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Abstract

In this paper, we describe the autonomous learning
of qualitative models with a robot’s on-board vision.
Those models are used to describe spatio-temporal
qualitative relations between observed objects. There-
fore, the algorithm QING is described which extracts
the necessary qualitative relations between the objects
from the sequence of images. The robot uses these fea-
tures together with other sensory data to learn about the
environment.
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Introduction
In this paper we tackle certain problem from the field of cog-
nitive robotics, namely how the robot can use its on-board
vision for autonomous learning. This problem is highly con-
nected to the field of cognitive vision as the robot should
somehow reason about the information it gets from im-
age sequences. Following the definition of (Vernon 2008),
“A cognitive vision system can achieve the four levels of
generic computer vision functionality of detection, local-
ization, recognition, and understanding.” Whereas classi-
cal computer vision is mainly concerned with the first three
points, the last issue affords interdisciplinary work in or-
der to integrate higher-level reasoning functions. This work
aims at incorporating a specific machine learning technique
in order to qualitatively reason about the arrangement of ob-
jects. The abstraction from quantitative pixel data to a more
qualitative layer seems to be of great importance to cogni-
tive vision. In this abstraction step, the vision part is con-
cerned with segmenting the image to proto-objects (group-
ings of pixels that are likely to belong to the same object). In
this paper, we are mainly concerned with the learning part,
therefore the proto-object grouping is assumed to be given.
However, higher-level qualitative reasoning is highly rele-
vant for providing feedback to the vision part, as its ability
to predict the existence and the arrangement of proto-objects
in the subsequent image(s) can support low-level image pro-
cessing.
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From a roboticist’s perspective, a qualitative model at any
layer can help interpreting a given situation. This paper tries
to bridge this link for one of the lowest, namely the percep-
tual layer, providing a model for visual scene interpretation.
Motivation for this work comes from the European project
XPERO, in which a robot should gain insights about the real
world by experimenting and meaningfully relate it’s intero-
and exteroceptive information so to arrive at a level of qual-
itatively understanding its environment.

The main idea of this paper is to apply the algorithm
QING (see corresponding Section) to extract qualitative
spatio-temporal features from an image sequence and use
them together with other sensory data for autonomous learn-
ing about the concept of occlusion. In this paper we present
an artificial scenario in which the robot circles around two
balls of different colour and builds a qualitative model in
the form of a qualitative non-deterministic finite automaton
(qNFA). The robot learns autonomously without any exter-
nal intervention. The final model enables us as well as the
robot to reason about the occlusion, e.g. it tells us that it is
not possible to go from the state of non-occlusion directly
to the state of total occlusion but rather through the state of
partial occlusion. Our basic goal is to build a system which
the robot could use for reasoning about its visual input and
based on this reasoning improve its visual perception, e.g.,
detecting regions of interest. Our system can discover qual-
itative relations between the objects in the images and how
these relations change over time. Currently, it is capable of
discovering topological relations.

As this paper focuses on the use of QING for learning the
relations, we will not describe the vision part. We must men-
tion though that the extraction of the “interesting” colour
blobs from the images can be motivated by a simple curios-
ity mechanism. For a robot tuned to learn about sensory in-
put it has not seen before, colour is a strong cue. More elab-
orate techniques, such as the bottom-up Grouping of line
features, as described in the next Section, can be applied as
well.

Algorithm QING
QING (Žabkar et al. 2007) is an algorithm for qualita-
tive analysis of continuous class variablef w.r.t. given at-
tributes(x1, . . . , xn), wheren is the dimension of the at-
tribute space. For simplicity we will in this short descrip-
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Figure 1: Qualitative field forf(x, y) = xy. The arrows
point in the direction of function decrease.

tion restrict ourselves to two attributes. Theoretically,QING
works for any dimensionn, but is practical forn ≤ 5 due to
the complexity of triangulation.

