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Abstract

Interval models may be seen as a trade-off between numeri-
cal and qualitative models. They have been often referred as
semi-qualitative models. The interval algebra is indeed a spe-
cific qualitative algebra with advantageous algebraic proper-
ties. This paper presents the application of an interval based
parameter estimation method, which is used for learning fault
models supporting the detection of Oscillatory Failure Cases
(OFC) in Electrical Flight Control System (EFCS) of civil air-
planes. The interval estimation method results are guaranteed
and computations are performed in finite time. Failures are
identified using the fault models which are checked against
system input and output measurements.

Introduction
Model based reasoning relies on the soundness of the models
supporting the reasoning. This is particularly true for model
based fault detection and diagnosis. Nevertheless building
models turns out to be an awkward task. At some stage of
the process, one may face two kinds of uncertainties. On one
side,unstructureduncertainties mean that deriving a com-
plete equational model from the physical phenomena is im-
possible. On the other side, when the structure of the equa-
tions is known but some of the parameters are not, uncer-
tainties are said to bestructured. In addition to these uncer-
tainties, it is not always possible to get informations about
disturbances and noises acting on the system. In such cases,
assuming bounded uncertainties may be a solution.

Considering structured uncertainties, an interesting way
to go is then to use guaranteed estimation methods, which
learn the state and/or parameters of the models from data.
These methods rely oninterval analysisthat first appeared
in (Moore 1966). They are now subject of a growing inter-
est in various communities and are applied for many tasks
(Alamo, Bravo, & Camacho 2005; Armengolet al. 2001;
Guerra, Puig, & Ingimundarson 2006; Jaulinet al. 2001; Ki-
effer & Walter 1998; Kieffer, Jaulin, & Walter 2002; Lesecq,
Barraud, & Dinh 2003; Ribot 2006; Ribot, Jauberthie, &
Travé-Massuyès 2007).
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This paper presents a fault detection method using interval
parameter estimation. Parameters of the model are estimated
from the input and output measurements of the system. The
consistency of this estimation is then checked against param-
eters computed from a theoretical (possibly faulty) model of
the system. Computations use the set inversion algorithm
SIVIA (Jaulin & Walter 1993; Jaulinet al. 2001). The re-
sults are approximated but are bounded in a guaranteed way.
The method is applied to detect Oscillatory Failure Cases
(OFC) in Electrical Flight Control System (EFCS) of civil
airplanes.

The article is organised as follows. Next section positions
interval models with respect to qualitative models. Then sec-
ond section provides an overview of interval analysis, its
original purpose and its use for fault detection. The error
bounded context is then presented more precisely with para-
metric estimation using intervals in the fourth section. In
fifth section, the case study is presented: we describe what
are OFC, and their consequences on the aircraft control sur-
faces, why such failures must be detected in time and one
of the methods currently used on Airbus aircrafts for OFC
detection. In sixth section the application and the obtained
results are analyzed. Finally some conclusions are outlined
in last section.

Qualitative versus interval models
Providing models representing physical systems is a com-
mon concern spread over all scientific and engineering com-
munities. Modelling depends on the available knowledge
about the physical system. This is why pure numerical mod-
els are sometimes disregarded to the benefit of qualitative
models which naturally cope with uncertain and inaccurate
knowledge. Within the qualitative framework, numerical
values are replaced by qualitative values that can be seen
as (absolute)orders of magnitude1.

Absolute orders of magnitudeare based on partitioning
the real lineR into a finite set of basic qualitative val-

1Relative orders of magnitude refer to different formalisms
based on binary relations used to compare quantities (Dague1993a;
1993b; Travé-Massuyèset al. 2005).



ues. Considering the order relation given by set inclu-
sion, it allows one to build the whole set of qualitative val-
ues, organised along to a high semi-lattice (Travé-Massuyès
& Piera 1989; Travé-Massuyès, Ironi, & Dague 2003).
As an example, (De Kleer & Brown 1984; Forbus 1984;
Kuipers 1984) introducedsign algebrafor which a param-
eter or a variablex takes values in{−, 0, +, ?} depending
on whether it is negative, zero, positive, or undetermined.
Unfortunately, many operations,e.g. (+) − (+), lead to
an undetermined result. Absolute order of magnitude alge-
bras were proposed to hinder this problem (Travé-Massuyès,
Ironi, & Dague 2003). The real line partitioning defines
the quantity spaceof a variable thanks tolandmark values
(Kuipers 1994). It captures the intuition that there are only a
few qualitative important values associated to different qual-
itative behaviors. Whatever partitioning is chosen, an alge-
bra and arithmetical operations can be defined.

