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Abstract

This paper presents a methodology for a collabora-
tive recommender system (RS). The methodology
is based on the compatibility of groups of users
defining their profiles via a qualitative order-of-
magnitude model. The distributive lattice structure
of the space of qualitative descriptions is consid-
ered in defining the distance between existing users
and the RSs new users. An application to movie
recommendations is presented to show and com-
pare the efficiency of the proposed methodology.

1 Introduction
The RS proposed is a collaborative memory based system
where the user is recommended items based on users with
similar profiles and preferences. Several different approaches
have been discussed in the literature to address the prob-
lem of finding user similarities, such as: correlation based
[Resniket al., 1994; Schardanand and Maes, 1995], cosine-
based[Breeseet al., 1998; Sarwaret al., 2001], and graph
theoretic[Aggarwalet al., 1999].

This RS differs from others because it uses a heuristic that
allows different levels of precision to be considered simulta-
neously. This ability of the proposed RS is crucial for recom-
mendation of products whose main features are addressed to
users’ sensorial perceptions. In this context, users often do
not know how to express their preferences with precision.

We present recommendations that find user similarities in
terms of profile compatibility with other users. Rather than
using classical methods, we put forward an approach to rec-
ommending by searching through the most similar neighbors,
using a degree of consensus directly or through a dive func-
tion that permits consensus based on underlying common val-
ues. The degree of consensus allows us to measure the com-
patibility of a group of users. The previous search of compat-
ible groups with the user makes the recommendation easier
and the cost of calculating a minimum distance lower.

This proposed methodology incorporates incomplete or
partial knowledge into the recommendation process using
qualitative reasoning techniques to assess affinity of its users
for recommendations.

Two main advances of this paper with respect to previous
works can be highlighted. On the one hand, from a theoret-

ical point of view, the definition of a distance among users
presented in Subsection 2.2. On the other hand, the applica-
tion of the degree of consensus previously defined together
with the presented distance to build a recommender system.

This paper is structured as follows. Section 2 introduces
the theoretical framework. In Section 3, the recommender
system algorithm is presented. In Section 4, an experimental
case in movie recommendation is introduced, and its results
are compared with two non-personalized models. Conclu-
sions and future research are drawn in Section 5.

2 Theoretical Framework

Qualitative Reasoning (QR) is a sub-area of Artificial Intel-
ligence that seeks to understand and explain human beings’
ability to reason without having precise information[Forbus,
1996]. In recommendation processes, it is not unusual for a
situation to arise in which different levels of precision have
to be worked with simultaneously, depending on the informa-
tion available to each user.

The RS proposed in this paper requires measuring compat-
ibility among users. The concept of compatibility is based
on group consensus theory. In particular, in this paper, we
use the definition of consensus introduced in ([Rosellóet al.,
2010]), which is based on a qualitatively-described system in
terms of absolute order-of-magnitude ([Travé-Massuyès and
Dague, 2003]).

Order-of-magnitude models are essential among the theo-
retical tools available for qualitative reasoning[Dague, 1993;
Kalagnanamet al., 1991]. They aim to capture order-of-
magnitude commonsense inferences[Travé-Massuyès and
Dague, 2003]. The classic order-of-magnitude qualitative
spacesare built from a set of ordered basic qualitative labels.
A general algebraic structure, called Qualitative Algebra or
Q-algebra, was defined based on this framework, providing a
mathematical structure to unify sign algebra and interval al-
gebra through a continuum of qualitative structures built from
the roughest to the finest partition of the real line.Q-algebras
and their algebraic properties have been extensively studied
[Travé-Massuyès and Dague, 2003]

Let us consider a finite set ofbasic labels, S∗ =
{B1, . . . , Bn}, which is totally ordered as a chain:B1 <
. . . < Bn. Usually, each basic label corresponds to a lin-
guistic term, for instance “extremely bad”< “very bad” <
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“bad” < “acceptable”< “good” < “very good”< “extremely
good”.

The complete description universe for the Order-of-
Magnitude Space OM(n) with granularityn, is the setSn:

Sn = S∗ ∪ {[Bi, Bj ] |Bi, Bj ∈ S∗, i < j},

where the label[Bi, Bj] with i < j is defined as the set
{Bi, Bi+1, . . . , Bj}.

Consistent with the former example of linguistic labels, the
label “moderately good” can be represented by [“acceptable”,
“good”], i.e., [B4, B5]. The label “don’t know” is represented
by [“extremely bad”, “extremely good”], i.e.,[B1, B7]. This
least precise label is denoted by the symbol?, i.e.,[B1, Bn] ≡
?.