To be more illustrative, we accompany the description
of the algorithm with a simple examplef(x, y) = xy de-
fined on an orthogonal mesh (see Fig. 1) on the domain
[−10, 10] × [10, 10]. Learning examples are represented as
points in the attribute space, each point having assigned a
value of its class variable. The domain is triangulated in
order to be analysed with discrete Morse theory. Critical
points, i.e. maxima, minima and saddles, are reconstructed
using the algorithm of (King, Knudson, & Mramor Kosta
2005). The output of QING is a qualitative field (Fig. 1), a
set of critical points and a labeled qualitative graph (Fig.2),
which is a visualisation of the qualitative model. Detailed
definitions of these terms are given in (Žabkaret al. 2007).
The main difference between QING and other algorithms
for induction of qualitative models is in attribute space parti-
tioning. Unlike algorithms that split on attribute values (e.g.
trees, rules), QING triangulates the space (domain) and con-
structs a qualitative field which for every learning example
tells the directions of increasing/decreasing class.

The example image, in the experiment that we describe
in the next Section, is processed in a similar way. However,
to capture the time, we need to connect the neighboring im-
ages in the sequence. To do this, we use parametric Morse
theory with time as a parameter and we follow the critical
simplices through the slices as described in (King, Knudson,
& Mramor Kosta 2007).

Experiments
We performed the experiments on artificial data in a domain
in which the robot circles around a red and a blue ball as

Figure 2: Qualitative graph forf(x, y) = xy.

shown in Fig. 3. The robot uses an overview camera to mea-
sure the distances to the balls (bdred andbdblue) and it uses
an on-board camera to observe the balls and collect the data
for learning a qualitative model.

Figure 3: The robot circles around the balls and observes
them with its on-board camera.

The robot is also aware of its polar coordinates, so it
knows about its angle and the radius. Its actions areleft
(clockwise) andright (counter clockwise along the circle as
shown in Fig. 3). The robot observes the qualitative change
of its distances to the red and the blue ball w.r.t. the action.
For example, if the robot resides at(ϕ = 0 ◦, r) and chooses
to go right, i.e.ϕ increases, the distance to the red ball would
increase while the distance to the blue ball would decrease,
bdred = Q(+ϕ) andbdblue = Q(−ϕ). The robot can ob-
serve similar relations in the image sequence. The relations
that it can detect on a simple image of two balls are the fol-
lowing (see also Fig. 4):

• the red ball and the blue ball do not touch

• the balls touch

• only the red ball is visible

• only the blue ball is visible

Inside QING algorithm, the objects are distinguished by
their colour and each colour is represented by a unique nu-
merical value. In our example, we define that the value 1



Figure 4: The images from the on-board camera where the
balls don’t touch (top) and when they overlap (bottom).

stands for the blue color and the value 2 stands for the red
one. The background has value 0. QING constructs a dis-
crete vector field in a 3-dimensional space (2D image and
time) and assigns the appropriate values to each pixel, ac-
cording to the color of the pixel. Although QING can handle
noise well, there was no noise in our artificial data. To ob-
tain the qualitative relations QING computes extreme points
in this space and uses the discrete vector field to track the
movement of these extrema over time.

When the balls don’t touch, QING finds two maxima with
values 1 and 2 (we mark such a state with ’12’). If only one
of the balls is visible, it finds either 1 (for blue) or 2 (for
red), while if they touch it finds one maximum with value
2. In our image sequence, the changes are rare since most
of the time the image at angleϕi is the same asϕi+1. This,
we denote as ’o’, meaning there is no change, i.e. steady.
Considering the type of the qualitative relation in each image
andbdred = Q(+ϕ) andbdblue = Q(−ϕ) from above we
build a class value for each learning example, e.g. 12o +-,
meaning that the balls stay separated, the distance to the red
ball increases (the first sign) and the distance to the blue ball
decreases (the second sign).

