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Abstract
Naming qualitative models allow humans to ex-
press spatio-temporal concepts such as “The cine-
mas are far away from my house”. In colloquial
terms, naming concepts are called relative. In this
paper we introduce a general way to define naming
qualitative models consisting of: (1) a representa-
tion magnitude, (2) the basic step of inference pro-
cess and (3) the complete inference process. We
present a general procedure to solve the representa-
tion magnitude and the basic step of inference pro-
cess of qualitative models based on intervals. The
general method is based on the definition of two
algorithms: the qualitative sum and the qualitative
difference.

1 Introduction
The most widely used way to model commonsense reasoning
in the spatial domain is by means of qualitative models. Ac-
tually, qualitative reasoning may help to express poorly de-
fined problem situations, support the solution process and
lead to a better interpretation of the final results [Werthner,
1994]. In fact, most of the knowledge about time and space
is qualitative in nature, that is, it is not necessary to know the
exact amount of a spatio-temporal aspect to perform context-
dependent comparisons. A clear example is humans who
are not good at determining accurate lengths, volumes, etc.,
whereas they can easily perform context-dependent compa-
risons and make correct decisions from those comparisons
[Hernández, 1994].

Thus, a qualitative representation can be defined as that
representation which makes only as many distinctions as ne-
cessary to identify objects, events, situations, etc., in a given
context [Hernández, 1994]. Note that the way to define those
distinctions depends on two different aspects. The first one is
the level of granularity. In this context, granularity refers to
a matter of precision in the sense of the amount of informa-
tion which is included in the representation. Therefore, a fine
level of granularity will provide a more detailed information
than a coarse level. This is the case of distances, for example,
where the required accuracy level depends on the proximity
to the place to locate. So, larger distances can be managed
with partial and more imprecise knowledge than closer ones.

The second aspect corresponds to the distinction between
comparing magnitudes and naming magnitudes [Clementini
et al., 1997]. This distinction refers to the usual compari-
son between absolute and relative. From a spatial point of
view, that controversy corresponds to the way the relation-
ships among objects in the world are represented. As pointed
out by [Levinson, 2003], absolute defines an object’s loca-
tion in terms of arbitrary bearings such as, for instance, car-
dinal directions (North, South, East, West), by resulting in
binary relationships. Instead, relative leads to ternary rela-
tionships. Consequently, for comparing magnitudes, an ob-
ject b is any compared relationship to another object a from
the same Point of View (PV ). The comparison depends on
the orientation of both objects with respect to (wrt) the PV ,
since objects a and b can be at any orientation wrt the PV . An
example is the qualitative treatment of compared distances
[Escrig and Toledo, 2001] (see Figure 1). In this case, only
two extreme orientations are considered: (1) both objects a
and b are at the same orientation wrt the PV , represented by
b[Rel]SPV a (i.e., the compared distance PV to a and PV to
b) and (2) objects a and b are in the opposite orientation wrt
the PV (b[Rel]OPV a).

Figure 1: An example of the compared distances to be repre-
sented [Escrig and Toledo, 2001]

On the other hand, naming magnitudes divides the mag-
nitude of any concept into intervals (sharply or overlapped
separated, depending on the context (see Figure 2)) such that
qualitative labels are assigned to each interval. Note that the
result of reasoning with regions of this kind can provide im-
precision. This imprecision will be solved by providing dis-
junction in the result. That is, if an object can be found in
several qualitative regions, qi or qi+1 or . . . or qn, then all
possibilities are listed as follows {qi, qi+1, . . . , qn} by indi-
cating this situation.

Although qualitative models based on comparing magni-
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Figure 2: An example of structure relations where: accep-
tance areas are sharply separated (left) and acceptance areas
are overlapped (right)

tudes and qualitative naming models based on intervals have
been studied, some models have not been solved up to now.
Table 1 presents some of the qualitative models developed for
dealing with certain spatial concepts. Note that only some of
the developed models are illustrated, since it is not possible
to depict all of them by lack of space.