There is a partial order relation≤P in Sn, “to be more
precise than”, given byL1 ≤P L2 ⇐⇒ L1 ⊂ L2.

The structureOM(n) permits to work with all different
levels of precision from the basic labels to the? label.

The next subsections are the theoretical foundation of
the RS presented. This theoretical foundation is based on
[Rosellóet al., 2010].

2.1 Groups of Compatible Users
Let Λ be the set features that is qualitatively described by
means of theSn labels,Λ = {a1, . . . , aN}.

The qualitative description is carried out by each
user/evaluator and is represented by the function:Q : Λ →
Sn, whereal 7→ Q(al) = El is the qualitative label with
which the evaluator describesal.

LetQ = {Q | Q : Λ → Sn} be the set of all possible qual-
itative descriptions ofΛ overSn; a group of users determine
a subset ofQ. GivenQ, Q′ ∈ Q, two different operations are
defined between them.

1. The mix operation: The operationQ⊔Q′ leads to a new
qualitative description functionQ ⊔ Q′ : Λ → Sn such
that, for anyat ∈ Λ,

(Q ⊔ Q′)(al) = Q(al) ⊔ Q′(al),

where⊔ is the connex union of labels, i.e. the mini-
mum label that containsQ(al) andQ′(al) : [Bi, Bj ] ⊔
[Bh, Bk] = [Bmin{i,h}, Bmax{j,k}], using the conven-
tion [Bi, Bi] = Bi.

2. The common operation: The concept of consensus be-
tween two qualitative descriptions,Q andQ′, is required
in order to introduce the common operation:
Two qualitative descriptionsQ, Q′ are in consensus,
Q ⇄ Q′, iff

Q(al) ∩ Q′(al) 6= ∅ ∀al ∈ Λ. (1)

GivenQ andQ′ whereQ ⇄ Q′, thecommonQ∩Q′ op-
eration produces a new qualitative description function
Q ∩ Q′ : Λ → Sn such that

(Q ∩ Q′)(al) = Q(al) ∩ Q′(al) ∀al ∈ Λ.

In general, a set{Qi}i∈I ⊂ Q of qualitative descriptions
of Λ overSn is in consensusiff ∩i∈IQi(at) 6= ∅ ∀at ∈ Λ.
The consensus concept of a set of qualitative descriptions is

used in the RS to model compatibility among profiles of the
corresponding group of users.

The algebraic structure of the setQ and the⊔ and∩ opera-
tions are given by the next results (the proofs can be found in
[Rosellóet al., 2010]): (Q,⊔,∩) is a weak partial lattice, and
if QL is a subset ofQ which is in consensus, then(QL,⊔,∩)
is adistributive lattice[Birkhoff, 1967].

2.2 A Distance among Users
Let us suppose that there exists a subsetQL of Q which is
in consensus (if this situation does not hold, in Section 2.3
a process to obtain consensus is presented). This section is
devoted to define a distance between two qualitative descrip-
tionsQ, Q′ ∈ QL.

Definition 1 In the lattice(QL,⊔,∩) the null element0QL

is defined as0QL
= ⊔Qi∈QL

Qi, and theuniversal element
1QL

is defined as1QL
= ∩Qi∈QL

Qi.

The null element and the universal elements verify for all
Q ∈ QL:

0QL
⊔ Q = 0QL

, 0QL
∩ Q = Q,

1QL
⊔ Q = Q, 1QL

∩ Q = 1QL
,

and then, considering the partial order relation defined by
Q ≤ Q′ iff Q ⊔ Q′ = Q, we have:

0QL
≤ Q ≤ 1QL

.

Recall the definition ofchain: a totally ordered set of a
poset.

By “ x coversy” it is meant thaty < x and thaty < z < x
is not satisfied by anyz. A finite chaina1 < a2 < . . . < ak is
a maximal chainif eachai+1 coversai for i = 1, . . . , k − 1,
and it is denoted by[a1, ak].

Let us assume thatΛ is a finite set. SinceSn is also finite,
then all the chains in(QL,⊔,∩) are finite. Therefore, all
finite maximal chains between fixed end points have the same
length (Jordan-Dedekind theorem)[Birkhoff, 1967].

Definition 2 If Q, Q′ ∈ QL, the length of a chain with end
pointsQ andQ′, l([Q, Q′]), is the cardinal of any maximal
chain betweenQ andQ′. The length ofQ ∈ QL, l(Q), is the
length of [0QL

, Q].