Results
The learned model is in the form of qualitative non-
deterministic finite automaton (NFA) as shown in Fig. 5.
Its states are qualitative descriptions of the observations de-
rived from the image features and other available attributes,
i.e. distances to both balls and the angleϕ. The transitions
explain the possible changes of states given an action. Non-
determinism is hidden in the fact that the same action ap-
plied in the same state may result in the same state or the
neighbouring one, i.e. self transitions are always possible.
This is due to the qualitative descriptions of the states. How-
ever, such NFA gives us enough information to reason qual-
itatively about the system. We can observe that total occlu-
sions (ϕ = 90 or ϕ = 270, changes of+,− signs) may only
happen from partial occlusions (states with2o).

Related work
Many authors have addressed the problem of qualitative spa-
tial or spatio-temporal reasoning. (Cui, Cohn, & Randell
1992) describes an envisionment-based qualitative simula-
tion program that can reason about space and time, con-
sidering the topological relations between objects. Learn-
ing temporal patterns from unannotated video data is pre-

Figure 5: The learned qualitative NFA describing how
the robot can change its states with the chosen actions
(right...green arrows; left...black arrows). The red signs
stand forbdred = Q(sϕ) and the blue signs arebdblue =
Q(sϕ).

sented in (Fleischman, Decamp, & Roy 2006). Well known
theoretical approaches to qualitative spatio-temporal reason-
ing are described in (Cohn & Hazarika 2001) and (Ran-
dell, Witkowski, & Shanahan 2001). The latter is espe-
cially interesting for us as it considers spatial occlusion.
(Cao, Mamoulis, & Cheung 2005) discovers sequential pat-
terns in a spatio-temporal series of movements of mobile ob-
jects. An interesting approach to mining temporal patterns
in multivariate time series, using Unification-based Tempo-
ral Grammars is described in (M̈orchen & Ultsch 2004). It
only considers the temporal dimension but there seems to
be no reason against applying a similar technique to spatial
dimensions. On the other hand, (Bailey-Kellogg & Zhao
2004), (Lundell 1994) and (Faltings 1995) study only quali-
tative spatial reasoning.

Concerning the vision part, literature on computer vision
is extremely diversified, wherefore we are focusing here on
low-level algorithms powerful enough to support the task at
hand as well as State-of-the-Art attempts to fuse qualitative
reasoning with computer vision.

For grouping pixels to likely objects (so-called proto-
objects), a recent work is (Zillich 2007). In this work, edges
are grouped based on Gestalt principles, e.g., continuity and
proximity. Using a parameter-free anytime algorithm, this
tool is capable of delivering the most likely locations of
proto-objects in terms of closures and ellipses very fast. Al-
ternatively, colour-based segmentation can be used, for ex-
ample the graph-based method of (Felzenszwalb & Hutten-
locher 2004).

Work on fusing qualitative reasoning with vision tech-
niques has been done by (Bennettet al. 2008). In this paper,
the authors recognise and track multiple objects throughout
a scene (e.g., basketball players) supported by a reasoning
about the spatio-temporal continuity. (Huang & Essa 2005)
are tracking multiple objects through complex occlusion sit-
uations, where a colour blob tracker is backed by a reason-
ing step of where currently unseen objects are. Their task is
very similar to ours except they are using genetic algorithms
to match the objects from one image to the next one while



we use parametric discrete Morse theory to do this.

Discussion and future work
The above work shows a promising direction towards an au-
tonomous robot system with on-board vision that could learn
from the vision input as well as improve on visual perception
using qualitative models. We believe that our approach can
help the robot extract dynamic features from its vision sys-
tem and use them in qualitative models. Using these features
the robot can detect the region of interest in its environment.
The latter is especially interesting combined with the task
of embodied learning by experimentation where regions of
interest may drive the robot to interact with the world.

From the technical perspective, our future work will in-
clude further improvement of the QING algorithm. We
would also like to investigate how the vision part can make
use of qualiative models, e.g. to improve the image segmen-
tation.
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