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Abstract

Dynamic time warping (DTW) is a method for calcu-
lating the similarity between two time series which can
occur at different times or speeds. Although its effec-
tiveness made it very popular in several disciplines, its
time complexity of O(N?) makes it useful only for
relatively short time series. In this paper, we propose
a qualitative approximation Qualitative Dynamic Time
Warping (QDTW) to DTW. QDTW reduces a time se-
ries length by transforming it to qualitative time series.
DTW is later calculated between qualitative time series.
As qualitative time series are normally much shorter
than their corresponding numerical time series, time to
compute their similarity is significantly reduced. Exper-
imental results have shown improved running time of up
to three orders of magnitude, while prediction accuracy
only slightly decreased.

1. Introduction

Time series is a form of data that is present in virtually ev-
ery scientific discipline and business application. It can be
described as a sequence of observations, measured at suc-
cessive times, spaced at (often uniform) time intervals. Dy-
namic Time Warping (DTW) (Sakoe and Chiba 1978) is a
method for calculating the similarity between two time se-
ries which can occur at different times or speeds. Its abil-
ity to warp time axis and find optimal alignment between
two time series has made it very popular. DTW has been
used in several disciplines (Keogh and Pazzani 2001), such
as: speech recognition, gesture recognition, data mining,
robotics, manufacturing and medicine. In spite of its effec-
tiveness, its time complexity of O(N?) makes it useful only
for relatively short time series. This limitation can be over-
come by reducing time series length. In qualitative mod-
eling, numerical models can be seen as an abstraction of
the real world and qualitative models are often viewed as
a further abstraction of numerical models (Bratko 2000). In
this abstraction, some quantitative information is abstracted
away while keeping information that is relevant to the prob-
lem.

In this paper, we introduce a qualitative approxima-
tion Qualitative Dynamic Time Warping (QDTW) to DTW.
QDTW reduces time series size by transforming it to a qual-
itative time series. As qualitative time series are usually
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much simpler and shorter than numerical time series, sav-
ings in running time are large.

The rest of this paper is structured as follows. Section
2 briefly reviews classic Dynamic Time Warping, including
several techniques that make it more time efficient. In Sec-
tion 3 we introduce and describe our modification to classic
DTW. In Section 4, DTW and QDTW are experimentally
evaluated on three domains and the results are discussed.
Section 5 gives conclusions and future work.

2. Dynamic time warping
2.1 Dynamic Time Warping

In this section we briefly describe classic Dynamic Time
Warping method. Dynamic Time Warping aligns two time
series in the way some distance measure is minimized (usu-
ally Euclidean distance is used). Optimal alignment (min-
imum distance warp path) is obtained by allowing assign-
ment of multiple successive values of one time series to a
single value of the other time series and therefore DTW can
also be calculated on time series of different lengths. Figure
1 shows examples of two time series and value alignment
between them for Euclidean distance (left) and DTW simi-
larity measure (right). Notice that the time series have sim-
ilar shapes, but are not aligned in time. While Euclidean
distance measure does not align time series, DTW does
address the problem of time difference. By using DTW,

N

Figure 1: Example of two time series. Lines between time
series show value alignment used by Euclidean distance
(left) and Dynamic Time Warping similarity measure (right).

optimal alignment is found among several different warp
paths. This can be easily represented if two time series
A= (C(,l7 ag, ..., CLn) and B = (bl, ba, ..., bm), a;, bj € Rare
arranged to form a n-by-m grid. Each grid point corresponds
to an alignment between elements a; € A and b; € B. A
warp path W = wy, wa, ..., wg, ..., wx is a sequence of grid
points, where each wy, corresponds to a point (4, j)x - warp



path W maps elements of sequences A and B. A warp path

is typically subject to several constraints:

e Boundary conditions: w; = (1,1) and wgx = (n,m).
This requires the warping path to start in first point of both
sequences and end in last point of both sequences.

e Continuity: Let wy, = (a,b) thenwi—1 = (a’, ") where
a—a < 1landb— b < 1. This restricts the allowable
steps in the warping path to adjacent cells.

e Monotonicity: Let w, = (a,b) then wy — 1 = (/)
where a —a’ > 0 and b — b > 0. This forces the points
in W to be monotonically spaced in time.

From all possible warp paths DTW finds the optimal one:

K
DTW (A, B) = minw[Y_ d(wy,)]
k=1

Here d(wy,) is the distance between elements of time series.