In the distributive lattice(QL,⊔,∩) the following state-
ment is satisfied for allQ andQ′ in QL:

l(Q) + l(Q′) = l(Q ⊔ Q′) + l(Q ∩ Q′). (2)

Lemma 1 Since inQL the operations⊔ and∩ are the infi-
mum and supremum respectively then:

(Q ∩ Q′) ⊔ (Q′ ∩ Q′′) ≥ Q′ (3)

Q′ ≥ (Q ⊔ Q′) ∩ (Q′ ⊔ Q′′). (4)

Proof: It is a simple exercise to check that
((Q ∩ Q′) ⊔ (Q′ ∩ Q′′)) ∩ Q′ = (Q ∩ Q′) ⊔ (Q′ ∩ Q′′) and
Q′ ∩ ((Q ⊔ Q′) ∩ (Q′ ⊔ Q′′)) = Q′.

The next theorem defines a distance in the lattice
(QL,⊔,∩):
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Theorem 1 In the lattice(QL,⊔,∩), the functiond : QL ×
QL → R defined as

d(Q, Q′) = l(Q ∩ Q′) − l(Q ⊔ Q′) (5)

is a distance.

Proof:
1. Positive definiteness: BecauseQ⊔Q′ ≤ Q∩Q′ ∀Q, Q′

it is trivial to see thatl(Q ⊔ Q′) ≤ l(Q ∩ Q′), so
d(Q, Q′) ≥ 0.

If Q = Q′ thend(Q, Q′) = 0. Conversely,

d(Q, Q′) = 0 ⇒ l(Q ⊔ Q′) = l(Q ∩ Q′),

and this, together with the fact thatQ⊔Q′ ≤ Q∩Q′ and
the Jordan-Dedekind theorem, leads toQ⊔Q′ = Q∩Q′.

By the absorptive laws of lattices:
Q ∩ (Q ⊔ Q′) = Q andQ ⊔ (Q ∩ Q′) = Q.

We have
Q = Q ∩ (Q ⊔ Q′) = Q ∩ (Q ∩ Q′) = Q ∩ Q′,

Q′ = Q′ ∩ (Q ⊔ Q′) = Q′ ∩ (Q ∩ Q′) = Q ∩ Q′,

soQ = Q′.

2. Symmetry: Since⊔ and∩ are commutative,d(Q, Q′) =
d(Q′, Q).

3. Triangle inequality: For allQ, Q′, Q′′ ∈ QL

d(Q, Q′) ≤ d(Q, Q′′) + d(Q′′, Q′).
We have
d(Q, Q′′) + d(Q′′, Q′) = l(Q ∩ Q′′) + l(Q′ ∩ Q′′) −
(l(Q ⊔ Q′′) + l(Q′ ⊔ Q′′)).

The two first summands can be expressed using the
property (2):
l(Q∩Q′′) + l(Q′ ∩Q′′) = l((Q∩Q′′)⊔ (Q′ ∩Q′′)) +
l((Q ∩ Q′′) ∩ (Q′ ∩ Q′′)),

and then, by (3)

l(Q∩ Q′′) + l(Q′ ∩Q′′) ≥ l(Q′′) + l((Q∩ Q′ ∩Q′′)).

Similarly, from (2):
l(Q⊔Q′′) + l(Q′ ⊔Q′′) = l((Q⊔Q′′)⊔ (Q′ ⊔Q′′)) +
l((Q ⊔ Q′′) ∩ (Q′′ ⊔ Q′)),

and then, by (4):

l(Q ⊔ Q′′) + l(Q′ ⊔ Q′′) ≤ l(Q ⊔ Q′ ⊔ Q′′) + l(Q′′).

So,

d(Q, Q′′)+d(Q′′, Q′) ≥ l(Q∩Q′∩Q′′)−l(Q⊔Q′⊔Q′′).

Now, using the fact that

Q∩Q′ ∩Q′′ ≥ Q∩Q′ ⇒ l(Q∩Q′ ∩Q′′) ≥ l(Q∩Q′)

and

Q⊔Q′⊔Q′′ ≤ Q⊔Q′ ⇒ l(Q⊔Q′⊔Q′′) ≤ l(Q⊔Q′),

we conclude that
d(Q, Q′′) + d(Q′′, Q′) ≥ l(Q ∩ Q′) − l(Q ⊔ Q′) =
d(Q, Q′).

In the next sections the concepts introduced above are used
to define the degree of consensus of a group of users.

