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Abstract

Interval models may be seen as a trade-off between numeri-
cal and qualitative models. They have been often referred as
semi-qualitative models. The interval algebra is indeggea s
cific qualitative algebra with advantageous algebraic grop
ties. This paper presents the application of an intervadédas
parameter estimation method, which is used for learninly fau
models supporting the detection of Oscillatory Failured&3as
(OFC) in Electrical Flight Control System (EFCS) of civit-ai
planes. The interval estimation method results are gueednt
and computations are performed in finite time. Failures are
identified using the fault models which are checked against
system input and output measurements.
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This paper presents a fault detection method using interval
parameter estimation. Parameters of the model are estimate
from the input and output measurements of the system. The
consistency of this estimation is then checked againstipara
eters computed from a theoretical (possibly faulty) model o
the system. Computations use the set inversion algorithm
SIVIA (Jaulin & Walter 1993; Jauliret al. 2001). The re-
sults are approximated but are bounded in a guaranteed way.
The method is applied to detect Oscillatory Failure Cases
(OFCQ) in Electrical Flight Control System (EFCS) of civil
airplanes.

The article is organised as follows. Next section positions
interval models with respect to qualitative models. Then se
ond section provides an overview of interval analysis, its
original purpose and its use for fault detection. The error

Model based reasoning relies on the soundness of the mOdel%ounded contextis then presented more precise|y with para-

supporting the reasoning. This is particularly true for rlod

metric estimation using intervals in the fourth section. In

based fault detection and diagnosis. Nevertheless bgildin fifth section, the case study is presented: we describe what
models turns out to be an awkward task. At some stage of gre OFC, and their consequences on the aircraft control sur-
the process, one may face two kinds of uncertainties. On one faces, why such failures must be detected in time and one
side, unstructureduncertainties mean that deriving a com-  of the methods currently used on Airbus aircrafts for OFC
plete equational model from the physical phenomenais im- detection. In sixth section the application and the obtiine

possible. On the other side, when the structure of the equa- results are analyzed. Finally some conclusions are odutline
tions is known but some of the parameters are not, uncer- in |ast section.

tainties are said to b&tructured In addition to these uncer-
tainties, it is not always possible to get informations abou Qualitative versus interval models
disturbances and noises acting on the system. In such cases . . . .
assuming bounded uncertainties may be a solution. Providing models representing physical systems is a com-
Considering structured uncertainties, an interesting way Mon concern spread over all scientific and engineering com-
to go is then to use guaranteed estimation methods, which Munities. Modelling depends on the available knowledge
learn the state and/or parameters of the models from data. @00ut the physical system. This is why pure numerical mod-
These methods rely onterval analysishat first appeared els are sometimes dlsregardeq to the be_neflt of_ qualitative
in (Moore 1966). They are now subject of a growing inter- models which naturally cope with uncertain and inaccurate
est in various communities and are applied for many tasks knowledge. Within the qualitative framework, numerical
(Alamo, Bravo, & Camacho 2005; Armenget al. 2001: values are replaced by qualitative values that can be seen
Guerra, Puig, & Ingimundarson 2006; Jawiral. 2001; Ki- as (absoluteyrders of magnitude L
effer & Walter 1998; Kieffer, Jaulin, & Walter 2002; Lesecq, Absolute orders of magnitudgre based on partitioning
Barraud, & Dinh 2003: Ribot 2006: Ribot, Jauberthie, & the real lineR into a finite set of basic qualitative val-
Travé-Massuyes 2007).
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!Relative orders of magnitude refer to different formalisms
based on binary relations used to compare quantities (DEQR&a;
1993b; Travé-Massuyest al. 2005).



ues. Considering the order relation given by set inclu-
sion, it allows one to build the whole set of qualitative val-
ues, organised along to a high semi-lattice (Travé-Massuye
& Piera 1989; Travé-Massuyes, Ironi, & Dague 2003).
As an example, (De Kleer & Brown 1984; Forbus 1984;
Kuipers 1984) introducesdign algebrafor which a param-
eter or a variable: takes values i{—, 0, +, ?} depending

on whether it is negative, zero, positive, or undetermined.
Unfortunately, many operations,g. (+) — (+), lead to

an undetermined result. Absolute order of magnitude alge-
bras were proposed to hinder this problem (Travé-Massuyes,
Ironi, & Dague 2003). The real line partitioning defines
the quantity spaceof a variable thanks ttandmark values
(Kuipers 1994). It captures the intuition that there arey@nl
few qualitative important values associated to differarzle
itative behaviors. Whatever partitioning is chosen, am-alg
bra and arithmetical operations can be defined.

