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Abstract

Qualitative or symbolic abstractions of hybrid systems re-
ceived considerable interest recently to solve problems of
hybrid systems estimation, control and verification symboli-
cally. To abstract a hybrid system one has to slice the continu-
ously valued input/output/state-space into a (finite) set of par-
titions. The number of partitions potentially grows exponen-
tially with the dimension of the space. As a consequence, one
has to divide the spaces carefully in order to obtain a manage-
able abstraction. This paper presents a systematic procedure
to partition the state-space of piecewise affine (PWA) systems
into qualitatively distinct regions. As a consequence, we ob-
tain a moderately large set of partitions that characterises the
hybrid dynamics of the PWA system. The abstraction scheme
helps also to keep the number of so called spurious behaviors
of qualitative simulation small, in particular when compared
to the typically used grid-based abstractions.

Introduction
Complexity in hybrid systems analysis, estimation and con-
trol arises from the close interaction between the system’s
mode-dependent continuous dynamics and discrete mode
changes. Optimal hybrid estimation, for example, has to
consider all possible hybrid trajectories that the system can
exhibit and performs the associated numerical filtering pro-
cess for each trajectory. Since the number of trajectories
grows exponentially over time, it is easy to see that sub-
optimal and computationally efficient methods are key for
any real-time operation of hybrid estimation.

A tempting approach is to use finite (qualitative) abstrac-
tions of the continuous dynamics together with the discrete
dynamics of the hybrid system and re-formulate the hybrid
estimation/control task in a pure discrete way. The rich tool-
set of Qualitative Reasoning and Model Checking can then
be used to solve tasks for analysis, simulation, verification,
estimation and control. However, there is no free lunch.
A qualitative model for the continuously valued dynamics
requires a finite abstraction of the input/output/state-space
of the hybrid model. Input and output space partitions can
arise naturally through quantisation. The state-space ab-
straction, however, is more demanding. In particular, as the
number of partitions potentially grows exponentially with
the dimension of the continuous state. Another difficulty is
that qualitative models allow trajectories that the underlying

real system cannot show. These so called spurious behav-
iors (Kuipers 1994) can significantly deteriorate the reason-
ing result, for example, in that one fails to prove stability of
a hybrid control system.

This paper provides an approach for the qualitative ab-
straction of piecewise affine (PWA) systems that addresses
both issues mentioned above. We propose a state-space ab-
straction scheme that uses distinct features of the system’s
continuous and discrete dynamics. As a result we obtain a
separation that partitions the state-space in qualitatively dis-
tinct regions only and thus keeps the number of partitions
moderate. Another benefit is that our partitioning scheme
reduces the number of spurious behaviors compared to using
a state-space abstraction through a hyper-dimensional grid.

Related Research
Qualitative or symbolic abstractions of dynamic systems are
a major theme in Qualitative Reasoning (Weld & de Kleer
1990; Kuipers 1994), a fruitful branch of AI. Our work
on qualitative abstraction of a system’s state-space has its
origins in the pioneering work of Yip, Zhao and Bailey-
Kellogg (Yip 1991; Yip & Zhao 1996; Bailey-Kellogg,
Zhao, & Yip 1996) that provide symbolic abstractions
for complex non-linear dynamics. Whereas they use ad-
vanced reasoning methods for system’s analysis, Lunze and
coworkers (Lunze 1994; Lunze, Nixdorf, & Schröder 1999;
Schröder 2003) build their qualitative abstraction upon the
concept of stochastic automata and use them to mainly solve
diagnosis problems.

Timed automata (Alur & Dill 1994), a specific class of
hybrid systems, lead themself to a symbolic model and thus
allow one to apply analysis and verification methods from
computer science, such as bisimulation. This line of re-
search received considerable interest, e.g. (Alur et al. 2000)
and much effort was devoted to extending the applicabil-
ity of symbolic approximations and bisimulation techniques
to solve analysis, verification and control problems for
other, more general, classes of hybrid systems (Tiwari 2003;
Girard & Pappas 2006; Tabuada 2007). Most recent research
limits its scope to systems with ’strong’ stability properties
so that the artifacts of discrete approximation, i.e. spurious
behaviors, do not prevent one from applying bisimulation
type analysis techniques. All of these techniques face also
the curse of dimensionality. Discrete abstractions of contin-



uous state-spaces lead to a number of domains for the state
that grows exponentially with the state’s dimension. We
cannot fully avoid this difficulty for our proposed stochas-
tic automata encoding of PWA systems, but provide an ab-
straction technique that slices the state-space carefully ac-
cording to qualitative distinctions of the system’s dynamics.
This keeps the number of state partitions moderate and, as
a nice side-effect, actively reduces spurious behaviors. To
deal with complexity, we can further draw upon our work
to efficiently encode stochastic automata in an OBDD-like
fashion (Kleissl & Hofbaur 2005).

