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Abstract
In this paper, a preliminary methodology which
quantifies the dependence between features in a
data set by using the Ameva discretization algo-
rithm and the advantages of a qualitative model
is developed. Thus, different matrices of inter-
dependence are built providing a grade of depen-
dence between two features. This methodology is
applied to a well-known data set, obtaining promis-
ing results for the carried out system.

1 Introduction
The problem of classification is one of the main problems in
data analysis and pattern recognition that requires the con-
struction of a classifier, that is, a function that assigns a class
label to instances described by a set of features. The induction
of classifiers from data sets of classified instances is a central
problem in machine learning. For that purpose, a large num-
ber of methodologies based on SVM [1], Naive Bayesian
[2], C5.0 [3], etc. have been developed.

Additionally, qualitative modeling and reasoning is a very
interesting area for applying and experimenting with machine
learning techniques. Qualitative reasoning has special interest
to systems where machine learning can be applied as mod-
eling, diagnosis, control, discovery, design, and knowledge
compilation.

One of the most important preprocess in classification is
the discretization. This process establishes a relationship be-
tween continuous variables and their discrete transformation
through functions. Therefore, it is possible to model quali-
tatively a series of continuous values if a label is assigned to
them. Some studies [4] have shown that execute a prior pro-
cess to discretize continuous features is more efficient than
work directly with the continuous values. This process re-
duces the computation time and memory usage in the appli-
cation of classification algorithms and it is used to manage
the set of values of a feature more effectively. Some relevant
discretization methods are Ameva [5], Khiops [6], CAIM
[7] and others [8; 9].

The Ameva discretization method has been confirmed as
one of the most promising algorithms due to its reduced ex-
ecution time and the smaller number of intervals provided.
This behavior is outstanding when the data set has a large

number of classes, although it has a slight reduction in the
capacity of identification [5; 10].

Another problem in the classification process is the ex-
istence of irrelevant features [11]. When data is obtained
experimentally, is not considered what features are rele-
vant for the studied system. Several techniques [12; 13;
14] have been developed to reduce the number of features
and to determine which are relevant for the system. Some of
these techniques are based on principals components analysis
[15] or factorial analysis [16].

The Ameva discretization algorithm [10] performs the dis-
cretization process effectively and quickly, so the set of values
of a feature is greatly reduced, but do not reduce the number
of features. Because Ameva uses the statistic χ2 to determine
the relationship between features and classes, it is possible
to use this algorithm to determine the relationship between
features.

In this paper, a new methodology based on Ameva algo-
rithm is developed in order to reduce the number of features
of a data set. This method exploits the advantages of Ameva
in runtime and brings a different approach which was devel-
oped on.

The rest of this paper is organized as follows: first, the
definition of the problem is presented in Section 2 to estab-
lish the notation of the rest of the paper. Also, the Ameva
discretization algorithm and the Entropy coefficient are pre-
sented. Section 3 presents the new methodology to determine
the dependence between features using the Ameva algorithm
and the entropy coefficient. Section 4 reports the obtained
results of applying the methodology in a toy example. The
paper is finally concluded with a summary of the most im-
portant points and future works.

2 Discretization
Let X = {x1, x2, . . . , xN} be a data set of a continuous at-
tribute X of mixed-mode data such that each example xi be-
longs to only one of ` classes of the variable denoted by

C = {C1, C2, . . . , C`}, ` ≥ 2 (1)

A continuous attribute discretization is a functionD : X →
C which assigns a class Ci ∈ C to each value x ∈ X in the
domain of the property that is being discretized.
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Let us consider a discretizationD which discretizes X into
k discrete intervals:

L(k;X; C) = {L1, L2, · · · , Lk}

where L1 is the interval [d0, d1] and Lj is the interval
(dj−1, dj ], j = 2, 3, . . . , k. Thus, a discretization variable
is defined as L(k) = L(k;X; C) which verifies that, for
all xi ∈ X , a unique Lj exists such that xi ∈ Lj for
i = 1, 2, . . . , N and j = 1, 2, . . . , k. The discretization vari-
able L(k) of attribute X and the class variable C are treated
from a descriptive point of view. Having two discrete at-
tributes, a two-dimensional frequency table (called contin-
gency table) as shown in the Table 1 can be built.

