P+→ pressure, can be substituted by pressure

P+→
height. The remainder of the algorithm selects the correct
substitutionary groups, and uses the selected naive depen-
dencies to derive more complex dependencies.

Determining Clusters
This step tries to determine clusters within the set of naive
dependencies. The algorithm searches for quantities be-
longing to the same entity that exhibit equivalent behaviour,
and tries to expand these candidate clusters by adding other
quantities. Quantities are only added if they exhibit be-
haviour equivalent to the quantities already contained in the
candidate cluster. If no more quantities can be added to a
candidate cluster, the algorithm searches for other candidate
clusters. By only considering models composed of clusters,
the space of possible models is significantly reduced.

The validity of the candidate clusters is checked by deter-
mining if there is overlap between the clusters. All clusters
that overlap are removed. An alternative would be to only
remove clusters until no more overlap is present. However,



in practice no situations were encountered where this was
desirable. An example of a found cluster is volume, height
and pressure in the communicating vessels model. Note that
these clusters are still missing influences (their actuators),
these are determined later in the algorithm.

Generating Causal Paths
This step returns the possible causal orderings within clus-
ters based on the cluster and naive dependencies sets. For
each cluster a valid causal ordering is returned. Through
backtracking other possible orderings are generated.

The quantities in a cluster can be either connected in

a linear fashion (Q1
P+→ Q2

P+→ Q3) or using branching

(Q1
P+→ Q2 and Q1

P+→ Q3). The algorithm prefers linear
branching, as branching does not often occur in practice.
Additionally, the reduction of possible models is a signifi-
cant advantage.

Another constraint that reduces the number of possible
models is requiring clusters that belong to entities of the
same type to have the same causal ordering. For example, if

for one container V olume
P+→ Height

P+→ Pressure, than
for other containers the same causal ordering must hold.

Actuating Clusters
The goal of the actuating clusters step is to connect clusters
by identifying cluster actuations. This step takes the set of
clusters with established causal orderings and the naive de-
pendencies as input.

Clusters can either be actuated by another cluster, or act
as an actuator itself. Furthermore, clusters can be connected
by propagating an actuation. In a model, each cluster should
take part in at least one of these kind of relations such that
all clusters are related in a way. Otherwise, the model would
include two separate non-interacting subsystems.

When one cluster actuates another, there is an influence
relation between the two. Actuations are the most impor-
tant form of connecting clusters, since these connections are
the cause of change in the system. They are also the easiest
to detect, due to the specific way influences manifest them-
selves in the state information. For this reason, actuations
by influences are identified first. Two types of actuations
though influences are distinguished: (1) equilibrium seeking
mechanisms (ESM) and (2) external actuators.

Equilibrium Seeking Mechanisms ESMs are better
known as flows, and are common in qualitative models.
Flows cause two unequal quantities to equalize. The flow
in the communicating vessels model has a non-zero value
when the pressures in the two containers are unequal. The
flow changes the volume of the containers, and thus the pres-
sures to equalize. An ESM holds under the following two
conditions: (1) Q1 = Q2 − Q3, where Q1 ∈ C1, Q2 ∈
C2, Q3 ∈ C3, where the C’s are clusters, and (2) Q4

I−→
Q5 and Q4

I+→ Q6, where Q4 ∈ C1, Q5 ∈ C2, Q6 ∈ C3.
Note that in many cases Q1 = Q4, such as in the communi-
cating vessels model.

Finding Calculus Relations The algorithm reduces the
search space of finding ESMs using four constraints. Firstly,
all quantities involved in the operator should be in differ-
ent clusters (C1, C2 and C3 are unequal). Secondly, the set
of naive dependencies should at least contain one influence
from Q1 (to serve as an actuation). Thirdly, both Q2 and Q3

would be at the end of the causal paths within their cluster,
as in most cases this is the most meaningful interpretation.
Finally, Q2 and Q3 are required to be of the same type, as
only things of the same type can be subtracted.

External Actuators External actuators are causes of
change more at the edges of the system compared to ESMs.
To identify external actuators, the algorithm considers the
influences in the naive dependencies that are not part of an
ESM. Again, the minimal covering principle is applied to
keep the number of dependencies to a minimum. As a result
a cluster will never have more than one incoming actuation.

An actuation is only considered between C1 to C2 if the
set of naive dependencies contains influences between each
possible pair of quantities, such that ∀Qx ∈ C1,∀Qy ∈
C2(Qx

I+→ Qy). This removes the influences in the set of
naive dependencies that are consistent with the behaviour
by chance.

Alternative actuations are returned through backtracking.
In the future, actuations may be chosen based on the struc-
ture of the system, as causal relations are more likely to oc-
cur parallel to structurally related entities.

Feedback A common pattern in qualitative models is
feedback, which is a proportionality originating from the
end of a causal path to the quantity actuating the causal path.
Feedbacks are simply added if the naive dependencies con-
tain one. The algorithm always adds feedback at the end of
causal paths, since this is what happens in the investigated
models. However, it could be the case that feedbacks from
halfway a causal chain are also possible.

Linking Clusters by Propagation
This step connects the clusters that have not yet been con-
nected through proportionalities, based on the naive depen-
dencies. As with clusters, the causal ordering of the clusters
cannot be distinguished. Therefore all possibilities are gen-
erated. Furthermore, the same design choices as with find-
ing causal paths within clusters have been made. Only linear
orderings of clusters are allowed (i.e. no branching).

Setting Initial Magnitudes
An influence has no effect if the magnitude of the quantity
from which it originates is unknown. Therefore this step
assigns initial values to quantities. Note that this step first
generates a set of candidate assignments. When a value can
be derived in another way than through assignment, it is re-
moved from the set of value assignment candidates.