The interval algebra can be seen as an extreme case in
which the partition elements are provided by every real num-
ber and intervals are closed and connected subsé&ts lof
terval analysis may then be interpreted as a specific case of
order of magnitude reasoning.

Interval analysis
Preamble

The key idea of interval analysis is to reason about intsrval
instead of real numbers and boxes instead of real vectors.
The first motivation was to obtain guaranteed results from
floating point algorithms and it was then extended to vali-
dated numerics (Moore 1959). Let us recall that in comput-
ers real numbers can only be represented by a floating point
approximation, hence introducing a quantification error. A
guaranteed resulineans first that the result set encloses the
exact solution. The width of the sék. the result precision,
may be chosen depending on various criteria among which
response time or computation costs. Secondly, it also means
that the algorithm is able to conclude on the existence or not
of a solution in limited time or number of iterations. Theffirs
significant work is due to Moore in its Phd thesis which was
the early beginnings of his reference book (Moore 1966).

Main concepts

The matter is to wrap the sets of interest into boxes or union
of boxes for which computations may be easier. There are
three fundamental operations on intervals which are briefly
explained after the definition of an interval.

Interval A real interval{u] = [u,u] is a closed and con-
nected subset dR wherew represents the lower bound of
[u] and@ represents the upper bound. The width of an in-
terval[u] is defined byw(u) = @ — u, and its midpoint by
m(u) = (T+u)/2.

The set of all real intervals @& is denotedR.

Two intervalgu] and[v] are equal if and only i = v and
u = v. Real arithmetic operations are extended to intervals
(Moore 1966).

Arithmetic operations on two intervals] and[v] can be

defined by:
o€{+ =/} [uo]={zoy|xelu], y ]}

An interval vector (or box]X] is a vector with interval
components and may equivently be seen as a cartesian prod-
uct of scalar intervals:

[X] = [#1] X [z2] X ... X [24].

The set ofr—dimensional real interval vectors is denoted
by IR".

An interval matrix is a matrix with interval components.
The set of: x m real interval matrices is denoted " <.
The widthw(.) of an interval vector (or of an interval matrix)
is the maximum of the widths of its interval components.
The midpointm(.) of an interval vector (resp. an interval
matrix) is a vector (resp. a matrix) composed of the midpoint
of its interval components.

Classical operations for interval vectors (resp. interval
matrices) are direct extensions of the same operations for
punctual vectors (resp. punctual matrices) (Moore 1966).

Wrappers Consider a setl and a setV of subsets ofU.
V is aset of wrapperdor U if U and each singleton df
belong toV andV is closed by intersection.

The figure 1 showg ([u]) which is the direct image of a
box [u] in IR? by a functionf, a possible wrapp€if]([u])
and the optimal wrappéy]*([u]). f([u]) is called theange
of f over[u] and is given by:

f(u]) = {f(@) | € [ul}.

[u] [£1([u])
\ |\
L ()

Figure 1: Range of over[u] and wrappers.

Inclusion function Given[u| a box ofIR" and a function
f fromIR"™ to IR™, theinclusion functiorof f aims at get-
ting an interval containing the image ff] by f.

An inclusion function off can be obtained by replacing
each occurrence of a real variable by its corresponding in-
terval and by replacing each standard function by its iratlerv
evaluation. Such a function is called the natural inclusion
function. In practice the inclusion function is not unigite,
depends on the syntax ¢f

Inclusion test Given a subsef of R”, we test if[z] be-
longs toS, more precisely ifz] € Sor[z] NS = (). These
tests are used to prove that all points in a given box satisfy a
given property or to prove that none of them does.