The interval algebra can be seen as an extreme case in
which the partition elements are provided by every real num-
ber and intervals are closed and connected subsets ofR. In-
terval analysis may then be interpreted as a specific case of
order of magnitude reasoning.

Interval analysis

Preamble

The key idea of interval analysis is to reason about intervals
instead of real numbers and boxes instead of real vectors.
The first motivation was to obtain guaranteed results from
floating point algorithms and it was then extended to vali-
dated numerics (Moore 1959). Let us recall that in comput-
ers real numbers can only be represented by a floating point
approximation, hence introducing a quantification error. A
guaranteed resultmeans first that the result set encloses the
exact solution. The width of the set,i.e. the result precision,
may be chosen depending on various criteria among which
response time or computation costs. Secondly, it also means
that the algorithm is able to conclude on the existence or not
of a solution in limited time or number of iterations. The first
significant work is due to Moore in its Phd thesis which was
the early beginnings of his reference book (Moore 1966).

Main concepts

The matter is to wrap the sets of interest into boxes or union
of boxes for which computations may be easier. There are
three fundamental operations on intervals which are briefly
explained after the definition of an interval.

Interval A real interval[u] = [u, u] is a closed and con-
nected subset ofR whereu represents the lower bound of
[u] andu represents the upper bound. The width of an in-
terval [u] is defined byw(u) = u − u, and its midpoint by
m(u) = (u + u)/2.

The set of all real intervals ofR is denotedIR.
Two intervals[u] and[v] are equal if and only ifu = v and

u = v. Real arithmetic operations are extended to intervals
(Moore 1966).

Arithmetic operations on two intervals[u] and[v] can be

defined by:

◦ ∈ {+,−, ∗, /}, [u] ◦ [v] = {x ◦ y | x ∈ [u], y ∈ [v]}.

An interval vector (or box)[X ] is a vector with interval
components and may equivently be seen as a cartesian prod-
uct of scalar intervals:

[X ] = [x1] × [x2] × . . . × [xn].

The set ofn−dimensional real interval vectors is denoted
by IR

n.
An interval matrix is a matrix with interval components.

The set ofn×m real interval matrices is denoted byIR
n×m.

The widthw(.) of an interval vector (or of an interval matrix)
is the maximum of the widths of its interval components.
The midpointm(.) of an interval vector (resp. an interval
matrix) is a vector (resp. a matrix) composed of the midpoint
of its interval components.

Classical operations for interval vectors (resp. interval
matrices) are direct extensions of the same operations for
punctual vectors (resp. punctual matrices) (Moore 1966).

Wrappers Consider a setU and a setV of subsets ofU.
V is a set of wrappersfor U if U and each singleton ofU
belong toV andV is closed by intersection.

The figure 1 showsf([u]) which is the direct image of a
box [u] in IR

2 by a functionf , a possible wrapper[f ]([u])
and the optimal wrapper[f ]∗([u]). f([u]) is called therange
of f over[u] and is given by:

f([u]) = {f(x) | x ∈ [u]}.

[u] [f ]([u])

[f ]∗([u])

f([u])

Figure 1: Range off over[u] and wrappers.

Inclusion function Given[u] a box ofIRn and a function
f from IR

n to IR
m, theinclusion functionof f aims at get-

ting an interval containing the image of[u] by f .
An inclusion function off can be obtained by replacing

each occurrence of a real variable by its corresponding in-
terval and by replacing each standard function by its interval
evaluation. Such a function is called the natural inclusion
function. In practice the inclusion function is not unique,it
depends on the syntax off .

Inclusion test Given a subsetS of Rn, we test if[x] be-
longs toS, more precisely if[x] ⊂ S or [x] ∩ S = ∅. These
tests are used to prove that all points in a given box satisfy a
given property or to prove that none of them does.



Contractor The last operation is thecontractionof [x]
with respect toS. This means that we search a smaller box
[z] such that[x] ∩ S = [z] ∩ S. If S is the feasibility set of
a problem and[z] turns out empty, then the box[x] may not
contain the solution (Jaulinet al. 2001).