Algorithm The goal of DTW is to find minimal distance
warp path between two time series. Dynamic programming
can be used for this task. Instead of solving the entire prob-
lem all at once, solutions to sub problems (sub-series) are
found and used to repeatedly find the solution to a slightly
larger problem. Let DTW (A, B) be the distance of the opti-
mal warp path between time series A = (a1, as, ..., a, ) and
B = (b1,ba,....,b,) and let D(4, ) = DTW (A’, B') be the
distance of the optimal warp path between the prefixes of the
time series A and B:

D(0,0) =0
A/ = (ah A2,y ..., ai), B’ = (bh bz, ceey bj)
0<i<n0<j<m
Then DTW (A, B) can be calculated using the following
recursive equations:
D(0,0)=0
D(i—1,j = 1)) + d(as, b;)
Here d(a;,b;) is the distance between two values of the
two time series (usually Euclidean distance is used).
The most common way of calculating DTW (A, B) is to
construct a nxm cost matrix M, where each cell corresponds

to the distance of the minimal distance warp path between
the prefixes of the time series A and B (Figure 2):

M(i, j) = D(i, j)
1<i<n
I1<j<m
We start by calculating all the fields with small indexes

and then progressively continue to calculate fields with
higher indexes:

fori=1..n
forj=1..m
M(i,j) = min(M(i-1,j), M(i,j-1), M(i,j)) + dst(a;,b;)
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Figure 2: Minimal distance warp path between time series
A and B.

The distance corresponding to the minimal distance warp
path equals the value in the cell of a matrix M with the high-
est indexes M (n,m). A minimal distance warp path can be
obtained by following cells with the smallest values from
M (n,m)to M(1,1) (in Figure 2 the minimal distance warp
path is marked with dots).

2.2 Improvements of Dynamic Time Warping

Although DTW’s ability to find minimal distance warp path
between time series makes it superior to simpler measures
like Euclidean or Manhattan distance, its time complexity
of O(N?) makes it useful only for relatively short time se-
ries. Many attempts to solve this issue have been proposed
(Keogh and Pazzani 1999; Salvador and Chan 2007) which
can be categorized as (Salvador and Chan 2007):

e constraints,
e data abstraction,

Constraints limit a minimum distance warp path search
space by reducing allowed warp along time axis. Two most
commonly used constraints are Sakoe-Chiba Band (Sakoe
and Chiba 1978) and Itakura Parallelogram (Itakura 1975)
which are shown in Figure 3.

Data abstraction speeds up the DTW algorithm by reduc-
ing the size of the input time series. Usually this technique
speeds up DTW by a large constant factor for the price of a
lower accuracy (Salvador and Chan 2007).

In this paper we are only interested in the data abstraction
category. The data abstraction approach has already been
used in (Keogh and Pazzani 1999) and (Salvador and Chan
2007). In (Salvador and Chan 2007), time series is reduced



several times and warp path found by DTW on lower reso-
lution time series is used to calculate DTW on higher reso-
lution time series.
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Figure 3: Itakura Parallelogram (left) and Sakoe-Chiba
Band (right) constraints. Only shaded cells are used by
DTW algorithm.

Data reduction is done by averaging adjacent pairs of
points (data size is reduced by the factor of 2 every time res-
olution is decreased). In (Keogh and Pazzani 1999) a time
series is approximated by a set of piecewise linear segments.
The distance between segments is defined as the square of
the distances of their means. Both of these approaches re-
duce time series size at the price of a lower accuracy. (Sal-
vador and Chan 2007) compensate lower accuracy by cal-
culating DTW several times on different resolution data, but
data reduction part is still done at the price of information
loss. Figure 4 shows a minimal distance warping path be-
tween sequences (1,2,3,4,5) and (5,4, 3,2,1). Although
they are very dissimilar, their mean values (shown as cir-
cles) are the same. This clearly shows drawbacks of data re-
duction by averaging, since the distance between these two
segments would be 0.

Figure 4: DTW between two time series. Circles represent
mean time series value. Although the time series are not
similar, their mean values are the same.

3. Qualitative Dynamic Time Warping
(QDTW)
In our approach we would like to reduce time series size by

removing information that is irrelevant for DTW. Our ap-
proach is based upon following theorem:
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Theorem 1 If two sequences A and B are qualitatively
equal then
DTW(A,B) <e,

where
¢ = min(n * maxdiff(A) /2, m * maxdiff(B)/2).