PWA Systems
A widely adopted and versatile class of hybrid systems are
the so-called piecewise affine (PWA) systems. PWA systems
specify a hybrid model with continuously valued state x =
[x1, . . . , xnx

]T , input u = [u1, . . . , unu
]T and output y =

[y1, . . . , yny
]T . The model specifies dynamics in discrete-

time (sampling period Td) through the affine discrete-time
model

xk+1 = Aixk + Biuk + fi (1)
yk = Cixk + Diuk + gi , (2)

where the subscript i = 1, . . . , l of the model-parameter
Ai,Bi,Ci,Di, fi,gi stands for the mode or PWA dynam-
ics that is valid in a particular domain Di of the combined
state/input space. More specifically, the state traverses at
mode i whenever [

xk

uk

]
∈ Di .

To guarantee uniqueness for the PWA trajectories one en-
sures that the domains Di specify a non-overlapping sep-
aration of the state/input space D. A domain Di is usu-
ally defined through a polyhedral partition of the combined
state/input space that can be expressed through constraints
of the form

Gx
i xk + Gu

i uk ≤ Gc
i .

For the scope of this paper we use a slightly weaker do-
main specification that allows us to abstract the continuous
state and input space separately, more specifically, we select
a mode i, whenever the two inequalities hold

xk ∈ Dx,i : Gx
i xk ≤ Gcx

i
uk ∈ Du,i : Gu

i uk ≤ Gcu
i .

(3)

Again, to guarantee uniqueness of PWA trajectories, the par-
titions Di = Dx,i × Du,i do not overlap, i.e. Di ∩ Dj =
∅, i 6= j.

Example
Figure 1 shows trajectories1 for an autonomous PWA system
with l = 3 modes and a 2-dimensional state-space that is
limited to

−6 ≤ x1 ≤ +6, −3 ≤ x2 ≤ +3 . (4)
1As in many real-world applications of hybrid systems, we ob-

tain the PWA model through sampling of the continuous time dy-
namics shown in Fig. 1.

Mode switching occurs at x1 = −2 (between modes 1
and 2) and at x1 = +2 (between modes 2 and 3). Our
discrete-time PWA model operates at a sampling period
Td = 0.1 [sec.] and defines the dynamics as follows: PWA
Mode 1 specifies dynamics with a stable equilibrium at
xr = [−3 0]T , eigenvalues z1 = z2 = e−2Td and an
eigenvector p = [1 − 1]T . The dynamics of mode 2 are
characterised through an unstable equilibrium (saddle point)
at the origin, eigenvalues z1 = e−Td , z2 = e+Td and associ-
ated eigenvectors p1 = [2 1], p2 = [2 − 1]. Finally, at
mode 3 the system exhibits an undamped oscillatory behav-
ior with equilibrium xr = [2 0]T and frequency ω = 1. We
will use the same scalar measurement yk = x1,k + x2,k for
all three PWA modes.
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Figure 1: 3-mode PWA system

Qualitative PWA Model
A qualitative PWA model abstracts the continuously valued
affine dynamics (1-2) symbolically. Thus, it merges the con-
tinuous dynamics with its discrete dynamics (mode changes)
into one common discretely valued behavioral description.
For this purpose, one defines partitions for the continu-
ously valued state-, input- and output-space. The input- and
output-space partitions can arise naturally through quantisa-
tion, for example, whenever one deals with real-world sig-
nals with low resolution (e.g. 4-bit A/D converter). In terms
of the input-space, we only have to make sure, that the quali-
tative abstraction allows us to formulate the input inequality
of the PWA guard condition (3). The state-space abstraction
can either be derived recursively during qualitative reason-
ing (Kuipers 1994) or verification (Girard & Pappas 2006) or
the partitions are specified explicitly prior compiling an au-
tomaton abstraction for the PWA model. Since we intend to
use a qualitative model for fast on-line reasoning, we choose
the second form and compute a so-called stochastic automa-
ton from the PWA model that encodes the model’s dynamics
through a state machine with stochastic transition specifica-
tion.