Ci|Lj L1 · · · Lj · · · Lk ni·
C1 n11 · · · n1j · · · n1k n1·
...

...
. . .

...
. . .

...
...

Ci ni1 · · · nij · · · nik ni·
...

...
. . .

...
. . .

...
...

C` n`1 · · · n`j · · · n`k n`·
n·j n·1 · · · n·j · · · n·k N

Table 1: Contingency table

In Table 1, nij denotes the total number of continuous val-
ues belonging to the Ci class that are within the interval Lj .
ni· is the total number of instances belonging to the class Ci,
and nj is the total number of instances that belong to the in-
terval Lj , for i = 1, 2, . . . , ` and j = 1, 2, . . . , k. So that:

ni· =
k∑

j=1

nij , n·j =
∑̀
i=1

nij , N =
∑̀
i=1

k∑
j=1

nij

2.1 The Ameva discretization
Given discrete attributes C and L(k), the contingency coeffi-

cient, denoted by χ2(k)
def
= χ2(L(k), C|X), defined as

χ2(k) = N

−1 + ∑̀
i=1

k∑
j=1

n2ij
ni·n·j

 (2)

is considered. It is straightforward to prove that

max
X,L(k),C

χ2(k) = N(min{`, k} − 1) (3)

Hence, the Ameva coefficient, Ameva(k)
def
=

Ameva(L(k), C|X), is defined as follows:

Ameva(k) =
χ2(k)

k(`− 1)
(4)

for k, ` ≥ 2. The Ameva criterion has the following proper-
ties:

• The minimum value of Ameva(k) is 0 and when this
value is achieved then both discrete attributes C and
L(k) are statistically independent and viceversa.

• The maximum value of Ameva(k) indicates the best
correlation between class labels and discrete intervals.
If k ≥ ` then, for all x ∈ Ci a unique j0 exists such that
x ∈ Lj0 (remaining intervals (k− `) have no elements);
and if k < ` then, for all x ∈ Lj , a unique i0 exists such
that x ∈ Ci0 (remaining classes have no elements) i.e.
the highest value of the Ameva coefficient is achieved
when all values within a particular interval belong to the
same associated class for each interval.

• The aggregated value is divided by the number of inter-
vals k, hence the criterion favors discretization schemes
with the lowest number of intervals.

• From (3), it is followed that Amevamax(k)
def
=

maxX,L(k),C Ameva(k) =
N(k−1)
k(`−1) if k < ` and N

k oth-
erwise. Hence, Amevamax(k) is an increasing function
of k if k ≤ `, and a decreasing function of k if k > `.
Therefore, maxk≥2Amevamax(k) = Amevamax(`)
i.e. the maximum of the Ameva coefficient is achieved
in the optimal situation, it is to say, when all values of
Ci are in a unique interval Lj and viceversa.

Therefore, the aim of the Ameva method is to maximize
the dependence relationship between the class labels C and
the continuous-values attribute L(k), and at the same time to
minimize the number of discrete intervals k.

2.2 The entropy
If ` = 1 or k = 1 then it is not possible to use the Ameva
method. Let us see these two cases (see Table 2 and Table 3):
Equation (2) can not be calculated using Table 2 because it

Ci|Lj L1 · · · Lj · · · Lk ni·
C1 n11 · · · n1j · · · n1k N
n·j n11 · · · n1j · · · n1k N

Table 2: Contingency table at first case (` = 1)

Ci|Lj L1 ni·
C1 n11 n11
...

...
...

Ci ni1 ni1
...

...
...

C` n`1 n`1
n·j N N

Table 3: Contingency table at second case (k = 1)

is not possible to divide by 0. Nevertheless, all the instances
belong to the same class, therefore can be concluded that the
dependence is maximum. In this case, let us indicate that
A∗(1) = 1.

Regarding to Table 3, Ameva method can not be used be-
cause χ2(k) = 0 and the Ameva coefficient does not give any
information about the dependence. However, the dependence
is not minimum and a new coefficient is necessary. By taking
into account that if all instances are distributed equally in all
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classes, the dependence is minimum, and if exists i such that
ni1 = N , the dependence is maximum. Hence the following
coefficient, called Entropy, is considered:

A(1) = 1 +
1

N ln `

∑̀
i=1

ni1 ln
(ni1
N

)
It holds that 0 ≤ A(1) ≤ 1, and:

• If A(1) = 0, then ni1 = N
` (minimum dependence).