2.3 Degree of Consensus
Given a spaceSn, a finite non empty setΛ = {a1, . . . , aN}
and a group of evaluatorsE = {α1, . . . , αM} , the group
evaluationof Λ is considered as the pair(Λ,QE), where
QE = {Qi : Λ → Sn | i ∈ {1, · · ·M}}, and Qi is the
evaluation ofαi.

Let’s suppose that there is consensus among the group, i.e.,
∩M

i=1Qi(at) 6= ∅ ∀at ∈ Λ. The next definition regarding the
degree of consensus is from[Rosellóet al., 2010]:

Definition 3 Given a group evaluation in consensus
(Λ,QE), i.e.,∩M

i=1Qi exists, letµ be a normalized measure
defined onSn, i.e., a measure such thatµ(?) = 1 and µ
a normalized measure defined on the setΛ. Thedegree of
consensusamong the group,κ(QE), is

κ(QE) =
H(⊔M

i=1Qi)

H(∩M
i=1Qi)

(6)

where the entropy of a qualitative descriptionQ is

H(Q) =
∑

E∈Sn, µ(E) 6=0

µ(Q−1(E))I(E), (7)

with I(E) = log 1
µ(E) .

The necessary and sufficient condition for which there ex-
ists consensus is∩M

i=1Qi(al) 6= ∅, ∀al ∈ Λ. If this situation
does not hold, then a process has to be initiated to obtain con-
sensus. The algorithm presented in[Rosellóet al., 2010] is
based on the following idea: If two people disagree on some
fact and they want to reach an agreement, i.e., reach consen-
sus, they have to reconsider their positions and find points in
common. In this section this idea is formalized by using the
concepts already given. It can be understood as a process of
automatic negotiation.

Definition 4 Given a spaceSn with basic labelsS =
{B1, . . . , Bn}, and a spaceSn+1 with basic labelsS′ =
{B′

1, . . . , B
′
n+1}, the dive function is the mapφ0 : Sn →

Sn+1 defined as follows:
For basic labelsBi ∈ Sn, then φ0(Bi) = [B′

i, B
′
i+1],

and, for non-basic labels,φ0([Bi, Bj]) =
⋃j

k=i φ0(Bk) =
[B′

i, B
′
j+1].

With this function, each basic label inSn is “split” into two
new basic labels inSn+1. And in general, for each labelE in
Sn, Φ0(E) is obtained by adding a new basic label. In this
same way, we can defineφi : Sn+i → Sn+i+1, for i ≥ 1, and
the following chain can be considered:

Sn

φ0

→֒ Sn+1
φ1

→֒ Sn+2 →֒ · · · →֒ Sn+m

φm

→֒ Sn+m+1

Then, givenE ,F ∈ Sn such thatE ∩ F = ∅, we can see
that there exists a natural numberk ≥ 1 such that :

(φk−1 ◦ · · · ◦ φ0)(E) ∩ (φk−1 ◦ · · · ◦ φ0)(F) 6= ∅.

Similarly and givenE1, . . . , EM ∈ Sn such that∩M
i=1Ei =

∅, there existsk ≥ 1 such that

∩M
i=1(φk−1 ◦ · · · ◦ φ0)(Ei) 6= ∅.
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The next result allows us to extend the measure defined in
Sn to the new spaceSn+1 (for a proof see[Rosellóet al.,
2010]):
Let µ be a normalized measure defined onSn and let us sup-
pose thatSn is ”dived” in Sn+1. Then the measureµ can be
extended to a normalized measureµ′ in Sn+1 defined, taking
weights0 < λ1, . . . , λn < 1, in the following way:

µ′(B′
1) = (1 − λ1)µ(B1)

µ′(B′
2) = λ1µ(B1) + (1 − λ2)µ(B2)

µ′(B′
i) = λi−1µ(Bi−1) + (1 − λi)µ(Bi)

µ′(B′
n+1) = λnµ(Bn)

And for a non-basic labelE ′ = [B′
i, B

′
j ] ∈ Sn+1,

µ′(E ′) =

j
∑

k=i

µ′(B′
k).

With the defined dive function and this extension of the
measure, we can thus enact a process to reach consensus in a
group evaluation(Λ,QE). The fully detailed process can be
found in[Rosellóet al., 2010].

Now, we can calculate the degree of consensusκ within the
group evaluation in which consensus has been obtained.

3 The Recommender System Algorithm
So far, we have introduced all the concepts needed to explain
the system based on compatibility between users’ profiles
through the concept of consensus. This section is devoted
to the explanation of the proposed RS.