These operations are used to test if a box can or cannot be
removed from the solution set. When no conclusion can be
drawn, the box may be bisected and each of the sub-boxes
can be tested in turn (this corresponds tobranch-and-bound
algorithms).

SIVIA: Set Inversion Via Interval Analysis
Consider the problem of determining a solution set for the
unknown quantitiesu defined by

S = {u ∈ U | Φ(u) ∈ [y]},

= Φ−1([y]) ∩ U,
(1)

where[y] is known a priori,U is an a priori search set for
u andΦ a nonlinear function not necessarily invertible in
the classical sense. (1) involves computing the reciprocal
image ofΦ. This can be solved using the algorithmSIVIA,
which is a recursive algorithm that explores all the search
space without loosing any solution. This algorithm makes it
possible to derive a guaranteed enclosure of the solution set
S as follows:

S ⊆ S ⊆ S. (2)
The inner enclosureS is composed of the boxes that have

been proved feasible. To prove that a box[u] is feasible
it is sufficient to prove thatΦ([u]) ⊆ [y]. Reversely, if it
can be proved thatΦ([u]) ∩ [y] = ∅, then the box[u] is
unfeasible. Otherwise, no conclusion can be reached and
the box[u] is said undetermined. The latter is then bisected
in two sub-boxes that are tested until their size reaches a
user-specified precision thresholdε > 0. Such a termination
criterion ensures thatSIVIAterminates after a finite number
of iterations.

The algorithm is formally presented below. The functions
L(.) andR(.) return respectively the “left” and “right” parts
of their interval vector argument once it has been bisected.
This bisection may be made using different strategies such
as round robin, largest first or random.

Algorithm 1 SIVIA (in: Φ, [y], [u], ε, inout: S, S)

1: if [Φ]([u]) ∩ [y] = ∅ then
2: return
3: end if
4: if [Φ]([u]) ⊂ [y] then
5: S := S ∪ [u]
6: S := S ∪ [u]
7: return
8: end if
9: if width([u]) < ε then

10: S := S ∪ [u]
11: end if
12: SIVIA (Φ, [y], L([u]), ε, S, S)
13: SIVIA (Φ, [y], R([u]), ε, S, S)

Fault detection using intervals
Set membership detection uses these concepts to perform
state estimation and parameters estimation. In state esti-
mation, a nonlinear dynamical model is approximated by
a Taylor expansion (Rihm 1994; Berz & Makino 1998;
Nedialkov, Jackson, & Pryce 2001) to compute a box en-
closing all possible trajectories of the solution between two
successive time stepstj andtj+1.

The fixed point and Picard-Lindelöf theorems prove the
existence and uniqueness of the solution (Rihm 1994). The
interval solution becomes obviously wider and wider at
each iteration step: this drawback is known as thewrap-
ping effect. Numerous methods may circumvent this pes-
simism: among them one is to use high order Taylor ex-
pansion, mean value forms, matrices preconditioning and
a predictor-corrector approach (Corliss 1994; Nedialkov
1999; Neumaier 1990; Raïssi, Ramdani, & Candau 2004;
Ramdani 1995; Rihm 1994).

Parameter estimation in a bounded error
context

Parameters and state estimated from experimental measures
are usually obtained within a stochastic framework in which
known distribution laws are associated to interferences and
noisy measurements. Oppositely, in the bounded error con-
text measures and modeling errors are supposed to be un-
known but to stay within known and acceptable bounds.

Errors between measured and predicted outputs may rely
on many factors, among them: limited sensors accuracy,
interferences, noise, structured uncertainties, . . . Someare
quantifiable, some are not. We consider here the quantifi-
able errore, which is added to the model outputy. The
experimental outputsyexp are given by:

yexp(tj) = y(tj) + e(tj), 1 ≤ j ≤ n. (3)

In our context, the errore is supposed to be within an in-
terval whose lower bound isemin and upper bound isemax.
An allowable error setE may be defined as a set of con-
straints

E = {e(tj) | emin ≤ e(tj) ≤ emax}. (4)

These bounds may be considered constant over time as well
as variable. They may be established from data given by
constructors for electronic parts for example.

