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Abstract

In this paper we present a qualitative exploration strat-
egy for an autonomous robot that learns by experimen-
tation. Particularly, we describe a domain in which a
mobile robot observes a ball and learns qualitative pre-
diction models from its actions and observation data. At
all times it uses these models to predict the results of the
actions that it has decided to execute and to design new
experiments that would lead it to learn a better model of
the world, and for planning of the execution of these ex-
periments. We experimentaly evaluate the exploration
strategy.

Introduction
The idea of autonomous robots that are capable of learning
by themselves, without any human intervention is one of the
most fundamental goals of AI. Among several paradigms of
learning, learning by experimentation demands no teacher,
but rather learns autonomously, interacting with the real
world. In this paper we present a showcase in which an au-
tonomous robot is learning qualitative models by conducting
experiments in its environment.

There are several ways of how the robot chooses its ac-
tions, designs and plans experiments. In order to learn effi-
ciently, the strategy which it uses to explore its environment
is very important. We propose a qualitative exploration strat-
egy for autonomous robot learning. We evaluate our strategy
by comparing it to random strategy. The results show that
using our strategy, the robot is learning faster and it learns
better models. We consider learning ofqualitativemodels
an important aspect. Qualitative models are easier to learn
and sufficient to design and plan the experiment. They re-
duce the complexity of numerical models considerably and
also enable humans to easily understand what the robot has
learned.

The robot has no prior knowledge about its environment.
In particular, it has no knowledge regarding the relations be-
tween its actions and observations. Its task is collecting the
data and gradually learning a model which it immediately
uses for moving and designing new experiments. Its goal
is to learn a model that would relate its actions to its obser-
vations. At each step, the robot decides on one of several
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possible actions. It then uses its current model to predict
the result of its action, executes the action and collects ob-
servations. It then compares its prediction with the actual
observations. The result of this comparison leads to further
experiments that helps to revise the model.

In the setting just described, we apply a new method,
called parametric Padé, for learning qualitative models in
dynamic domains. We present the method itself elsewhere
but we provide a short description of the method in section
“Parametric Pad́e” to keep this paper self contained.

Learning qualitative models by
experimentation

Our task is to equip the robot with an exploration strategy
that would enable the robot to learn without any external
intervention. Further, we want the robot to learn qualitative
models so that its insights would be easily comprehensible to
humans. The robot is restricted to learn by experimentation
and to use self generated models for moving and designing
new experiments. The robot’s motivation for learning is a
part of the built-in algorithm. The idea is simple - since the
robot depends on its own model, the robot wants to optimize
the model’s prediction accuracy. To improve the model in
time requires collecting new observation data, particularly
data most useful for the improvement of the model. Hope-
fully, if all goes well, after some time the robot will come
up with a model whose predictions are always correct, i.e.
the robot has learned everything about its actions and their
effects in the given environment.

Experimental domain
Our problem domain consists of a mobile robot, a ball and
an overview camera, as shown in Fig. 1. The robot uses the
overview camera to observe its distance to the ball (ball dis-
tance, denoted bybd) and the angle between its orientation
and the ball (ball angle, denoted byba).

The robot is of differential drive type and moves by set-
ting the speeds of the left and the right wheel (L andR re-
spectively). In our case,L andR are always positive, and
the robot was restricted to choose between speeds 4 and 5
only. So the robot can move straight ahead (L = R = 5),
right (L = 5, R = 4) and left (L = 4, R = 5), as shown in
Fig. 2. The robot is not aware of any coordinate system. It
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Figure 1: The robot and the ball.

is only aware of the actions it performs (L andR) and the
observations from the sensors (bd andba).
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Figure 2: The actions of the robot.

The overall goal that we want the robot to achieve is that
it learns a qualitative model describing the relations between
its actions and observations. By densely sampling the whole
space of above mentioned variables and learning a qualita-
tive tree we obtained an “almost ideal” model of our domain.
Note, that we did not use this model in any other way than
to see for ourselves what the robot should eventually learn.
This “almost ideal” qualitative tree for our domain is shown
in Fig. 5. The model is explained in the next section.

We have performed all the experiments in the simulator
Simon which is a part of the machine learning framework
Orange (Zupan, Leban, & Dem̌sar 2004).

Exploration algorithm
At the begining, i.e. at timet0, the robot has no knowl-
edge about the effects of its actions. For example, it does
not know how its actions from the current state influence its
observations in the next step. Namely, there are no relations
known to the robot between actions (L andR) and observa-
tions (ba andbd).