Stochastic Automaton PWA Model
A stochastic automaton (Lunze 1994; Bukharaev 1995;
Schröder 2003) defines a tuple

A = 〈X ,U ,Y, PT , PO〉 , (5)



where X = {X1, . . . , XNx}, U = {U1, . . . , UNu} and
Y = {Y1, . . . , YNy} denote the finite domains for the au-
tomaton state x̄, input ū and output ȳ, respectively. With
x̄k, ūk and ȳk we denote valuations of the state, input, and
output at a particular time-step k. The behavior of the au-
tomaton is captured through the conditional transition- and
observation-probabilities2

PT (x̄k+1, x̄k, ūk) = P (x̄k+1|x̄k, ūk)
PO(ȳk, x̄k, ūk) = P (ȳk|x̄k, ūk) .

(6)

A stochastic automaton can be almost directly used as a
qualitative model of our PWA system (1-3). The only en-
tity that we have to add is a map M : X ×U → {1, 2, . . . , l}
that specifies the PWA mode for every qualitative state/input
pair. This enables us to define the qualitative abstraction of
a PWA system as an extended stochastic automaton through
the tuple

Apwa = 〈X ,U ,Y, PT , PO,M〉 . (7)

Automaton compilation: To compile a stochastic au-
tomaton Apwa with pre-defined state/input/output-space
partitions one has to compute the conditional probabilities
PT (·) = P (Xi|Xj , Uζ) and PO(·) = P (Yi|Xj , Uζ) for all
triples {i, j, ζ} according to the PWA dynamics. For this
purpose one assumes a uniform distribution for xk ∈ Xj

and uk ∈ Uζ and computes the distribution on state and out-
put space for xk+1 and yk. This can be done, for example,
through sampling or hyper-box mapping (Schröder 2003).
Compilation of the stochastic automaton is computationally
expensive. However, once we have compiled a stochastic
automaton Apwa for the PWA system, we can use this au-
tomaton model to efficiently perform qualitative simulation,
estimation or control.

State-Space Abstraction
Qualitative abstraction through stochastic automaton compi-
lation requires us to divide the continuous state-space

Dx =
⋃

i=1,...,l

Dx,i ⊂ IRnx

into a finite set of non-overlapping partitions
{Dx,1, . . . ,Dx,Nx} where each partition Dx,i repre-
sents a qualitative abstraction or state Xi = [Dx,i] of the
stochastic automaton. This has to be done carefully, since
the number Nx potentially increases exponentially with the
dimension nx of the continuous PWA dynamics. On the
other hand, one has to provide sufficiently fine partitions to
retain the characteristics of the continuous dynamics.

Grid-based abstraction
The simplest abstraction of a bounded domain Dx in state-
space is to apply an nx-dimensional grid with fixed or adap-
tive grid-size. A grid-based abstraction happens naturally,

2In general, one would define a behavioral relation
PQ(x̄k+1, ȳk, x̄k, ūk) = P (x̄k+1, ȳk, |x̄k, ūk) that defines
PT and PO as its boundary distributions. However, the successor
state xk+1 and output yk of our PWA system are stochastically
independent so that PQ(·) = PT (·)PO(·) holds and PT and PO
represent the same information as PQ.
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Figure 2: Boxed state-space abstraction

whenever one partitions each state-variable individually and
obtains the overall partition of the state-space through the
cross product. This often leads to unsatisfactory results since
the number of partitions explodes as the dimension of the
system increases and the associated qualitative models do
not constrain possible behaviors well enough. Simulating
such a model would predict an unnecessarily large number
of spurious behaviors, i.e. behaviors that the original (PWA)
system cannot show. Figure 2 illustrates this property for
mode 2 of our autonomous PWA system. The eigenvec-
tors p1 and p2 of the dynamic matrix A2 uniquely partition
the state-space, however, the grid is not conform with this
separation. Take the three partitions X1, X2, X3 of Fig. 2.
The continuous behavior at mode 2 clearly allows transi-
tions xk ∈ X1 → xk+1 ∈ X2 and xk ∈ X2 → xk+1 ∈
X3. A stochastic automaton would encode these facts in
terms of the transition probabilities PT (X2, X1) 6= 0 and
PT (X3, X2) 6= 0. As a consequence, a simulation on the
basis of this stochastic automaton would predict the qualita-
tive behavior X1 → X2 → X3, a behavior that the original
PWA system cannot show! Another difficulty with a grid-
based abstraction is to select the appropriate grid-size. An
upper bound for the number of partitions Nx will be most
likely the limiting factor for grid-size selection. However, it
is difficult to judge, whether the resulting abstraction is fine
enough to capture the details of the mode’s continuous dy-
namics unless one performs exhaustive simulation studies.