• If A(1) = 1, then a unique ni1 exists that ni1 = N
(maximum dependence).

Note 2.1 Let us indicate these pathologic cases do not hap-
pen in a standard discretization, but it will be necessary tak-
ing into account in the presented methodology in the next sec-
tion.

3 The methodology
Given an attribute Xi where i = 1, 2, . . . , s, the Ameva dis-
cretization algorithm is applied to this attribute so obtained
intervals are considered as a new set of classes. This set of
classes is denoted as follows:

Ci = {Ci
1, C

i
2, . . . , C

i
`i} (5)

Let us consider Xp ⊂ X as the data subset that belongs to
the class Cp ∈ Ci where p = 1, 2, . . . , `. From (5), for each
attribute Xj with j = 1, 2, . . . , s, a gijp value is obtained
from Ci as follows:

• If the Xp data subset all belong to the same class Ci,
then gijp = A∗(1) = 1.

• If the subset of data belongs to different classes, then:

– If values of the attribute Xj are always in the same
interval, then gijp = A(1).

– If values of the attribute Xj are not always in the
same interval, then gijp = AmevaN (`i), where
AmevaN (`i) is defined as follows:

AmevaN (`i) =
`
′

i

Np
Ameva(`i)

provide that Np is the number of instances of the
class Xp and `

′

i is the number of intervals of the
attribute Xi for which there is at least one value in
the data subset.

Note 3.1 This new Ameva coefficient is chosen in order to
obtain a normalized value 0 ≤ AmevaN (`i) ≤ 1 as same as
A(1).

Furthermore, it is straightforward to prove that if i = j for
i = 1, 2, · · · , s, then giip = 1, for all p = 1, 2, · · · , `.

Given i, j = 1, 2, · · · , s, a gij value can be obtained apply-
ing this methodology for all class Cp ∈ C (p = 1, 2, · · · , `),
and by considering different statistics as follows:

• The minimum gmin
ij = minp gijp.

• The geometric mean ggeoij =
√̀∏`

p=1 gijp.

• The arithmetic mean garitij = 1
`

∑`
p=1 gijp.

• The maximum gmax
ij = maxp gijp.

It is well-known that the following relationship is holded:

gmin
ij ≤ ggeoij ≤ g

arit
ij ≤ gmax

ij

The main properties of the matrix G = (gij), that is,

G =


1 g12 · · · g1s
g21 1 · · · g2s

...
...

. . .
...

gs1 gs2 · · · 1


are the following: i) it is square but non symmetric matrix;
ii) the values of the main diagonal are 1; and iii) 0 ≤ gij ,
gji ≤ 1.

From the G matrix, a method of generating rules of de-
pendence between attributes can be defined. For example,
a possible rule is the next: given a threshold value, U , if
maxGij , Gji > U and i < j, then the Xj variable is elimi-
nated. Let us illustrate it with an example in the next section.

4 A toy example
Let us consider the Iris Plants Database1 from UCI Reposi-
tory which is perhaps the best known database to be found in
the pattern recognition literature. This data set is considered
due to its simplicity since this methodology is not completely
defined yet.

The data set contains four attributes (sepal length, sepal
width, petal length and petal width) and three classes (Setosa,
Versicolour and Virginica) of 50 instances each, where each
class refers to a type of iris plant. One class is linearly sepa-
rable from the other two; the latter are not linearly separable
from each other.

The matrices generated by the presented methodology in
this paper are:

Gmin
Iris =

 1 0.4898 0.6667 0.0998
0.3265 1 0.035 0.093
0.028 0.0586 1 0.0303
0.0545 0.0998 0.0836 1

 (6)

Ggeo
Iris =

 1 0.7883 0.8736 0.4638
0.6886 1 0.3271 0.453
0.1727 0.2674 1 0.1293
0.1573 0.3222 0.2244 1

 (7)

Garit
Iris =

 1 0.8299 0.8889 0.6999
0.7755 1 0.6783 0.6977
0.4039 0.4617 1 0.3672
0.3753 0.4783 0.4063 1

 (8)

Gmax
Iris =

 1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 (9)

This result shows that it is possible to determine the depen-
dence of attributes of a data set from the Ameva discretization

1Available at http://archive.ics.uci.edu/ml/datasets/Iris
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algorithm and the adjustments to resolve the inconsistencies
outlined above with the entropy.