Without a model the robot can only move by applying ran-
dom actions, i.e. randomly choose the speed of each wheel.
Doing so it collects some data and after a certain time period
it learns from the collected data. The learning is supervised.
The attributes are robot’s actions and observations. The class
variable is defined by qualitative relations (described later)
between the actions and observations.
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Figure 3: The various angles when robot is turning left and
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Figure 4: The various angles when robot is turning left and
right from ba = 180 or ba = −180
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Figure 5: The “almost ideal” model of the robot in our do-
main.

The robot learns its first model from a small dataset col-
lected by random movement. This initial model is not very
accurate and useful. Nevertheless, it enables the robot to use
it for making predictions about further actions.

The ability to make predictions enables the choice among
learning strategies. A learning strategy determines the next
action. The most primitive learning strategy is random strat-
egy, in which the robot chooses one of its three possible ac-
tions at random. Random movement is thus defined by ac-
tions rather than by robot’s positions. The latter is not even
possible since in our case the robot is not aware of its co-
ordinates and can not choose to navigate in any coordinate
system.

The robot is supposed to learn the relations between its
actions and observations. In our simple example, the robot
has two actions (L andR) and two observation variables (ba
andbd), so it should learnbd = Q(sSL), bd = Q(sSR),
ba = Q(sSL) andba = Q(sSR), where signs is + or −
andL = ṠL, R = ṠR, whereSL andSR are the paths of the
left and the right wheel respectively. In these equations,Q
stands for qualitative relation as described in section Para-
metric Pad́e. In the paper, we use a shorter notation, e.g.
”+ + −−”, giving only the signss in the above mentioned
order. So ”++−−” means:bd = Q(+SL), bd = Q(+SR),
ba = Q(−SL) andba = Q(−SR). In words: ball distance
is increasing whenSL andSR are increasing (i.e.L,R > 0),
and ball angle is decreasing whenSL andSR are increasing.
We define the classC of this domain as a 4-tuple of signs as
just described. Figures 3 and 4 clearly shows the regions of
different values of classC.

Qualitative models that the robot is learning are in
the form of qualitative trees (qtree) and qualitative non-
deterministic finite automata (envisionment). The robot uses
algorithm pPad́e with decision trees to learn qualitative trees
while it builds an envisionment from the temporal sequence
of its actions and observations. The initial set of attributes
includesL, R, ba, bd and the classC. To this set, pPad́e adds
a newly constructed attributeL/R, obtained by the chain
rule, dividing the derivatives of each wheel’s path w.r.t. time.
The attributeL/R describes the qualitative relation between

both speeds and can, as we shall see, explain the left and
right turns. Using the chain rule for attribute construction
is a general principle and is not specifically added to this
domain.

There is no relation between the qualitative tree and the
envisionment. They are merely a different perspective to the
same data. While the qualitative tree is used for prediction,
the envisionment is used for planning new experiments for
the robot to explore new and less explored regions. Similar
to a qualitative tree, the envisionment is gradually learned
by the robot.
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Figure 6: The envisionment learned by the robot.

Exploration strategies

The robot’s exploration algorithm includes three strategies
that strive to guide the learning towards the final goal. First
and most primitive is therandom strategy. Using this strat-
egy, the robot moves randomly choosing the actions from
its set of available actions. The second strategy we calluni-
form strategy; it is used when the robot wants to sample the
actions so that their distribution is uniform. Uniform distri-
bution of actions assures that the robot is not biased towards
one of the actions, e.g. going straight ahead all the time. At
first glance it may seem that uniform and random strategies
are the same, but the difference lies in the fact that uniform
strategy also accounts for the action executed using persis-
tent strategy. The third strategy is calledpersistent strategy.
The robot, using this strategy, keeps executing the same ac-
tion for some time. Doing so it is collecting more learning
examples of the same kind.

The robot uses random strategy only for its first ten moves
when it has no knowledge about its environment and the ran-
dom choice is the best it can make. After it collects the first
ten learning examples it can already build a first model and



start using it. At this time, it changes the strategy touni-
form and enters the main loop in which it is updating and
improving the model.

The main loop starts with choosing the next action based
on the current strategy (either uniform or persistent). Af-
ter the robot picks the action it uses the current qualitative
tree to make the prediction using the current state and the
action. When it makes the prediction it executes the action
and observes the result. It compares its own prediction with
the actual observation. If they match, the robot continues
with persistent strategy, otherwise the robot is “surprised”
and motivated for further exploration of the unknown be-
haviors. The reason for the mismatch is the false prediction
of qualitative behavior, i.e. the signs in the class value were
predicted wrongly. The robot updates the envisionment with
a new state and transition and also updates the qualitative
tree. After it updates the model, the robot starts designing
a new experiment and planning its actions so that it could
carry out the designed experiment. For this purpose it main-
tains a frequency table of class values and it observes the
difference between the number of examples in the current
envisionment state and the one with the lowest frequency in
the table. If the number of examples in the current envi-
sionment state is greater than a threshold, it selects uniform
strategy and picks persistent otherwise. This finishes one
iteration of the loop and starts a new one.
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Figure 7: The model created by the robot after 19 steps.
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Figure 8: The model created by the robot after 1000 steps.