Our system has unknown but bounded initial conditions
while input and output values are available at any time. The
initial conditions belongs to a set, hence the model outputy
is also a set denoted[y], as well as the errore which is a set
[e] that must be in the domainE.

In the same way than for[e], we define an allowable do-
mainY for model output[y] such than

Y = {[y] | [y] ⊂ [yexp]},

= {[y] | [y] ⊂ [y − emax, y − emin]}.
(5)

Interval analysis is used to reject models that are not consis-
tent with data and error bounds.

Numerous approaches have been tested with linear mod-
els: ellipsoid shaped methods (Milanese & Vicino 1991;
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Figure 2: System and model.

Durieu & Walter 2001; Lesecq, Barraud, & Dinh 2003),
parallelotopic and zonotopes (Alamo, Bravo, & Camacho
2005).

Consider a nonlinear parametric model described by the
following set of equations















ẋ(t, p) = f(x(t), u(t), p),

y(t, p) = g(x(t), u(t), p),

x0 ∈ X0,

p ∈ P0,

(6)

where

• f andg are continuous nonlinear known functions,

• x(t) ∈ Rn is the state vector at timet,

• u(t) ∈ Rm is the input vector at timet,

• y(t) ∈ Rp is the output vector at timet,

• X0 is an a priori known set enclosing the initial condition
x0,

• P0 is the a priori known set enclosing the searched param-
eter vectorp.

A parameter vectorp is acceptable if and only if the error
betweenyexp and the model output[y] is bounded in a known
way. To estimate system parameters, we have to get the set
P of all parametersp enclosed in the a priori search setP0

such that error between real data and model outputs denoted

[e(p)] = yexp− [y(p)] (7)

belongs to the allowable error setE whose boundsemin and
emax are known:

P = {p ∈ P0 | [e(p)] ∈ E} ,

= {p ∈ P0 | emin ≤ [e(p)] ≤ emax} .
(8)

The characterization of the setP may be defined as a
set inversion problem (Raïssi, Ramdani, & Candau 2003;
Kieffer & Walter 2005):

P = [e−1](E). (9)

A guaranteed approximation ofP may be computed using
the SIVIA algorithm presented previously.

Case study
Problem
One of the tasks devoted to flight control computer is to slave
the position of the control surfaces. The control surface
motion is driven by an actuator in active or damped mode.

There are generally two actuators for one control surface. A
mastercomputer performs control by sending a command
on the active actuator. The other one is set in damped mode
and follows the surface motion without opposition. When
the master computer detects a failure, it switches the active
actuator to damped mode and gives control to aslavecom-
puter that controls the second actuator which is now in active
mode.

All parts in the control chain that contain electronic de-
vices may generate interference signals. These signals make
the control surface swing. This is called anOscillatory Fail-
ure Case (OFC). In this paper, only OFC located in the
servo-loop control of the moving surfaces are considered,
that is, between theFlight Control Computerand the control
surface, including these two elements (cf. Figure 3). When
an OFC occurs within the actuator bandwidth , it may have
the following consequences:

• coupled with the aeroelastic behaviour of the aircraft, it
may lead to unacceptably high loads or vibrations, the
worst case corresponds to resonance phenomena with air-
craft natural modes ;

• it speeds up actuators stress and reduces their lifetime ;

• it lowers passengers comfort.

The plane is designed to take into account these faults in a
limited way, depending on oscillation frequency and range.
Taking design actions to counteract these faults would in-
deed require heavily and costly structure reinforcement. It
is then very much advisable to detect them using the flight
control computers. Monitoring must be performed to ensure
that failures stay within predefined limits. Classical moni-
toring (e.g. position monitoring, runaway monitoring, etc.)
does not guaranty such detections, so specific mechanisms
must be added.

When an OFC is detected, the flight computer looses reg-
ulation over elevators control. As seen previously, another
waiting computer ensures surface control with a redundant
servo which switches from damped to active mode.

The problem to solve is to detect in the control loop some
OFC with a minimal given range within a given number of
periods (the maximal overload does not immediately occur
on the structure but after some periods of oscillation). The
goal is to detect 1° failures within 3 periods, on a frequency
range from 0.2 to 5 Hz. This goal has been chosen for this
paper. In real cases, it depends on the aircraft type.