Term maxdiff (S) is the maximal absolute difference be-
tween two adjacent elements in a time series S.

We define two sequences to be qualitatively equal if both
sequences are monotonic and their start and end values are
equal. Figure 5 shows several examples of qualitatively
equal sequences.

The theorem is based on the fact that in monotonic time
series, the order in time (which a warp path has to respect)
also corresponds to the order in the values. The theorem
enables an approximation of DTW (A, B) by qualitative
DTW, described in the sequel. Suppose that time series A
and B are samplings in time of two monotonic continuous
functions of time. Then € can be made arbitrarily small by
increasing the density of sampling. Note that the sampling
should be sufficiently dense w.r.t. the changes in the func-
tion value (not w.r.t. time). Consequently, if the “density
approaches infinity” for any of the sequences A or B in The-
orem 1, then DTW (A, B) approaches 0.

Figure 5: Four qualitatively equal sequences. DTW between
any pair of them is 0.

QDTW transforms the original, numerical sequence to a
qualitative sequence and then calculates DTW on the new
sequence. Similar approach, where sequence is first trans-
formed to a sequence of segments and their mean value
is latter used to calculate DTW, was already proposed in
(Keogh and Pazzani 1999). Main differences between ap-
proaches are in how segments are obtained and how this seg-
ments are latter used as input to the DTW. In our approach
input sequences to the DTW consists of extreme points, that
is the border points between the monotonic segments of
the original curve (Figure 6). All monotonic segments are
bound between two adjacent extreme points in the original
sequence.

In our implementation, the program Qing (Zabkar et al.
2007) was used to extract the extreme points. Qing takes a
sequence and a persistence” parameter as input and returns
a sequence of extreme points as output. Persistence parame-
ter defines a minimal distance between extreme points (only
extremes that differ more than persistence are returned).
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Figure 6: Example of a numerical sequence and its corre-
sponding qualitative sequence where the black curve repre-
sents the original time series and the dots represent the ex-
treme points - the border points between the three monotonic
segments of the original curve: (0,—2), (—2,2), (2,0).
Sequence size is reduced from several points to only four
points.

Consider two monotonic sequences A = (a1, az, ..., an),
and B = (by, ba, ..., by,). Then:

QDTW(Aa B) = DTW((ala an)v (bla bm));

where a1, an,, b1, by, are the extreme points. If a; = by and
an, = by, then from the Theorem 1 following holds:

\QDTW (A, B) — DTW (A, B)| < e.

When sequences are qualitatively equal, QDTW and DTW
are almost equal (Theorem 1), otherwise problems can arise.
There are two possible ways of violating the conditions for
the applicability of Theorem 1:

e Extreme points do not coincide.

e Sequences are not monotonic.

Figure 7: Possible violations of the conditions for the appli-
cability of Theorem 1.

An example of monotonic sequences where the extreme
points do not coincide is shown on the left side of Figure 7.
It is obvious that DTW distance between base sequence A
and any of the target sequences B, C, D is not necessarily
the same as QDTW distance. More than in the actual values,
we are interested in the distance order of target sequences B,
C, D, when compared to base sequence A:

DTW (A, D) > DTW(A,C) > DTW (A, B),
QDTW (A, D) = QDTW (A,C) > QDTW (A, B).

When sequences with different extreme points (B, C') are
compared to the base sequence (A), the order is preserved.
In the case that target sequences have the same extreme
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points (C, D), QDTW cannot distinguish between them,
when compared to the base sequence (A).

On the right hand side of Figure 7, a monotonic sequence
is compared to a sequence that is not monotonic. If non
monotonic part of sequence B (segment between two dots)
is not detected (this can be due to high persistence pa-
rameter in the Qing algorithm), then both sequences have
the same extreme points and QDTW (A, B) = 0, while
DTW(A,B) > 0. On the other hand, if the decreasing
part of sequence B is detected (small persistence), then se-
quence B is split into three segments by four extreme points.
QDTW (A, B) is calculated between the sequence of two
extreme points from A and the sequence of four extreme
points from B. As inner extreme points from B (bounding
monotonically decreasing segment) have to map to extreme
points from A, QDTW (A, B) distance between A and B
is quite large. With increasing number of short segments
that map to one long segment, QDTW distance quickly in-
creases. For now this represents the biggest problem of
QDTW approach and should be solved in the future work.