Results
The exploration algorithm from the previous section enables
the robot to learn by experimentation in an efficient way. To
confirm the latter, in this section we compare our approach
to the pure random strategy. Again, we stress that random
strategy does not mean random sampling of the coordinate
space but rather choosing the actions randomly.
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Figure 9: The final model created by the robot after 2674
steps.

In random strategy we use a parameterduration which
defines the frequency for choosing a random action. Ifdu-
ration = 1 the action is chosen randomly on each simulation
step while forduration= n it is chosen only eachn-th step
and maintained the same in between. The latter is actually
not a pure random strategy but rather a mixture of random
and persistent. We use it for comparison anyway since the
pure random strategy performs extremely poor.

We ran 3 runs of each random strategy, varyingduration
and 9 runs with different initial positions of the robot with
our exploration algorithm. We manually determined the
point at which the robot learned the desired model. We mea-
sured the time it had needed to learn the model in the number
of steps it performed until that state. Table 1 presents the re-
sults over different runs, the averages and standard errors.

The results show that the robot learns significantly bet-
ter and faster with our exploration algorithm as opposed
to the pure random strategy or random-persistent strategies.
We have no formal proof to explain why persistent strategy
works. Nevertheless, it is clear from the way humans exper-
iment that we pursue one direction until there arises a reason
or motivation to change it.

Parametric Padé
Algorithm Pad́e, as described in (Žabkar, Bratko, & Dem̌sar
2007), discovers monotonic relations in static domains. It
does so by computing partial derivatives from numerical
data and is used together with an appropriate machine learn-
ing algorithm, e.g. decision trees, to build a qualitative
model. However, it is quite limited in the diversity of the
domain types it can handle. For example, it can not handle a
temporal data set well. Here, we introduce a motivation for
a complementary method which we call parametric Padé,
abbreviated pPadé. The parameter in pPadé is time which
allows pPad́e to learn in dynamic domains. We should note
here that Pad́e also works with other parametrizations but
time. We only give here time as an example.

Time is not always an important attribute. For example,
it is always true that “the larger the piece of ice, the heavier



Random our exploration strategy
Run Stepsize Steps taken to reach best modelStepsize Steps taken to reach best model

1
1

Not until 30000 1 2674
2 Not until 30000 1 3685
3 Not until 30000 1 1991
4

10
Not until 30000 1 2078

5 Not until 30000 1 3530
6 Not until 30000 1 3254
7

100
15967a 1 7317

8 Not until 30000 1 4866
9 27654b 1 2843

aEven this does not result in the ideal model, but very close to it
bThis resulted in a model separated at the root byL instead ofL/R

Table 1: Comparison between random action selection and ourexploration strategy presented here.

it is”. In Pad́e’s notation this qualitative proportionality is
written asweight = Q(+volume). However, a lot of things
change over time and for these time obviously is important.
Yet, it should not be treated as any other attribute but rather
as a parameter, i.e. the temporal dimension is somehow hid-
den. For example, it is well known that parametric equa-
tions x(t) = cos(t), y(t) = sin(t) represent a unit circle
for t ∈ [0, 2π]. While we observe the circle inxy-plane,
parametert remains hidden. Derivatives w.r.t. time can take
advantage of the chain rule:

dy

dx
=

dy

dt

dt

dx
=

ẏ

ẋ
In temporal data sets, it is possible to compute the deriva-
tives of the attributes w.r.t. timet and by using the chain
rule, obtain the derivatives w.r.t. other variables as well.
Doing so, we overcome the problem of high dimensional-
ity. As opposed to ordinary Padé, where the derivatives are
computed in the space of dimensionalityn (n = number of
attributes), all the derivatives in parametric Padé are com-
puted w.r.t. time.

The input for pPad́e is a temporal data set, e.g. a set of
points inxy-space (Fig. 10(a)) each having a time stamp.
The first four columns of Table 2 present the example data
set which we use to illustrate how pPadé works.

The goal in this toy example is to obtain the qualitative
behavior of the class variablec w.r.t. attributex.

The temporal diagram of attributesx andy is shown in
Fig. 10(b). First, pPad́e computeṡx, ẏ andċ. pPad́e approx-
imates the derivativėx at ti as:

ẋi =
xi+1 − xi

ti+1 − ti
.