Contractor The last operation is theontractionof [z]
with respect tdS. This means that we search a smaller box
[z] such thafz] NS = [z] N S. If S is the feasibility set of

a problem and:z] turns out empty, then the bdx] may not
contain the solution (Jauliet al. 2001).

Fault detection using intervals

Set membership detection uses these concepts to perform
state estimation and parameters estimation. In state esti-
mation, a nonlinear dynamical model is approximated by
a Taylor expansion (Rihm 1994; Berz & Makino 1998;

These operations are used to test if a box can or cannot be Negialkov, Jackson, & Pryce 2001) to compute a box en-

removed from the solution set. When no conclusion can be

drawn, the box may be bisected and each of the sub-boxesg;ccessive time stepsandt

can be tested in turn (this correspondbtanch-and-bound
algorithms).

SIVIA: Set Inversion Via Interval Analysis

Consider the problem of determining a solution set for the
unknown quantities, defined by

S={ueU]|®u) ey},
= ()N,

where[y] is known a priori,U is an a priori search set for

u and ® a nonlinear function not necessarily invertible in
the classical sense. (1) involves computing the reciprocal
image of®. This can be solved using the algorittSivVIA
which is a recursive algorithm that explores all the search
space without loosing any solution. This algorithm makes it
possible to derive a guaranteed enclosure of the solution se

S as follows: _
Scscs @)

The inner enclosurg is composed of the boxes that have
been proved feasible. To prove that a Hek is feasible
it is sufficient to prove tha®([u]) C [y]. Reversely, if it
can be proved tha®([u]) N [y] = 0, then the boXu] is

1)

closing all possible trajectories of the solution betweeo t
j+1-

The fixed point and Picafrd-LindeI('jf theorems prove the
existence and uniqueness of the solution (Rihm 1994). The
interval solution becomes obviously wider and wider at
each iteration step: this drawback is known as wrap-
ping effect Numerous methods may circumvent this pes-
simism: among them one is to use high order Taylor ex-
pansion, mean value forms, matrices preconditioning and
a predictor-corrector approach (Corliss 1994; Nedialkov
1999; Neumaier 1990; Raissi, Ramdani, & Candau 2004;
Ramdani 1995; Rihm 1994).

Parameter estimation in a bounded error
context

Parameters and state estimated from experimental measures
are usually obtained within a stochastic framework in which
known distribution laws are associated to interferencek an
noisy measurements. Oppositely, in the bounded error con-
text measures and modeling errors are supposed to be un-
known but to stay within known and acceptable bounds.
Errors between measured and predicted outputs may rely
on many factors, among them: limited sensors accuracy,
interferences, noise, structured uncertainties, ... Sarae

unfeasible. Otherwise, no conclusion can be reached and gyantifiable, some are not. We consider here the quantifi-

the box[u] is said undetermined. The latter is then bisected

able errore, which is added to the model outpyt The

in two sub-boxes that are tested until their size reaches a gyperimental OUtPUgexp are given by:

user-specified precision thresheld- 0. Such a termination
criterion ensures tha&IVIAterminates after a finite number
of iterations.

The algorithm is formally presented below. The functions
L(.) andR(.) return respectively the “left” and “right” parts
of their interval vector argument once it has been bisected.
This bisection may be made using different strategies such
as round robin, largest first or random.

Algorithm 1 SIVIA (in: @, [y], [u], €, inout: S, S)
if [®]([u]) N [y] = 0 then
return

end if
if [®]([u])

| then

<

if width([u]) < e then
S =S Uu

end if

SIVIA (D, [y],

L &,
SIVIA (D, [y], R([u]), ¢,

Yexp(t;) = y(t;) +e(t;), 1 <j <n. (3)

In our context, the errar is supposed to be within an in-
terval whose lower bound ignin and upper bound igmax.
An allowable error seE may be defined as a set of con-

straints
E = {e(t;) | emin < e(tj) < emax}- (4)

These bounds may be considered constant over time as well
as variable. They may be established from data given by
constructors for electronic parts for example.