So, the aim of this paper is to present a general systemic
algorithm that integrates and solves the reasoning process of
all qualitative models based on intervals. From the starting
point that the development of any qualitative model consists
of a representation of the magnitude at hand and the reasoning
process, the structure of this paper is as follows: Section 2
describes the representation of a magnitude. The Reasoning
Process is introduced in Section 3, and discussed in Section 4

2 Magnitude Representation
In qualitative spatial reasoning, it is common to consider a
particular aspect of the physical world, that is, a magnitude
such as topology or distance, and to develop a system of qua-
litative relationships between entities which cover that aspect
of the world to some degree. Therefore, the first issue to be
solved refers to the way to represent the magnitude to be mo-
delled.

Focusing on qualitative naming models based on intervals,
any magnitude is represented by the following three elements:

1. The number of objects implied in each relation (i.e.
arity). A relationship is binary when there are only two
objects implied (object b wrt object a, i.e. b wrt a). So,
an object acts as reference (a) and the other one is re-
ferred (b). For instance, how far an object is wrt another
object is a binary relationship as defined by [Jong, 1994]
(see Figure 3a). In this example, the two-dimensional
space is divided into several tracks centred in the refe-
rence object a. Each track is associated to a unique qua-
litative value (e.g. near, medium, far, very far). So, the
relationship between objects a and b will be determined
by the track of the interval-based system in which the
object b is. Therefore, in the shown example, b wrt a is
far, in other words, b is far from a.
On the contrary, a relationship is ternary when three ob-
jects are implied (c wrt ab) such that two objects form
the reference system (ab) and the other object is refe-
renced wrt such reference system (c). For example,
qualitative orientation information in the way [Freksa
and Zimmermann, 1992] presented, is represented by
an orientation grid. This grid is aligned to the orien-
tation determined by two points in space, a and b, unlike
the previous example. Thus, the space is divided into

(a) (b)

Figure 3: Relations between objects: (a) Binary: object a is
the reference and object b is referred. The space is divided
into a four-distance system centred in the reference object a
[Jong, 1994] (b) Ternary: objects a and b define a reference
system (in red) with respect to object c is referenced. In this
case, the space is divided into nine qualitative regions deter-
mined by the oriented path from object a to object b [Freksa
and Zimmermann, 1992]

nine qualitative regions (front-left, front, front-right, left,
identical-front, right, back-left, back and back-right). In
this way, the orientation of the object c wrt ab will cor-
respond to any of these qualitative regions. In particular,
in this example, c wrt ab is back-left.

2. The set of relations between objects. It depends on the
considered level of granularity. In a formal way, this
set of relations between objects is expressed by means
of the definition of a Reference System (RS). A RS will
contain, at least, a couple of components:

• A set of qualitative symbols in increasing order re-
presented by Q = {q0, q1, ..., qn}, where q0 is the
qualitative symbol closest to the Reference Object
(RO) and qn is the one furthest away, going to in-
finity. In the two examples depicted in Figure 2, qn
corresponds to q4 in the case of sharply intervals,
while q3 is the qn qualitative symbol in the over-
lapped interval sample. Here, by cognitive consi-
derations, the acceptance areas have been chosen
in increasing size. Note that this set defines the dif-
ferent areas in which the workspace is divided and
the number of areas will depend on the granularity
of the task, as introduced above

• The structure relations, ∆r = {δ0, δ1, ..., δn},
describe the acceptance areas for each qualitative
symbol qi. So, δ0 corresponds to the acceptance
area of qualitative symbol q0; δ1 to the acceptance
area of symbol q1 and so on. These acceptance
areas are quantitatively defined by means of a set of
closed or open intervals delimited by two extreme
points: the initial point of the interval j, δi

j , and
the ending point of the interval j, δe

j . Thus, for
instance, when open intervals are considered, the
structure relations are rewritten by:

∆r =
{[
δi
0, δ

e
0

[
,
[
δi
1, δ

e
1

[
, . . . ,

[
δi
n, δ

e
n

[}
whereas, for closed intervals, it would be:
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Magnitude Naming models (based on intervals) Comparing models

Orientation
[Hernández, 1992] [Hernández, 1994] [Frank, 1996] [Pacheco et al., 2006] [Ligozat, 1998] [Renz and Mitra, 2004]

Distance
[Zimmermann, 1993] [Jong, 1994] [Clementini et al., 1997] [Escrig and Toledo, 2000] [Escrig and Toledo, 2001]

Velocity
[Escrig and Toledo, 2002]

Trajectories
[de Weghe et al., 2005a] [de Weghe et al., 2005b] [Gottfried, 2008] [Liu and Goghill, 2005]