Besides abstracting the continuous dynamics, we have to
make sure that the state-space partitions are also conform
with the discrete dynamics of the PWA system. In detail, we
have to ensure that the state-space abstraction allows us to
formulate the state inequality of the PWA guard condition 3.
PWA mode domains are in general polyhedral partitions, so
that an abstraction through hyper-boxes in state-space can
be inadequate.

These arguments illustrate that it is desirable to have a
qualitative abstraction of the state-space that (1) respects the
properties of the continuous dynamics as well as (2) captures
the polyhedral specification of PWA mode domains.



Qualitative abstraction of continuous dynamics
The example above indicates that we need a more gen-
eral state-space separation technique that builds upon (non-
overlapping) polyhedral partitions. We propose to use the
eigenvectors or in general hyper-planes that are defined
through the eigenvectors of the PWA dynamics (or their as-
sociated dynamic matrices Ai) to partition the state-space
into qualitatively distinct regions. For second order PWA
dynamics at mode i that is characterised through the dy-
namic matrix Ai with eigenvalues z1, z2, z1 6= z2 we can
write

xk+1 = Aixk + fi = α1p1z1 + α2p2z2 + fi ,

where pj (j = 1, 2) denotes the eigenvector for zj and the
parameters α1 and α2 are given through

xk = α1p1 + α2p2 .

It directly follows from Systems Theory (Hirsch & Smale
1974) that the eigenvectors, centred at the equilibrium point

xr = (I−Ai)−1fi ,

partition the state-space into distinct regions. Each region
is characterised through the signs of α1 and α2, clearly a
qualitative distinction!

Eigenvector-partitioning works with eigenvectors for real-
valued eigenvalues zj , but not for complex-valued eigenvec-
tors/eigenvalues as in mode 3 of our PWA example. In order
to abstract these behaviors that spiral round the equilibrium
point, we propose to partition the state-space into sectors dif-
ferently. The complex-valued eigenvectors uniquely charac-
terise the orientation of the elliptical behavior, whereas the
eigenvalues determine its stability character. As a conse-
quence, we can use the eigenvectors to determine the ellipse-
axes for the spiralling behavior and use these axes to par-
tition the state-space into 4 sectors. This abstraction en-
ables us to uniquely characterise the direction of the behav-
ior (clockwise or counter-clockwise) but not the mode’s sta-
bility property. Ideally, one would want to use elliptical re-
gions in state-space to specify a Lyapunov-function for an
asymptotically stable equilibrium point, for example. How-
ever, the approximation of elliptical regions through poly-
hedral domains is impracticable. One way to overcome this
difficulty is to use a combination of sectors and hyper-boxes
to enclose the ellipsoids and use additional reasoning con-
cepts (Hofbaur & Dourdoumas 2001) that go beyond the
scope of standard stochastic automata theory.

An additional qualitative characterisation of the state-
space is given through the sign of a state xk or its compo-
nents xi,k, in particular. Consequently, we suggest to addi-
tionally partition the state-space according to the unit vec-
tors e1, . . . , enx . Figure 3 shows the result of the combined
sign, eigenvector and ellipse-axes based state-space separa-
tion for our PWA example along with possible trajectories.

Adding inputs and noise: Up to now, we used an au-
tonomous PWA system. However, we intend to use a quali-
tative model for estimation and control and thus, we have to
deal with a non-zero control input uk = [u1,k, . . . , unu,k]T
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Figure 3: 3-mode PWA system with state-space partitions
and system trajectories

and disturbances. We use a typical PWA notation (Kvas-
nica et al. 2006) and introduce bounded additive distur-
bances w = [w1, . . . , wnx ]T that act upon the state-variable
through

xk+1 = Aixk + Biuk + fi + wk . (8)

We characterise the disturbance in terms of a bounding poly-
tope W , for example, a hyperbox that defines min/max val-
ues for each wi, i = 1, . . . , nx.