Our system has unknown but bounded initial conditions
while input and output values are available at any time. The
initial conditions belongs to a set, hence the model ougput
is also a set denotdg], as well as the errar which is a set
[e] that must be in the domali.

In the same way than fde|, we define an allowable do-
mainY for model outputy| such than

| [y] - [yexp]}a

| [y] - [y — €max, Y — emin]}-
Interval analysis is used to reject models that are not sensi
tent with data and error bounds.

Numerous approaches have been tested with linear mod-
els: ellipsoid shaped methods (Milanese & Vicino 1991;

(5)
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Figure 2: System and model.

Durieu & Walter 2001; Lesecq, Barraud, & Dinh 2003),
parallelotopic and zonotopes (Alamo, Bravo, & Camacho
2005).

Consider a nonlinear parametric model described by the
following set of equations

i(t,p) = f(z(t), u(t),p),
y(t,p) = g(x(t), u(t), p),
o € Xo,
p € Po,

(6)

where

e fandg are continuous nonlinear known functions,
* z(t) € R™ is the state vector at timg

* u(t) € R™ is the input vector at time,

* y(t) € RP is the output vector at time

* Xy is an a priori known set enclosing the initial condition
IOI

Py is the a priori known set enclosing the searched param-
eter vectomp.

A parameter vectop is acceptable if and only if the error
betweenyexp, and the model outpiiy] is bounded in a known

There are generally two actuators for one control surface. A
mastercomputer performs control by sending a command
on the active actuator. The other one is set in damped mode
and follows the surface motion without opposition. When
the master computer detects a failure, it switches theectiv
actuator to damped mode and gives control sleaecom-
puter that controls the second actuator which is now in activ
mode.

All parts in the control chain that contain electronic de-
vices may generate interference signals. These signals mak
the control surface swing. This is called @scillatory Fail-
ure Case (OFC)In this paper, only OFC located in the
servo-loop control of the moving surfaces are considered,
thatis, between thelight Control Computeand the control
surface, including these two element$ (Figure 3). When
an OFC occurs within the actuator bandwidth , it may have
the following consequences:

« coupled with the aeroelastic behaviour of the aircraft, it
may lead to unacceptably high loads or vibrations, the
worst case corresponds to resonance phenomena with air-
craft natural modes ;

« it speeds up actuators stress and reduces their lifetime ;
« it lowers passengers comfort.

The plane is designed to take into account these faults in a
limited way, depending on oscillation frequency and range.
Taking design actions to counteract these faults would in-
deed require heavily and costly structure reinforcement. |
is then very much advisable to detect them using the flight
control computers. Monitoring must be performed to ensure
that failures stay within predefined limits. Classical moni
toring (e.g. position monitoring, runaway monitoring, .gtc
does not guaranty such detections, so specific mechanisms
must be added.

way. To estimate system parameters, we have to get the set When an OFC is detected, the flight computer looses reg-

P of all parameterp enclosed in the a priori search &t

ulation over elevators control. As seen previously, anothe

such that error between real data and model outputs denotedwaiting computer ensures surface control with a redundant

[e(p)] = yexp — [y(p)] )

belongs to the allowable error SBtwhose boundsy,, and
emax are known:

P={pePo|le(p)] €E},
={p € Po|emin < [e(p)] < emax} -

The characterization of the s& may be defined as a
set inversion problem (Raissi, Ramdani, & Candau 2003;
Kieffer & Walter 2005):

P = [e"](E). )

A guaranteed approximation Bfmay be computed using
the SIVIA algorithm presented previously.

(8)

Case study
Problem

One of the tasks devoted to flight control computer is to slave
the position of the control surfaces. The control surface
motion is driven by an actuator in active or damped mode.

servo which switches from damped to active mode.

The problem to solve is to detect in the control loop some
OFC with a minimal given range within a given number of
periods (the maximal overload does not immediately occur
on the structure but after some periods of oscillation). The
goal is to detect 1° failures within 3 periods, on a frequency
range from 0.2 to 5 Hz. This goal has been chosen for this
paper. In real cases, it depends on the aircraft type.

Liquid vs. solid failures

Two different kinds of OFC may occur: liquid or solid ones.
As shown in the scheme of figure 4, a liquid failure is a
interference signal added to the control loop signal. Adsoli
failure is a signal which replaces the control loop one.