Table 1: Qualitative naming models versus qualitative comparing models

∆r =
{[
δi
0, δ

e
0

]
,
[
δi
1, δ

e
1

]
, . . . ,

[
δi
n, δ

e
n

]}
As a consequence, the acceptance area of a parti-
cular entity of a magnitude, AcAr(entity), is δj if
entity value is between the initial and ending points
of δj , that is, δi

j ≤ value (entity) ≤ δe
j

3. The operations. The number of operations associated
to a representation corresponds to the possible change
in the point of view. For instance, if the relationship
is binary (b wrt a), only one operation can be defined:
inverse (a wrt b). Nevertheless, it is possible to define
five different operations when the relationship between
objects is ternary (c wrt ab) [Freksa and Zimmermann,
1992]: inverse (c wrt ba), homing (a wrt bc), homing-
inverse (a wrt cb), shortcut (b wrt ac) and shortcut-
inverse (b wrt ca). An iconic representation of the ob-
tained relationships from these operations is depicted in
Figure 4.

original relation inverse homing homing-inverse shortcut shortcut-inverse

Figure 4: Iconic representation of the relationship c wrt ab
and the result of applying the five operations to the original
relationship

3 The Reasoning Process
The reasoning process is divided into two parts:

• The Basic Step of the Inference Process (BSIP). It can
be defined as: “given two relationships, (1) the object b
wrt a reference system RS, RS1, and (2) the object c wrt
another reference system RS, RS2, such that the object b
is included into the second reference system, the BSIP
obtains the relationship c wrt RS1”. Figure 5 shows the
general BSIP for orientation and positional models not

based on projections (a) as well as two particular exam-
ples of the BSIP: (b) when binary relationships are con-
sidered and (c) when ternary relationships are used. In
Spatial Reasoning, the BSIP is usually represented by
composition tables. These tables can be obtained either
by hand or automatically by means of algorithms, if they
exist.

(a) (b) (c)

Figure 5: The general BSIP for orientation and positional
models not based on projections (a); (b) presents an exam-
ple of the BSIP for binary relationships based on the named
distances system (Jong, 1994) such that RS1 (in red) has as
reference object a, while RS2 (in blue) is defined from ob-
ject b. So, from the relations b wrt a and c wrt b, c wrt a
might be inferred. Finally, (c) shows an example of the BSIP
when ternary relationships are used. Actually, a sample of
the model presented by (Freksa & Zimmermann, 1992) is de-
picted. Note that objects a and b describe the RS1 (in red),
whereas the RS2 (in blue) is defined from objects b and c. In
this case, d wrt ab has to be inferred from c wrt ab and d wrt
bc

• The Complete Inference Process (CIP). It is necessary
when more than two objects (in binary relationships) or
three objects (in ternary relations) are involved in the
reasoning mechanism. Mainly, it consists of repeating
the BSIP as many times as possible with the initial in-
formation and the information provided by some BSIP
until no more information can be inferred
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3.1 The Basic Step of the Inference Process
Basically, the BSIP is defined as the process of inferring the
relationship between two (or three) entities of a magnitude
from the knowledge of two other relationships such that there
is an object in common in both relationships. The way to
infer the new relationship depends on the considered magni-
tude. However, all qualitative models based on intervals de-
fine the magnitude in the same way, as abovementioned. For
that reason, an abstraction can be done by resulting in a ge-
neral algorithm. Here, we propose a general algorithm based
on qualitative sums and differences that solves the inference
process for all models based on intervals.

The General Algorithm
As previously introduced, magnitudes are represented by
three different elements: the number of objects implied in
each relationship, the set of relationships between entities
and the operations that can be defined. Note that there is
a difference between concepts of commonsense knowledge.
Thus, for example, time is a scalar magnitude, while space
is much more complex mainly due to its inherent multi-
dimensionality. This inherent feature leads to a higher degree
of freedom and an increased possibility of describing entities
and relationships between entities. Because of the richness of
space, its multi-dimensionality and its multiple aspects, most
work in qualitative reasoning has focused on single aspects of
space such as, for example, topology, orientation or distance.
Nevertheless, as pointed out in [Freksa, 1992], relationships
between entities can be seen as movements in the space or
spatial deformations in physical space. As a result, when the
relationships between entities are considered as directed vec-
tors and using as reference orientation ab, three different si-
tuations can take place (see Figure 6):