There are six ways to assign initial magnitudes. Firstly, if
a value assignment for the quantity is present in the scenario,
it requires no initialisation. Secondly, if the magnitude can
be derived through a correspondence, the value is known.
Thirdly, the result of a minus operator can be derived if an



inequality between its arguments is known. Based on the
possible magnitudes of the result this inequality can be de-
rived. Either this inequality is present in the scenario, or
multiple inequalities should be made assumable by adding
them as conditions in multiple model fragments. Garp3 au-
tomatically assumes unprovable values and inequalities if
they are conditions in model fragments. Note that generat-
ing the conditional inequalities is currently beyond the scope
of the algorithm, as it involves adding model ingredients to
multiple model fragments. Fourthly, it is possible that a cer-
tain magnitude holds everywhere throughout the state graph.
In this case, a value assignment is added as a (conditionless)
consequence. Fifthly, a value could hold under certain con-
ditions. However, this would require a value assignments
with a conditional inequalities in separate model fragments.
Therefore, it is currently beyond the scope of the algorithm.
Finally, multiple model fragments could be created in which
the magnitudes are present as conditions. Garp3 will gen-
erate the different states that would result by assuming each
of the values. As with the conditional value assignments,
having value assignments as conditions in multiple model
fragments is currently beyond the scope of the algorithm.

Dependency Interactions
This step identifies dependency interactions (influences or
proportionalities) based on the input behaviour. Dependency
interactions are detected in the same way as naive dependen-
cies, i.e. using a set of consistency rules. Interactions are not
found as naive dependencies, as the individual dependencies
are not consistent with the entire state graph (as an interac-
tion results in more behaviour than a single dependency).

The algorithm assumes that the interaction consists op-
posing dependencies, such as birth vs. death and immigra-
tion vs. emigration.

Results3

The tree and shade model is successfully modelled by the
algorithm. It returns two models, representing both possible
directions of causality between Size and Shade. The initial
magnitude assignment correctly finds a conditionless value
assignment on Growth rate. The simulation results of these
models are equivalent to that of the original model.

The dependencies of the communicating vessels model are
correctly found. The algorithm returns 6 models; one for
each possible causal ordering of amount, height and pres-
sure. The algorithm also correctly identifies the ESM-based
actuations of the clusters, by properly finding the min opera-
tor. Furthermore, all necessary causal dependencies and cor-
respondences are identified. Model fragments that allow the
assumption of initial values are missing (due to the fact that
the algorithm generates a single model fragments). Adding
an inequality between the pressures of the containers in the
scenario allows the model to simulate without problems.

The deforestation model (containing entities ’Woodcut-
ters’, ’Vegetation’, ’Water’, ’Land’ and ’Humans’) is suc-
cessfully modelled, including setting initial magnitudes us-
ing conditions. The simulation is equivalent to that of the

3For the models and references go to http://www.garp3.org

original model. The causal ordering does differ, as it does
not capture the branching of the causal paths in the origi-
nal model. The resulting model however, is not considered
wrong by experts, and is arguably better than the original.
Over 2000 models are returned when generating all possible
results, due to the many possible causal orderings.

The population dynamics model generates the correct
models for the open and closed population scenarios. How-
ever, the initial values are not set.

The algorithm does not yet give correct results for the
heating/boiling, R-Star and Ants’ Garden models. For the
heating model this is due to inequalities that hold under spe-
cific conditions, which are not taken care of in the algorithm.
The R-Star and Ants’ Garden are large models that resulted
from specific research projects. As such, these models are
an order of magnitude more complex than the other models.
It is therefore not surprising that the algorithm in its current
form cannot cope with them.

Conclusions & Future Work
This paper presents preliminary work towards an algorithm
that automatically determines a Garp3 qualitative model, us-
ing an enumeration of all possible system behaviour as in-
put. The algorithm uses consistency rules to determine the
causal dependencies that hold within the system. Using the
concept of clusters the search space is significantly reduced.
Accurate results are generated for a set of well-established
models. The results seem to suggests that it is possible to
derive causal explanations from the behaviour of a system,
and that model building support through an automatic model
building algorithm is viable.

There are several algorithm improvements planned. The
first improvement is to have a generalised representation for
the ambiguity within and between clusters. That is, have a
single representation for the complete model space. For sim-
ulation purposes an arbitrary instantiation can be chosen, as
each one has an equivalent result. Secondly, the algorithm
has to be improved to be able to create multiple model frag-
ments in order to deal with conditional model ingredients.
Thirdly, means have to be developed to be able to compare
generated state graphs with the desired state graph.

References
Bratko, I., and Šuc, D. 2004. Learning qualitative models.
AI Mag. 24(4):107–119.
Bredeweg, B.; Bouwer, A.; Jellema, J.; Bertels, D.; Lin-
nebank, F.; and Liem, J. 2006. Garp3 - a new workbench
for qualitative reasoning and modelling. In Bailey-Kellogg,
C., and Kuipers, B., eds., 20th International Workshop on
Qualitative Reasoning (QR-06), 21–28.
Bredeweg, B.; Salles, P.; Bouwer, A.; Liem, J.; Nuttle, T.;
Cioaca, E.; Nakova, E.; Noble, R.; Rios Caldas, A. L.; Yor-
dan, U.; Varadinova, E.; and Zitek, A. 2008. Towards a
structured approach to building qualitative reasoning mod-
els and simulations. Ecological Informatics 3(1):1–12.
Bridewell, W.; Langley, P.; Todorovski, L.; and Dz̆eroski,
S. 2008. Inductive process modeling. Machine Learning
71:132.