The coefficients in the minimum matrix (6) determine the
lowest coefficients of dependence between two attributes.
These coefficients provide information about there is a class
for which the two attributes have less dependency. If these
values are high, it is possible to conclude that the dependence
between two attributes is high. Therefore, these coefficients
are a minimum threshold for each pair of attributes.

A similar conclusion can be obtained from the maximum
matrix (9). The coefficients provide information about there
is a class for which the two attributes have a high dependence.
In this case, these coefficients are the maximum threshold val-
ues for each pair of attributes.

Given a data set, the best result is achieved when the max-
imum and minimum matrix are the same. In this case, all the
attributes are the same dependence with other regardless of
the original class. Thus, there is only one matrix for generate
the discrimination rules.

The arithmetic mean (8) and the geometric mean matrix (7)
represent a global value of dependency. While the geometric
mean matrix rewards the worst situations about a class, lead-
ing to a low value on the global coefficient, the arithmetic
mean matrix balances the values of the coefficients.

A possible interpretation to determine which attributes are
dependent of each other is to establish a threshold value.
From this limit, two attributes are dependent if the average
of the coefficients gij and gji of the arithmetic mean matrix
is greater than or equal to this value.

In this case, the threshold value of 0.75 is established to
check which attributes are dependents. The pair gij , gji that
reaches this threshold is G12, G21 because the arithmetic
mean of G12 and G21 is greater than 0.75. It is necessary
indicate that the sepal length and the sepal width features are
the first and second attributes in the experiment.

Thus, in order to carry out a classification problem can be
declared that the X1 and X2 features are similar. Let us see
this affirmation by using as classification algorithm the Sup-
port Vector Machine (SVM) [1].

A performance for the 1-v-r SVM, in the form of accu-
racy rate, has been evaluated on models using the Gaussian
kernel with σ = 1, and C = 1. The criteria employed to es-
timate the generalized accuracy is the 5-fold cross-validation
on the whole set of training data. This procedure is repeated
120 times in order to ensure good statistical behavior. The
obtained results are:

• With all features, the accuracy rate is 0.9320.

• Without the sepal length feature, the accuracy rate is
0.9341.

• Without the sepal width feature, the accuracy rate is
0.9667.

Furthermore to check that the accuracy rate is not less when
a feature is eliminated, the methodology has discovered that
these features introduce noise in the classification problem
when both are used at the same time because the results are
improved without the second feature.

5 Conclusions and future work
We have studied a method of discretization, Ameva, whose
objective is to maximize the dependence between the inter-
vals that divide the values of an attribute and the classes to
which they belong, providing at the same time the minimum
number of intervals.

After that, we have developed a methodology to reduce the
number of features of a data set based on the dependence be-
tween them. To the best of knowledge, there are not exist-
ing researches that directly address the problem to reduce the
number of features using a similar approach to ours.

This development is based on taking advantage of Ameva
discretization algorithm. Thus, a new coefficient has been
developed to determine the dependence between features.
Hence, we have reduced the number of values of features and
the number of features from a qualitative reasoning.

To test the development of the methodology, it has been
applied to a well-known data set for obtain the dependent re-
lationship between their features. Nevertheless, we think that
this approach can be satisfactorily apply in this area when the
data set has a lot of instances and features, and one of these
features determines the class which each instance belongs.
Another data sets must fulfill these characteristics.

Finally, after applying the discrimination of features ob-
tained in the methodology, the modified data set has been car-
ried out for the classification tests to verify the effectiveness
of the methodology.

The next step to complement this development is the design
of an automatic method of creation of feature discrimination
rules. Subsequently, we must define some improvements in
this methodology to automatically know the dependence be-
tween features without setting manually a threshold value.
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