• relationships between entities are in the same orientation
• relationships between entities are in the opposite orien-

tation
• relationships between entities are at any orientation

Figure 6: Representation of relationships between entities in
terms of orientation by using as reference orientation ab

Therefore, the inferred relationship will be composed of all
possible relationships between the entities by considering the
three possible orientations. According to a deeper analysis of
the possible orientations, it is clear that the extreme cases are
obtained when the implied objects are in the same orienta-
tion and when they are in the opposite one. Consequently, if

both extreme cases are solved, the result will be built as a dis-
junction of qualitative symbols from the inferred area closest
to the RO to the furthest one. With the aim of automatically
solving these extreme cases, the qualitative sum of intervals
as well as the qualitative difference of intervals are defined.

The Qualitative Sum
Let qi be the qualitative symbol which represents a relation-
ship b wrt a reference system RS1, and let qj be the qualitative
symbol referred to the relationship c wrt another reference
system RS2, such that b is included into the second reference
system.

Supposing that the two relationships are binary, we would
have a situation similar to the one illustrated in Figure 7. In
this example, from the knowledge b wrt a = q3 and c wrt b =
q2, c wrt a will be inferred. Graphically, after locating both
entities b and c in any place in their corresponding qualitative
areas, qi and qj respectively (extreme cases are depicted in
Figure 8), it is clear that the possible resulting relationships
are {q3, q4}. However, it is possible to achieve the same so-
lution from a mathematical point of view. The development
of such a method has several advantages. It does not require
to represent the relationships for any composition. It is im-
portant specially when the dimensionality of the magnitude
is high. Moreover, it can be applied to all the models based
on intervals since the reasoning mechanism is the same in all
of them.

Figure 7: Example of qualitative sum when structure relations
with overlapped acceptance areas are used

Figure 8: Extreme positions where entities b and c can be
located by keeping the relationships b wrt a reference system
RS1 and c wrt another reference system RS2. So, (a) refers to
the worst case: both entities are located in the initial points
of their acceptance areas (leads to LB); while (b) represents
the best case: both entities are situated in the ending points of
their respective acceptance areas (leads to UB)

Therefore, the qualitative sum of the two corresponding in-
tervals δi and δj , results in a range of qualitative symbols
given by:
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AcAr (∆i−1 + ∆j−1) . . . AcAr (∆i + ∆j) (1)
where ∆k represents the distance from the origin to δk, i.e.

the sum of consecutive intervals from the origin to δk. This
concept can be mathematically defined by assuming that δ+
is the origin of positive values and δ− is the corresponding
origin of negative values, as follows:

∀k = 0, 1, . . . , n ∆k =
{
δe
k − δi

+ if δe
k ≥ 0

|δi
k − δe

−| otherwise
(2)

Algorithm 1 Qualitative Sum
Input: qi : relationship b wrt a RS, RS1

qj : relationship c wrt another RS, RS2 (b is included into
the RS2)

∆r : structure relations
Output: Result : disjunction of qualitative symbols for

relationship c wrt RS1
BEGIN
if ∆j � δi then
UB ← qi

else if i == max then
UB ← qi

else
Find UB qualitative sum (∆j , δi+1,∆r, i+ 1, UB)

end if
Find LB qualitative sum (∆j−1, δi,∆r, i, LB)
Build Result (LB,UB,Result)
END

The developed method proposed to solve the qualitative
sum of intervals, sketched in Algorithm 1, is divided into
three steps:

1. Obtaining the Upper Bound (UB) of the result (see
Algorithm 2). With the aim to obtain the upper bound of
the disjunct of qualitative symbols for the relationship c
wrt a, the case in which entities b and c are equivalent
to the ending points of their respective acceptance areas
is studied (see Figure 8b). Under this hypothesis, three
different cases can occur:
• The distance from the origin of qualitative areas

(δ+ or δ−) to δj , ∆j , is much lower than the sum of
acceptance areas to δi, ∆i. In this case, the absorp-
tion rule is applied. This rule, stated in [Clementini
et al., 1995], means that whether an interval δi is k
times greater than other, δj , then it can be assumed,
without loss of information, that the sum or diffe-
rence of them is δi. Mathematically, this generality
is expressed as follows:

(δi � δj)⇔ δi ≥ k ∗ δj ⇒ δi ± δj ∼= δi (3)

where k is a constant which depends on the context.
Thus, if that rule is applied, the interval δj will be
disregarded wrt δi.