Consider the recommendation process of a product de-
scribed by a set of featuresΛ, where each feature can be
described by an element of the spaceSn. Let A be the set
of alternatives to be recommended. LetE be a set of users,
which are the training set for the RS; each of these provide a
qualitative descriptionQi : Λ −→ Sn, which assign a label of
Snto each feature, and letQE ⊂ Q be the set of these qualita-
tive descriptions. Finally, we have to assume that there exists
a functionf : Q → A that assigns eachQi to an element of
a setA of alternatives.

In Figure 1, we can see a representation of the training set,
where each dot is an elementQ ∈ QE and the dotted closed
lines express that these two groups of users are compatible,
i.e. these two subsets ofQE are in consensus (of course each
Q is in consensus with itself).

QE

A

f
f

f

f

Figure 1:The training set of the recommender system.

The goal of the system is, for a new user with qualitative
descriptionQ′ : Λ → Sn, to assign an alternativef(Q′) ∈ A.

Let us denote byC(Q′) the set of the subsets ofQE ∪{Q′}
that are in consensus, containQ′, and their cardinal is greater
than or equal to 2. LetiQ′ be its cardinal:

iQ′ = |C(Q′)|. (8)

The main idea of the algorithm is that the best alternative
for the new user with qualitative descriptionQ′ is the alter-
native of the user with nearest qualitative description toQ′.
This can be done in the following steps:

1. First of all, the algorithm findsC(Q′) andiQ′ .

2. If iQ′ ≥ 1 then we choose a subset with highest degree
of consensus (6):

C(Q′)∗ = arg max
Ci(Q′)∈C(Q′)

κ(Ci(Q
′)).

3. The next step is to assign toQ′ the alternative corre-
sponding to the user with qualitative description nearest
to Q′ in the subsetC(Q′)∗ :

f(Q′) = f(arg min
Q∈C(Q′)∗

d(Q, Q′)),

where the distance is the expression in (5).

4. If in (8) iQ′ = 0, then we have to apply the automatic
negotiation process introduced in Section 2.3, in order to
find at least one subset inC(Q′) and get aniQ′ ≥ 1 (see
Figure 2). Once it is found, the algorithm follows as in
step 2.

QE ∪ {Q′}

Q′

C1(Q
′)

C2(Q
′)

Figure 2:Here the automatic negotiation process has been applied
in one step. This has produced two subsetsC1(Q

′) andC2(Q
′).

4 An Experimental Case in Movie
Recommendation

An experimental case is presented in this section for top-N
movie recommendations. The RS presented, based on the al-
gorithm given in Section 3, can be considered as a hybrid
RS. Hybrid recommender systems combine collaborative and
content-based methods[Adomavicius and Tuzhilim, 2005];
in our case content-based characteristics to define users’ pro-
files are incorporated into the collaborative approach given.
In particular, users’ profiles are elaborated from their order-
of-magnitude preferences on 18 pre-fixed movie genres (in-
duced from their favorite movies). These content-based pro-
files are used to define qualitative descriptions, which involve
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different levels of precision, and allow us to find compatibil-
ity among users. The alternative assigned to a new user is
a top-N movie recommendation list considering their movie
genre preferences. The main goal of this section is to present
and assess this movie RS by using a set of offline tests.

4.1 Data Set Description

A selection of a MovieLens data set, provided by the Grou-
pLens Research at the University of Minnesota, is used to test
the proposed hybrid system. In particular, the files used were
the movies and ratings files, the files being structured as fol-
lows:

Movies(movieID, title, genres)
Ratings(userID, movieID, rating)

Movie ratings are considered in a 1-to-5 ordinal scale while
movie genres are represented by a dynamic attribute list.
There are 18 different attributes available as genres.

To define the data set for the test, a data subset from the
Movielens dataset is selected in the following way. First, we
selected films that have received between 10,000 and 15,000
ratings. Then, to avoid movies equally rated for everybody
and sparsity-related problems, the next movies and users re-
strictions are considered:

• Those movies with a rating standard deviation below 1
are discarded;

• Users must have rated at least 85% of the movies.

As a result, a first data subset containing 200 users and 62
movies was considered in this experimental case.

4.2 Obtaining Users’ Profiles

A crucial step for using the algorithm with the data of the
database MovieLens is obtaining from this a qualitative pro-
file of each user. This profile is obtained using the scores that
users have given the films. The way of obtaining this profile
is not unique (note that the algorithm presentedbeginswith
the users’ qualitative description of the setΛ, usually using a
specific interface with the computer system).