Let us deal with a scalar input u and an associated input
vector Bi = [bi] for (8) first. A constant input uk = u∗
shifts the equilibrium point xr of mode i to

xr = (I−Ai)
−1 (biuk + fi) . (9)

Therefore, an input umin ≤ uk ≤ umax at time-
step k can be interpreted as shifting the origin for our
eigenvalue/ellipse-axes based state-space separation accord-
ing to (9). To partition the state-space into qualitatively dis-
tinct regions, we apply our separation scheme at the two ex-
tremal points of xr (uk = umin and uk = umax). Figure 4a
shows the resulting separation for the PWA mode 2 with an
input vector b2 = [0.0992 0.0075]T and umin = −1.0,
umax = 1.0. The bar at the origin indicates the region for
xr.

Dealing with multiple inputs is straightforward. Through
combination of all min/max values for the inputs, we obtain
a region (polytope) Xr in state-space for xr. We then per-
form the state-space separation at all extremal points of Xr.

A disturbance w = [w1, . . . , wnx ]T can be handled in
two ways. First, we can treat each disturbance wj as an
additional input (with input vector ej) and use the noise
bounds to enlarge Xr. This adds additional 2nx extremal
points to Xr and thus introduces many additional partitions
of the state-space. Figure 4b shows the resulting separation
for bounded noise |wi| ≤ 0.01, i = 1, 2. The black region in
the center indicates Xr. The second way to deal with distur-
bances is to perform state-space separation for deterministic
inputs only and include the effects of disturbances through
the probability specifications of the resulting stochastic au-
tomaton. We prefer this approach since it keeps the number
of state-space partitions small.
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(b) Separation for |u| ≤ 1
and |wi| ≤ 0.01, i = 1, 2

Figure 4: State-space separation for mode 2

Abstraction of PWA mode changes
The PWA model operates on discrete-time. As a result,
switching does not occur exactly on the mode-boundary but
within its vicinity. Therefore, it is essential to capture the
regions in state-space where switching can occur. Addi-
tionally, we observed that simulation and particularly PWA
mode estimation results improve whenever one specifies
also those regions in state-space from where we can reach
the switching domains within one time-step. Both domains
can be computed easily through a 1-step forward/backward
reachability analysis. As before, we can include distur-
bances in two ways. Directly, in terms of an inclusive reach-
ability analysis, or indirectly through the transition probabil-
ities of the stochastic automaton. Again, we prefer the latter
approach.

Combining behavior-based abstractions
The overall state-space abstraction combines the partitions
from the dynamics-based separation scheme with the par-
titions for mode-change characterisation and computes a set
of Nx non-overlapping polytopes {X1, . . . , XNx} that parti-
tions the continuous state-space into qualitatively distinct re-
gions. Figure 5 shows the partitions for our non-autonomous
PWA system with a scalar input u that acts through the input
vectors

b1 = [0.0775 0.0585]T , b2 = [0.0992 0.0075]T ,
b3 = [0.0515 0.0022]T

along with a trajectory for uk = sin(0.1k) and disturbance
|wi| ≤ 0.1, i = 1, 2.

Qualitative Estimation
Our main application of the stochastic automaton model is to
perform hybrid estimation which can be formulated through
the following recursive belief update process

b
(j)
k|k−1 =

∑

Xi∈X
PT (Xj , Xi, Uζ)b

(i)
k−1 (10)

b
(j)
k ∝ PO(Yκ|Xj , Uξ)b

(j)
k|k−1 (11)
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Figure 5: Overall state-space abstraction and PWA trajec-
tory example

that computes the belief (or probability) b
(j)
k for xk ∈ Xj ,

given the qualitatively abstracted input values and measure-
ment, i.e. uk−1 ∈ Uζ , uk ∈ Uξ and yk ∈ Yκ.