Simple divided differences can be substituted with more
robust, noise resistant linear regression, localy weighted
regression (LWR) (Atkeson, Moore, & Schaal 1997) or
LOESS (Cleveland 1979; Cleveland & Devlin 1988). How-
ever, a machine learning algorithm that is subsequently ap-
plied to these approximations also tends to eliminate noise.

pPad́e uses the chain rule to computedc/dx as ċ/ẋ and
similarly of dc/dy. Table 2 presents the computed deriva-
tives and qualitative behavior ofc w.r.t. attributesx andy.

The signs ofdc/dx are also shown in Fig. 10(c). On the
other hand, Figure 10(d) shows why it is not possible to cor-
rectly asses the desired derivatives inxy-plane, namely the
points’ neighbors do not respect the time but rather the Eu-
clidean distance in the plane alone.

Related work
The problem we tackled in this paper is addressed in many
different research fields which include but are not limited to
robotics, AI, psychology and cognitive sciences. We only
mention those that are directly related to model building.

Similar to our approach, (Modayil & Kuipers 2007)
present an algorithm for learning qualitative models from
robot’s actions and observations, but their qualitative mod-
els are in the form of object control laws while we use qual-
itative trees and envisionment. An interesting approach us-
ing probability estimates is described in (Hart, Grupen, &
Jensen 2005). Work by (Barto, Singh, & Chentanez 2004)
in intrinsically motivated learning shows how reusable rules
can be learned, but only in a playroom domain with much
more data than we require. (Kuiperset al. 2006) describes a
methodology that bootstraps knowledge from low-level sen-
sorimotor primitives and then uses this knowledge to navi-
gate in its environment. (Stoytchev 2005) proposes a novel
approach to representing and learning tool affordances by a
robot by pushing objects, but with very limited and specific
exploratory behaviors.

Conclusion and further work
We showed a simple example of a robot that is capable of
learning by making experiments in its environment. The ex-
ploration algorithm that we presented proved to be a useful
tool for the autonomous learner that has to design, plan and
execute the experiments in order to obtain some knowledge
about how its actions influence its observations in the given
world. One of the contributions in our opinion is the use of
qualitative models only and the combination of qualitative
tree and the envisionment. Both models do not only suf-
fice to support the robot in its actions, but also offer insights
into the knowledge that the robot acquired in the learning



process. Further, we believe that our approach can be gener-
alized to other more complex domains and that it can scale
well due to the simplicity of learning the qualitative models.

The algorithm for autonomous learning can be further im-
proved by elaborating the planning part and the design of
experiments. Applying this procedure in other domains and
with real robots may give rise to new ideas for further devel-
opment. We are already very close to running a real robot
with this algorithm.
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(c) Derivatives’ signs ofdc/dx for each point consid-
ering time, calculated using parametric Padé.
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Figure 10: Illustration of parametric Padé.



t x y c ẋ ẏ ċ ċ/ẋ ċ/ẏ ẏ/ẋ c = Q(x) c = Q(y)
-0.25 0.039 0.868 1 2.30 -1.03 10 4.34 -9.64 -0.44 + -
-0.15 0.269 0.765 2 2.80 -0.57 10 3.56 -17.38 -0.20 + -
-0.05 0.550 0.707 3 2.98 0 10 3.35 ∞ 0 + o
0.05 0.849 0.707 4 2.80 0.57 10 3.56 17.38 0.20 + +
0.15 1.130 0.765 5 2.30 1.03 10 4.34 9.64 0.44 + +
0.25 1.360 0.868 6 1.54 1.28 10 6.47 7.76 0.83 + +
0.35 1.514 0.997 7 0.63 1.26 10 15.68 7.87 1.99 + +
0.45 1.578 1.124 8 -0.28 0.96 10 -34.79 10.34 -3.36 - +
0.55 1.549 1.221 9 -1.10 0.41 10 -9.06 24.30 -0.37 - +
0.65 1.439 1.262 10 -1.70 -0.31 10 -5.87 -31.41 0.18 - -
0.75 1.269 1.230 11 -2.01 -1.11 10 -4.96 -8.97 0.55 - -
0.85 1.068 1.118 12 -2.00 -1.85 10 -4.97 -5.40 0.92 - -
0.95 0.867 0.933 13 -1.71 -2.41 10 -5.83 -4.14 1.40 - -
1.05 0.695 0.692 14 -1.19 -2.69 10 -8.34 -3.70 2.25 - -
1.15 0.576 0.422 15 -0.56 -2.65 10 -17.78 -3.76 4.71 - -
1.25 0.519 0.157 16 -0.56 -2.65 10 -17.78 -3.76 4.71 - -

Table 2: The input data (columns 1-4) and the output of parametric Pad́e (columns 5-12).