Although, as we have shown, QDTW is not completely
insensitive to information loss due to data reduction, we be-
lieve this will not significantly influence classification accu-
racy, and improved running time over DTW will more than
compensate for slightly lower accuracy. The experimental
evaluation that follows investigates this expectation.

4. Experimental evaluation

DTW is commonly used in time series classification do-
mains. In these domains similarity or dissimilarity between
time series determine whether time series belong to the same
class or not. Therefore, similarity measure between time se-
ries is crucial part of the classification algorithm. Theorem
1 ensures that QDTW performs nearly the same as DTW
if time series consist of qualitatively equal segments. This
condition is rather strong. True applicability of QDTW can
only be revealed with experimental evaluation on real world
domains where conditions of Theorem 1 are not necessarily
satisfied. With experimental evaluation, we would like to in-
vestigate how well QDTW performs in comparison to clas-
sic DTW in classification tasks. We are mostly interested
in classification accuracy and execution time. The method
was evaluated on three domains with different time series
characteristics. Following data sets were used:

e Australian Sign Language signs (High Quality) Data
Set (Kadous and Sammut 2002): The data set consists of
the readings from 22 sensors that measure native signer
hand position (11 sensors per hand) in time while sign-
ing one of 95 Auslan signs. For each Auslan sign 27 ex-
amples were recorded (total of 2565 examples). Due to
DTWs high time complexity, only a subset of the orig-
inal dataset was used. The subset consists of examples
of the following ten signs: spend, lose, forget, innocent,
Norway, happy, later, eat, cold, crazy.

e Character Trajectories Data Set (Asuncion and New-
man 2007): The data set consists of 3-dimensional pen tip
velocity trajectories which were recorded whilst writing
individual characters. There are 20 different characters



in the data set. All of 2858 examples were captured by
the same person using WACOM tablet. Due to the DTW
time complexity only one seventh of the original exam-
ples were used (every seventh example from the original
data set was included in the subset without changing the
order of examples in the original dataset). All of the char-
acter labels (20) were included in the subset.

e Character Recognition Data Set: The data set consists
of data from three sensors that measure the subject’s hand
acceleration while writing individual characters. There
are 26 different characters in the data set. All of the 391
examples were obtained by the same person using tri-axis
accelerometer.

4.1 Accuracy

In this section we are interested in how well QDTW per-
forms in comparison to DTW and how different persistence
settings effect classification accuracy. Classification was
done using weighted k-nearest neighbor (k=3) algorithm us-
ing DTW or QDTW as similarity measure. The leave one
out approach was used to estimate classification accuracy.
QDTW method was evaluated using several relative persis-
tence settings: 0.1, 0.2, 0.4 and 0.6. For each time series,
persistence is obtained by multiplying relative persistence
with the difference between time series maximum and min-
imum value.

As all the datasets consist of several variables (multivari-
ate time series domains), any of these variables can be used
for evaluation. Some of these variables are highly informa-
tive (similar examples belong to the same class while dis-
similar examples belong to different classes) while others
may not correlate with the class (random variables). On ran-
dom variables, any similarity measure will behave similarly
to a random similarity measure, so it makes sense to eval-
uate similarity measures only on highly informative vari-
ables. For this reason one variable, where DTW performs
best, is used from each dataset to compare QDTW to DTW.
These variables are: 'ryaw’, 'y’ and "accY’ from Australian
Sign Language signs, Character Trajectories and Character
Recognition datasets respectively. Classification accuracies
using DTW and QDTW with different persistence settings
are shown in Figure 8.

In comparison to DTW, QDTW (p=0.1) performed best
on Australian Sign Language signs dataset where the differ-
ence between classification accuracies is only 0.01 (1.3%).
QDTW performed worst on Character Recognition dataset
where classification accuracy dropped by nearly 16% in
comparison to DTW (from 0.88 for DTW to 0.74 for QDTW
with persistence setting 0.1).

To evaluate how persistence affects classification accu-
racy, DTW and QDTW results for different relative persis-
tence values (0.1, 0.2, 0.4 and 0.6) are ranked from best (1)
to worst (5). For each dataset, average rank over all variables
is calculated. Results are summarized in Table 1.