For our example we use an input abstraction with 3 par-
titions, and a 4-bit measurement resolution (24 = 16 parti-
tions). Figure 6 shows the PWA mode estimation result that
we obtained through selecting the PWA mode with the max-
imum cumulated belief for the trajectory of Fig. 5 that starts
at x0 = [−1.9 − 1.25]T . We used the non-autonomous
system with the input uk = sin(0.1k) and disturbances
|wi| ≤ 0.1, i = 1, 2. The estimation starts with no state
knowledge, thus b

(j)
0 = 1/Nx and requires some steps to

focus. Estimation with our state-space abstraction (69 parti-
tions) provides an estimation result that is similar to a grid-
based abstraction with 9× 9 = 81 partitions.

To judge estimation quality better, we performed addi-
tional experiments with random initial states. In order to
highlight the effects of state-space abstraction and stochastic
automaton estimation we used an idealised setting with per-
fect initial knowledge. This eliminates the focusing process
at the beginning of an experiment. We generated 1000 ran-
dom initial states and simulated the non-autonomous PWA
system for 100 time-steps3. Hybrid estimation with our
state-space separation scheme provides on average a PWA
mode estimation error of 3.55%. In comparison, a boxed
scheme provided 4.25% for a 6× 6 grid, 3.10% for a 9× 9
grid and 2.97% for a 12× 12 grid.
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Figure 6: PWA-mode estimation result

3Most trajectories in our system get absorbed into the equilib-
rium point of mode 1 after about 100 time-steps.



Conclusion
The usual approach to abstract continuously-valued state-
spaces is to use a grid-based abstraction of non-overlapping
hyper-boxes. This requires one to select an appropriate grid-
size that (a) is sufficiently fine to capture the system’s dy-
namics and (b) is sufficiently coarse to keep the number
of partitions manageable. To overcome this difficulty, we
proposed a state-space abstraction scheme for PWA systems
that uses qualitative features of the system’s dynamics to
partition the state-space into behavioral distinct regions. We
present this abstraction for 2-dimensional systems to intro-
duce the concepts concisely, however, we should note that it
is equally well suited for higher order systems.

We used this abstraction to compile a stochastic automa-
ton model for the PWA system and evaluated its estimation
capabilities. We performed a random set of experiments
and obtained evidence that our abstraction scheme leads to
an estimation quality that is comparable with hyper-box ab-
stractions that use a similar number of state-space partitions.
However, in contrast to hyper-box approximations where
one has do decide the grid resolution manually, we provide a
quantisation scheme that automatically selects an appropri-
ate resolution according to the system’s dynamics. A more
detailed analysis of qualitative simulation and estimation ca-
pabilities, in particular for higher order systems, is subject to
ongoing research.

Our main motivation for a stochastic automata encoding
is to formulate hybrid estimation and control schemes that
use the discrete abstraction to quickly pre-select feasible and
good estimation/control candidates. A consecutive numeri-
cal refinement can either validate an estimation/control can-
didate or identify spurious solutions and reject them. Our
initial studies for such approaches (Kleissl & Hofbaur 2005;
Kleissl 2006; Richter 2006) showed, that a good qualita-
tive abstraction that avoids spurious behaviors is essential
for this strategy. The results of this paper are an important
step towards our proposed estimation and control schemes.
However, they surely are also valuable for other works in
hybrid systems analysis and verification.
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Schröder, J. 2003. Modelling, State Observation and
Diagnosis of Quantized Systems, volume 282 of LNCIS.
Springer Verlag.
Tabuada, P. 2007. Approximate simulation relations and
finite abstractions of quantized control systems. In Bempo-
rad, A.; Bicchi, A.; and Buttazzo, G., eds., Hybrid Systems:
Computation and Control, HSCC 2007, volume 4416 of
Lecture Notes in Computer Science. Springer Verlag. 529–
542.
Tiwari, A. 2003. Approximate reachability for linear sys-
tems. In Maler, O., and Pnueli, A., eds., Hybrid Systems:
Computation and Control, HSCC 2003, volume 2623 of
Lecture Notes in Computer Science. Springer Verlag. 514–
525.
Weld, D., and de Kleer, J., eds. 1990. Qualitative Reason-
ing about Physical Systems. Morgan Kaufmann.
Yip, K., and Zhao, F. 1996. Spatial aggregation: The-
ory and applications. Journal of Artificial Intelligence Re-
search 5:1–26.
Yip, K. 1991. Understanding complex dynamics by visual
and symbolic reasoning. Artificial Intelligence 51:179–
221.