Liquid vs. solid failures
Two different kinds of OFC may occur: liquid or solid ones.
As shown in the scheme of figure 4, a liquid failure is a
interference signal added to the control loop signal. A solid
failure is a signal which replaces the control loop one.

In both cases, a failure is a periodic sinus shaped signal
whose frequency, range and phase obey to an uniform law.
For both cases of failure, residuals corresponding to esti-
mated position subtracted from real position are shown in
Figure 5.

These residuals are used to detect the OFC. The cur-
rent method used in A380 flight control computers relies



Figure 3: Position control chain.
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Figure 5: Residuals: liquid failure case on the left side, solid failure case on the right side.
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Figure 4: Liquid (a) vs. solid (b) failures.

on residual evaluation by oscillation counting inside spec-
tral subband (Goupil 2007).

Application
In the following section, we address the case of liquid failure
with the bounded error parameter estimation method pre-
sented previously and use this estimation for detecting OFC.
The results are analyzed with respect to the currently used
detection method.

Our goal is to perform parameter estimation of the liquid
failure model. This fault model defines the shape of the po-
sition signal as either a sinus or a triangle. The system to
monitor is a simple model of a control surface whose mo-
tion is ensured by a hydraulic servo command as presented
in figure 6.

In this model,o(n) is the position control signal at time
n. The control errorε is given by:

ε(n) = o(n) − ŝ(n − 1). (10)

It is the difference between the position controlo at timen
and the estimated position̂s at timen − 1. The estimated
current̂i(n) is proportional to the error:

î(n) = Kε(n) (11)

whereK is the constant control gain. A saturation is then ap-
plied to the current hence limiting its value within predefined
bounds. It is then converted to speedv̂(n) by interpolation
with data stored in a look-up table. Finally, the estimated
control surface position̂s(n) at timen is computed by inte-
gration of the speed.

We ran tests introducing oscillatory failures in the control
loop. Two fault models, triangle shaped and sinus shaped,
were used. Parameters were estimated over one period of
the signal.

Sinus shaped fault
A high noisy sinus-shaped liquid fault signal with a range
A = 1° and a frequency off = 0.5Hz is introduced in the
control surface model. The initial parameter box is given by
A × f = [0, 3] × [0, 10].

Figure 7 shows the results provided by the set inversion
algorithm when the fault model is supposed to be sinus-
shaped. Range parameterA is showed on the horizontal

axis while frequencyf is on the vertical one. Blue boxes
have been rejected, yellow ones have a length inferior to the
stop condition set in the algorithm. The red boxes represent
the solution. We notice that they concentrate around the real
parameter values.
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Figure 7: Sinus shaped fault.

When the fault model is triangle-shaped, the algorithm
stops after a few iterations and its conclusion is the non-
existence of a solution.

Triangle-shaped fault
In this example, the fault is triangle-shaped with a range2°
and a frequency off = 0.5Hz, with a still highly noisy
signal. The inital parameter box is nowA × T = [0, 3] ×
[0, 5], with T = 1/f .

Figure 8 exhibits the obtained results with a triangle-
shaped fault model. The parameterA is on the horizontal
axis and the periodT on the vertical axis. One can notice
that the estimation results are fully in accordance with the
injected fault.

With a sinus-shaped fault model, the algorithm concludes
again to the non-existence of a solution.

Discussion and conclusion
In this paper we presented a method for failure detection us-
ing fault models and an error bounded estimation method.
The method is based on interval analysis which provides
guaranteed results in an error bounded context. It has been
applied to solve plane control surfaces oscillatory failures.

The tests show good results for confirming a fault. Now,
the real advantage of the method with respect to others is
that it is very efficient to prove the non-existence of the so-
lution, that is to discard specific kinds of failures in the real
system. In the two case study scenarios, the invalidation of
the triangle-shaped (sinus-shaped) fault model is obtained
within a few iterations. We should notice that a stochastic
method would not invalidate the non relevant fault model but
it would conclude to the existence of a solution with a wide
confidence range, which is much more difficult to interpret.
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Future work will consist in improving the fault model
method by studying its properties : response time, false
alarm rate, non detection rate and robustness. More simu-
lation tests using alternate fault models against real datawill
also be performed.

Another direction to go is to use alternate detection meth-
ods under the condition to have proper surface control loop
models. State estimation and parity state methods, both us-
ing interval analysis, should be tested.
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