In this context, the setΛ contains the18 available gen-
res, and each feature inΛ will be described by an element of
a spaceS4, with basic labelsB1 = "I hate it", B2 =
"I don’t like it", B3 = "I like it", B4 =
"I love it".

The qualitative descriptionQαi
corresponding to each user

αi ∈ E is obtained counting how many times this user has
selected a favorite movie with genresai1 , . . . , aik

. These18
numbers are normalized and mapped to a label of the space
S4 using the functionq : R → S4 :

q(x) =











































B1, if x ∈ [0, 1/7)

[B1B2], if x ∈ [1/7, 2/7)

[B1B3], if x ∈ [2/7, 3/7)

?, if x ∈ [3/7, 4/7)

[B2B4], if x ∈ [4/7, 5/7)

[B3B4], if x ∈ [5/7, 6/7)

B4, if x ∈ [6/7, 1]

Finally, the profile of each userαi ∈ E is obtained as a
vector of 18 components corresponding to their qualitative
descriptions of the 18 genre preferences.

4.3 Experimental Methodology
To test the RS, we run a set of offline leave-one-out tests
where our recommendations are compared to two well-
known non-personalized models. Non-personalized recom-
menders present a predefined list of items to any user, regard-
less of their preferences. In this test, the models used are the
Movie Average, where the top-N items with the highest av-
erage rating are recommended and the Top Popular, which
recommends top-N items with the highest popularity (largest
number of ratings).

For each user u from the data set, our RS, as explained in
Sections 3 and 4.2, performs the four following steps:

1. Obtain the profile for useru from his set of preferred
top-N movies;

2. Search userv, from the set of users with the highest
degree of consensus that includesu, with a minimum-
distance profile to that of useru;

3. Obtain the set of preferred top-N movies by userv;

4. Extract the common movies setM between the two sets
of preferred movies foru andv.

Then, to test our methodology, we compute the following in-
dicators for different values of N[Cremonesiet al., 2010]:

• Coincidence percentage between preferred top-N
movies by users and their recommendation for the three
RSs to be compared.

• Rating difference between preferred top-N movies by
useru and their recommendation for each moviem in
M for Movie Average and the presented RS.

When all users have been tested, an average of the results
is calculated, being the final result for an N items recommen-
dation.

Figure 3 reports the performance of the recommender sys-
tem algorithm presented versus non-personalized methods
Movie Average and Top Popular. It compares their average
of coincidence percentage for anN items recommendation
following a leave-one-out test. For each value of the number
of items to be recommended (horizontal axe) the averages of
coincidence percentage are represented considering the three
recommender systems (vertical axe).N values are natural
numbers in the range from 1 to 10, since 10 is usually consid-
ered the maximum number of movies to be recommended.

Note that, as expected, results improve whenN in-
creases. Our RS performs significantly better than the non-
personalized ones.

Figure 4 shows the average movie rating differences be-
tween the real values given by each user being tested and the
values of the recommendations. Note that these differences
can only be computed for our RS and the recommendations
given by the Movie Average model, since Top Popular just
select the most popular movies (largest number of ratings)
and does not provide their specific ratings. For each value of
the number of items to be recommended (horizontal axe) the
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Figure 3:Coincidence percentage for three models.

average movie rating differences are represented considering
the two recommender systems (vertical axe).

Figure 4:Average movie rating differences.

Figure 4 shows that our RS outperforms the non-
personalized Movie Average in terms of rating recommen-
dation difference.

5 Conclusions and Future Research

This paper presents a theoretical framework, which provides
a new methodology for recommender systems based on group
consensus theory. An experimental case for movie recom-
mendations, based on the algorithm presented, is also de-
scribed and assessed.

This work shows that the method presented for movie rec-
ommendations performs better than non-personalized mod-
els. Due to the high flexibility and adaptability of the method
presented, we believe that its use in recommendation in envi-
ronments where stating preferences involving different levels
of precision can be very interesting.

Future work will be focused in three directions: First, from
a theoretical point of view, defining other distance metrics
among users and comparing results. Second, studying the
analysis of the system implementation when recommending
sensory products, where different levels of precision are re-
quired. And finally, comparing its performance with person-
alized models will complete the evaluation of the movie rec-
ommender system.

A web-based software tool for collecting and summarizing
users’ opinions and for working simultaneously with different

levels of precision is being built by using the concepts pre-
sented in this paper. The software developed will be adapted
to design a recommender system based on the methodology
defined in this paper.
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