Table 1 confirms, as expected, that classification accuracy
decreases with increasing relative persistence. The only do-
main where in some cases accuracy improved with increased
relative persistence is Australian Sign Language domain.
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Figure 8: Classification accuracies for DTW and QDTW
similarity measures where p denotes different relative persis-
tence settings. Classification accuracies (shown from left to
right) are for Australian Sign Language signs dataset: 0.73,
0.72, 0.64, 0.56, 0.38, for Character Trajectories dataset:
0.88, 0.80, 0.79, 0.63, 0.55 and for Character Recognition
dataset: 0.88, 0.74, 0.68, 0.57, 0.50.

Table 1: Average rank for different relative persistence set-

tings.
Method Australian  Character Character
Trajec. Recog.
DTW 2.09 1 1
QDTWp=0.1 2.20 2 2
QDTWp=0.2 2.98 3 3
QDTW p=0.4 3.68 4.17 4
QDTW p=0.6 4.05 4.83 5

This can happen due to the presence of noise in some of its
attributes, which can be removed only by more robust qual-
itative models. Overall, smaller relative persistence means
larger classification accuracy in all evaluated datasets.

4.2 Efficiency

In this section we are interested in time efficiency of QDTW
algorithm. Time efficiency is estimated with the number of
distance calculations between two values of time series (size
of the cost matrix M) which are needed for calculating DTW
or QDTW similarity between two time series. Before cal-
culating similarity, QDTW needs to transform time series
to qualitative representation. As Qing is very efficient for
qualitative modeling of time series, time to build qualitative
models is insignificant in comparison to the time needed to
calculate similarity and is thus omitted.

Time efficiency was estimated on all three datasets using
variables ‘ryaw’, 'y’ and ’accY’ from Australian Sign Lan-
guage signs, Character Trajectories and Character Recog-
nition dataset respectively. For each dataset, similarity be-
tween all pairs of examples was calculated and average size
of the cost matrix M (M = m % n, where m and n are time
series lengths) is returned as a result. Figure 9 shows av-
erage size of the cost matrix M for calculating DTW and
QDTW for all three domains.

From Figure 9, it is evident that QDTW was much faster
than DTW on all three domains. Even for small persistence
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Figure 9: Average number of performed distance calcula-
tions between two values of time series when calculating
similarity using DTW or QDTW where p is relative per-
sistence setting. Average number of distance calculations
(shown from left to right) are for Australian Sign Language
signs dataset: 3382, 35, 25, 16, 9, for Character Trajectories
dataset: 28893, 34, 30, 21, 13 and for Character Recognition
dataset: 27058, 528, 182,42, 19.

values, the savings in the number of distance calculations
between two values of time series (size of the cost matrix
M) are enormous (speed up by factor of nearly 100 on Aus-
tralian Sign Language signs dataset , to nearly 850 on Char-
acter Trajectories dataset).

Besides comparison of QDTW to DTW, we are also in-
terested in how different persistence settings effect time ef-
ficiency. Figure 10 shows average number of performed dis-
tance calculations between two values of time series for dif-
ferent relative persistence values. It can be seen from Figure

Average number of calculations
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Figure 10: Average number of performed distance calcula-
tions between two values of time series (shown on logarith-
mic scale) when calculating QDTW similarity with different
relative persistence settings (p).

10 that the average number of performed distance calcula-
tions between two values of time series is decreasing with
higher persistence values. The results also show that similar
persistence values on different domains do not necessarily
mean similar savings in time. This means QDTWs perfor-
mance is not only persistence dependent but also domain
dependent.
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5. Conclusions and future work

In this paper, we have stated a new theorem (Theorem 1),
which explains when time series data can be reduced with-
out loss of information relevant to DTW. Shortcomings of
data reduction by averaging have been explained and new al-
gorithm QDTW (Qualitative Dynamic Time Warping) have
been introduced. QDTW is a modification of DTW algo-
rithm, which is based on Theorem 1. It transforms time
series data into qualitative series and thus significantly re-
duces data size. Experimental results have shown up to
1000 times speed-up with respect to the DTW algorithm.
These significant improvements in efficiency are often ob-
tained at acceptable loss in classification accuracy. QDTW
major drawbacks are its inability to guarantee bounds on de-
viations from the optimal warp path solution, and its domain
dependent efficiency. In future work, we will try to improve
QDTW accuracy by reducing errors due to violations of the
conditions for the applicability of Theorem 1. Special at-
tention will be devoted to problems which arise due to non-
monotonicity of segments, which is sometimes discovered
by QING, while sometimes it is not. In these cases, we
are comparing sequences with large number of short seg-
ments and sequences with small number of long segments,
which usually results in a poor estimation of distance given
by QDTW.
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