• δi corresponds to the last defined qualitative area.
This fact leads δi to be the upper bound of the re-
sult.

• Otherwise, an iterative procedure has been defined
in order to recursively look for the minimum quali-
tative area, δk, which satisfies:

∆j ≤ δi+1 + δi+2 + . . .+ δk ⇔ ∆j ≤ ∆(i+1)..k ⇔

⇔
{

∆j ≤
(
δe
k − δi

i+1

)
if δi

i+1 ≥ 0
∆j ≤

(
|δi

k − δe
i+1|

)
otherwise

(4)

It stops when it comes to the last qualitative defined
region or when the sum of acceptance areas from
the origin to δj , i.e. ∆j , is less or equal than the
sum of acceptance areas starting from δi+1 to δk
with k > i.

Going back to the example shown in
Figure 7, suppose that the acceptance
areas have been defined such as ∆r =
{[0, 4] , [3, 8] , [7, 15] , [13, 25] , [22, 37] , [34,∞[}.
So, ∆j = ∆2 = δe

2 − δi
+ = 15− 0 = 15. Therefore, the

algorithm looks for that δk that satisfies Equation 4. In
this case, k = 4 since ∆(i+1)..(i+1) =

(
δe
i+1 − δi

i+1

)
=(

δe
4 − δi

4

)
= 37 − 22 = 15 which is equal to ∆2. As a

result, the UB of the qualitative sum is q4.
2. Obtaining the Lower Bound (LB) of the result. With

this purpose, another recursive function has been imple-
mented (Algorithm 3). Note that, unlike the previous
case, values of entities b and c are supposed to be equi-
valent to the initial points of their respective acceptance
areas (see Figure 8a). Thus, the expression to be satis-
fied in this case is:

∆j−1 ≤ δi + δi+1 + . . .+ δk (5)

It will stop when it comes to the last qualitative region of
the structure relations or when the distance from the ori-
gin to the qualitative area previous to δj , that is, ∆j−1,
is less or equal than the sum of acceptance areas starting
from δj to δk with k ≤ i. Again, consider the example
depicted in Figure 7. Now, ∆j−1 = ∆1 = δe

1 − δi
+ =

8 − 0 = 8 is required. And the searched qualitative
symbol (qk) is provided by the Equation 5. In this case,
k = 3 given that ∆i..i =

(
δe
i − δi

i

)
=

(
δe
3 − δi

3

)
=

25−13 = 12, that is greater than ∆1. Consequently, the
LB of the qualitative sum for this example is q3

3. Building the result (see Algorithm 4). Basically, the
implemented procedure provides the list of qualitative
regions from the lower bound (LB) to the upper one
(UB). Again, based on the illustrated example, the re-
sulting disjunct of qualitative symbols expressing the re-
lationship c wrt RS1 would be {q3, q4}
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Algorithm 2 Find UB Qualitative Sum
Input: ∆j :

`
δe

j − δi
+

´
or |δi

j−δe
−| if δi

j ≥ 0 or not, respectively
∆inc : δi+1 + δi+2 + . . .+ δk

∆r : structure relations
k : index of the qualitative area under study (initially i+ 1)

Output: Result : upper bound of the disjunction of qualitative
symbols for

the relationship c wrt RS1
BEGIN
if k == max then
UB ← qk

else if ∆j ≤ ∆inc then
UB ← qk

else
Find UB qualitative sum (∆j ,∆inc + δk+1,∆r, k + 1, UB)

end if
END

Algorithm 3 Find LB Qualitative Sum
Input: ∆j−1 :

`
δe

j−1 − δi
+

´
or |δi

j−1 − δe
−| if δi

j−1 ≥ 0 or not,
respectively

∆inc : δi + δi+1 + . . .+ δk

∆r : structure relations
k : index of the qualitative area under study (initially i)

Output: Result : lower bound of the disjunction of qualitative
symbols for

the relationship c wrt RS1
BEGIN
if k == max then
LB ← qk

else if ∆j−1 ≤ ∆inc then
LB ← qk

else
Find LB qualitative sum (∆j−1,∆inc + δk+1,∆r, k + 1, LB)

end if
END

The Qualitative Difference
When the given relationships are opposite directed, as the
example shown in Figure 9, the qualitative difference of in-
tervals must be solved. With this aim, a new method has been
designed. With a similar reasoning mechanism to the qualita-
tive sum, the qualitative difference of two intervals δi and δj
is given by:

AcAr (∆i −∆j) . . . AcAr (∆i−1 −∆j−1) (6)
Nevertheless, a new problem arises: a bigger amount can

be subtracted of a lower one (i.e. obtaining ∆i − ∆j when
∆j > ∆i). For solving that, the advantage of the commuta-
tive property is used. Therefore, two definitions of the resul-
ting range of acceptance areas are distinguished by depending
on the relationship between the two amounts ∆i and ∆j :

{
AcAr (∆i −∆j) . . . AcAr (∆i−1 −∆j−1) when ∆i ≥ ∆j

AcAr (∆j −∆i) . . . AcAr (∆j−1 −∆i−1) otherwise
(7)

From that definition, the process to obtain the qualitative
difference consists of the following three steps:

Algorithm 4 Build Result
Input: LB : qualitative symbol of the lower bound of the result

UB : qualitative symbol of the upper bound of the result
Output: Result : disjunction of qualitative symbols for the rela-
tionship c wrt RS1
BEGIN
Result← {}
for qk = LB TO UB do
Result← Result ∪ qk

end for
END

Figure 9: Example of qualitative difference when structure
relations with overlapped acceptance areas are used

1. Obtaining the upper bound. The upper bound of
the range of acceptance areas is computed considering
the best case for the given relationships, that is, when
the entity values are equivalent to the initial points of
their acceptance areas (see Figure 10b). Under this hy-
pothesis, a recursively function that searches the mini-
mum acceptance area, δk, that satisfies the comparison
∆j−1 ≤ δi + δi−1 + . . . + δk, has been implemented.
Therefore, it will stop when it comes to consider the first
region of the relation structure or when the sum of accep-
tance areas from the origin to δj (without including δj),
∆j−1, is less or equal than the sum of acceptance areas
starting from δi to δj with k ≤ i.
As an example, suppose that the accep-
tance areas have been defined such as ∆r =
{[0, 4] , [3, 8] , [7, 15] , [13, 25] , [22, 37] , [34,∞[}.
So, from the knowledge b wrt a = q4 and c wrt
b = q3, c wrt a must be inferred. We know
∆j−1 = ∆2 = δe

2 − δi
+ = 15 − 0 = 15.

Thus, the algorithm looks for that δk that satisfies
∆j−1 ≤ δi + δi−1 + . . . + δk. In this example, k = 3
since ∆i−1..i = ∆3..4 =

(
δe
4 − δi

3

)
= 37 − 13 = 24 is

greater than ∆2, whereas ∆i..i = ∆4..4 =
(
δe
4 − δi

4

)
=

37 − 22 = 15 is less than that amount. Therefore, the
upper bound of the resulting disjunct of relationships
corresponding to c wrt a is q3. Graphically, it can
be observed in Figure 10b that the entity c is in the
area where the acceptance areas δ2 and δ3 overlap.
Consequently, as we are searching the upper bound, the
resulting acceptance area for this case is δ3.

2. Obtaining the lower bound. The lower bound is com-
puted supposing the worst case for both relationships:
the entity values are equivalent to the ending points of
their acceptance areas (see Figure 10a). So, as in the
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case of the upper bound of the qualitative sum, three
cases can occur:

• Whether the absorption rule is satisfied, the lower
bound will be δi or δj by depending on ∆i ≥ ∆j

or ∆j > ∆i respectively
• If δi, or δj when ∆j > ∆i, is the first defined

acceptance area, then δi, or δj respectively, is the
lower bound because there is no any previous area
to be considered
• Otherwise, a recursive backward search among the

defined qualitative areas is applied. Its aim is to find
the qualitative area δk that satisfies the relationship
∆j ≤ δi−1 + δi−2 + . . .+ δk (∆i ≤ δj−1 + δj−2 +
. . .+ δk).