In both cases, a failure is a periodic sinus shaped signal
whose frequency, range and phase obey to an uniform law.
For both cases of failure, residuals corresponding to esti-
mated position subtracted from real position are shown in
Figure 5.

These residuals are used to detect the OFC. The cur-
rent method used in A380 flight control computers relies
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on residual evaluation by oscillation counting inside spec
tral subband (Goupil 2007).

Application
In the following section, we address the case of liquid failu
with the bounded error parameter estimation method pre-
sented previously and use this estimation for detecting.OFC
The results are analyzed with respect to the currently used
detection method.

Our goal is to perform parameter estimation of the liquid
failure model. This fault model defines the shape of the po-
sition signal as either a sinus or a triangle. The system to
monitor is a simple model of a control surface whose mo-

axis while frequencyf is on the vertical one. Blue boxes
have been rejected, yellow ones have a length inferior to the
stop condition set in the algorithm. The red boxes represent
the solution. We notice that they concentrate around tHe rea
parameter values.

Figure 7: Sinus shaped fault.

When the fault model is triangle-shaped, the algorithm
stops after a few iterations and its conclusion is the non-

tion is ensured by a hydraulic servo command as presented existence of a solution.

in figure 6.
In this model,o(n) is the position control signal at time
n. The control errok is given by:

g(n) =o(n) — §(n—1). (10)

It is the difference between the position contsat timen
and the estimated positiochat timen — 1. The estimated
current:(n) is proportional to the error:

i(n) = Ke(n) (11)

whereK is the constant control gain. A saturation is then ap-
plied to the current hence limiting its value within predefin
bounds. It is then converted to spe&d) by interpolation
with data stored in a look-up table. Finally, the estimated
control surface positiod(n) at timen is computed by inte-
gration of the speed.

We ran tests introducing oscillatory failures in the cohtro

Triangle-shaped fault

In this example, the fault is triangle-shaped with a raRyje
and a frequency of = 0.5Hz, with a still highly noisy
signal. The inital parameter box is nawx T' = [0, 3] x
[0,5],withT =1/f.

Figure 8 exhibits the obtained results with a triangle-
shaped fault model. The parametéris on the horizontal
axis and the period’ on the vertical axis. One can notice
that the estimation results are fully in accordance with the
injected fault.

With a sinus-shaped fault model, the algorithm concludes
again to the non-existence of a solution.

Discussion and conclusion

In this paper we presented a method for failure detection us-
ing fault models and an error bounded estimation method.
The method is based on interval analysis which provides

loop. Two fault models, triangle shaped and sinus shaped, guaranteed results in an error bounded context. It has been
were used. Parameters were estimated over one period ofapplied to solve plane control surfaces oscillatory faiur

the signal.

Sinus shaped fault

A high noisy sinus-shaped liquid fault signal with a range
A = 1° and a frequency of = 0.5Hz is introduced in the
control surface model. The initial parameter box is given by
A x f=10,3] x [0,10].

Figure 7 shows the results provided by the set inversion
algorithm when the fault model is supposed to be sinus-
shaped. Range parametéris showed on the horizontal

The tests show good results for confirming a fault. Now,
the real advantage of the method with respect to others is
that it is very efficient to prove the non-existence of the so-
lution, that is to discard specific kinds of failures in thalre
system. In the two case study scenarios, the invalidation of
the triangle-shaped (sinus-shaped) fault model is obdaine
within a few iterations. We should notice that a stochastic
method would not invalidate the non relevant fault model but
it would conclude to the existence of a solution with a wide
confidence range, which is much more difficult to interpret.
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Figure 6: Control surface position estimation model.

Figure 8: Triangle shaped fault.

Future work will consist in improving the fault model
method by studying its properties : response time, false
alarm rate, non detection rate and robustness. More simu-
lation tests using alternate fault models against realwdita
also be performed.

Another direction to go is to use alternate detection meth-
ods under the condition to have proper surface control loop
models. State estimation and parity state methods, both us-
ing interval analysis, should be tested.
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