Considering again the illustrated example, we have that
∆j = ∆3 = δe

3 − δi
+ = 25 − 0 = 25 and the searched

k is equal to 2, as depicted in Figure 10a, given that
∆i−1..i−1 = ∆3..3 = δe

3 − δi
3 = 25 − 13 = 12 < ∆3

and δi−1 + δi−2 = ∆i−2..i−1 = ∆2..3 = δe
3 − δi

2 =
25 − 7 = 18 which is greater than ∆3. As a result, the
lower bound for our example is q2

3. Building the result (Algorithm 4). The same procedure
used to build the list of qualitative symbols from the LB
to the UB in the qualitative sum is applied to obtain the
desired result for this operation. In the shown example,
the output of this procedure would be {q2, q3}

Figure 10: Extreme positions where entities b and c can be
located by keeping the relationships b wrt a reference system
and c wrt another reference system. So, (a) refers to the worst
case: both entities are located in the ending points of their
acceptance areas (leads to LB); while (b) represents the best
case: both entities are situated in the initial points of their
respective acceptance areas (leads to UB)

The remaining issue is to know which orientation of the
relationships corresponds to the lower (upper) bound of the
result. That is, determining if the upper bound of the resul-
ting list of qualitative areas corresponds to the upper bound
of the qualitative sum (in which case Find UB Qualitative
Sum would be called), to its lower bound (Find LB Qualitative
Sum would be performed), to the upper bound of the qualita-
tive difference (in which case Find UB Qualitative Difference
will be invoked) or, on the contrary, to its lower bound (Find
LB Qualitative Difference would be run). And the same oc-
curs with the lower bound of the disjunction of the qualitative
areas for the inferred relationship. This issue depends on two
different aspects:

• possible values for the magnitude are positive and/or
negatives

• the definition of the BSIP for each magnitude

Hence, the resulting disjunction of qualitative areas for the
inferred relationship will be built from different ways to ob-
tain the lower and upper bounds.

Regarding the CIP, it can be formalized as a Constraint
Satisfaction Problem (CSP) since knowledge about relation-
ships between entities is often given in the form of cons-
traints. Note that CSP is consistent if it has a solution. More-
over, a CSP can be represented by a constraint network where
each node is labelled by a variable Xi or by the variable in-
dex i, and each directed edge is labelled by the relationship
between the variables it links. Consequently, a path consis-
tency algorithm can be used as a heuristic test for whether the
defined constraint network is consistent [Allen, 1983], and,
therefore, if the CSP has a solution. Thus, a number of al-
gorithms for path consistency has been developed from its
definition: a constraint graph is path consistent if for pairs
of nodes (i, j) and all paths i − i1 − i2 − ... − in − j be-
tween them, the direct constraint ci,j is tighter than the indi-
rect constraint along the path, i.e. the composition of cons-
traint ci,i1⊗...⊗cin,j [Frühwirth, 1994a] [Frühwirth, 1994b].

A straight-forward way to enforce path-consistency on a
CSP is to strengthen relationships by successively applying
the following operation until a fixed point is reached:

cij := cij ⊕ cik ⊗ ckj (8)
where the part (cik ⊗ ckj) of the formula computes com-

position and it obtains the constraint cij . This result is in-
tersected (⊕) with the preceding computed or used-defined
constraints (if they exist). The complexity of such an algo-
rithm is O

(
n3

)
where n is the number of nodes in the cons-

traint graph [Mackworth and Freuder, 1985].
It is worth noting that, given that the BSIP is different from

each instance of the general qualitative model and the CIP
is the repetition of the BSIP, a different CSP will be will be
defined for solving each CIP in terms of qualitative sums and
differences, although the structure of the program is kept.

4 Conclusions
Physical space and its properties play essential roles in all
sorts of actions and decisions. As a consequence, the ability
to reason in and about space is crucial for system involved in
theses actions and decisions. So, given that qualitative repre-
sentations are one source of flexibility in commonsense rea-
soning, since they are more stable than quantitative represen-
tations, and provide a level of description that can be more
easily matched and reasoned with. Although positional infor-
mation has been the starting point, the spatial reasoning can
imply different physical properties by requiring high dimen-
sional descriptions. For that reason, both magnitude represen-
tation and reasoning process have been analysed by leading
to a general algorithm which solves the representation and
the inference process of any qualitative model based on inter-
vals in n dimensions. It has been instanced to two different
qualitative models: (1) naming distance, and (2) qualitative
velocity by obtaining the same results to the presented ones
in [Escrig and Toledo, 1998] [Escrig and Toledo, 2002], res-
pectively.
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