
Abstract

Configuring system models based on a model
library is the crucial means to make modeling
cheap. However, different tasks may require
models with modeling assumptions, phenomena
captured, and, especially, different levels of
granularity. The only solution to this dilemma is
generating the required abstractions of the most
fine-grained model available automatically. This
paper focuses on domain abstraction and describes
the implementation of an algorithm for producing
such abstract models, i.e. finite constraints, from a
numerical model with directed computation, such
as Matlab/Simulink. The context for this
implementation is MOM, an environment for
multiple modeling. Instead of requiring a
specialized implementation of model abstraction
for a particular numerical simulation system and a
particular constraint system, MOM provides
abstract interfaces to classes of such modeling
systems and, thus, enables us to implement a
generic abstraction operator for arbitrary instances
of numerical modeling and constraint satisfaction
algorithms. We describe these abstract interfaces in
MOM and how the abstraction operator uses them.

1 Introduction
The set of models used in science and engineering is vast
and extremely heterogeneous. Even when the same system
is modeled, and even if this is done for similar purposes,
and even if this happens in one company or department –
there probably exist different variants and types of models.
Actually, this limits the utility of models severely, since it
increases the efforts spent on model building, prevents
existing models from being re-used and integrated, and
blocks potential synergy effects which could be achieved by
combining complementary models.

There are several reasons for and dimensions of such a
variety of models; besides ignorance, individual
preferences, and biased education of modelers, there exist
undeniable justifications for using different models:

• the problem to be solved may require models with
different properties and power. For instance, the

engine control unit in a car must, of course, calculate
numerical values for fuel injection, while diagnosis or
failure-modes-and-effects analysis (FMEA) may have
to work with information about qualitative behavior
deviations; also a model for control purposes usually
includes nominal behavior only (which some people
consider a big mistake), while a model for test
generation or FMEA cannot do without fault models.

• The system to be modeled may demand for different
kinds of modeling. For many artifacts, the component
structure and, hence, the model structure can be
assumed as fixed, while a model of an ecological
system may have to be more open and allow for
dynamic extensions.

• Different modeling and simulation tools reflect
particularities of the respective system models and,
thus, are able to provide efficient computation.

Among the most important resulting variations, we can
identify different

• modeling ontologies ((differential) equations,
constraints, difference equations, finite element
analysis, … and at the conceptual level components,
processes, causal graphs, …),

• temporal granularity: continuous vs. discretized
time. What can be considered instantaneous?

• structural granularity, both related to
− the conceptual (physical) layer: what are the

elementary units to be modeled? Which types of
quantities are relevant?

− the behavior modeling: which variables have to be
involved (magnitude, derivative, deviation, …)?

• granularity of variable domains: are numerical
values need (and available), intervals, or simply
signs?

• tools used to represent the model and implement the
calculations.

Our work on MOM (Model manipulation system) aims at
providing an environment for the integration of different
models along these dimensions, at the time being focusing
on the last three issues. The second goal of MOM is to
facilitate the automated transformation of models in order
to achieve solutions tailored to particular requirements. In
[Struss and Regassa, 2010] we presented the basics of
MOM, especially the structuring of different layers of

An Automated Model Abstraction Operator
Implemented in the Multiple Modeling Environment MOM

P. Struss, A. Fraracci, D. Nyga
Technische Universität Munich, Germany

struss@in.tum.de, fraracci@in.tum.de, nyga@in.tum.de

QR2011: 25th International Workshop on Qualitative Reasoning

167

models. In this paper, we focus on the last two dimensions
and describe MOM’s facilities for

• the automated generation of qualitative models from
numerical ones (more specifically, directed ones), i.e.
we focus exclusively on domain abstraction (as
opposed, for instance, to functional or structural
abstraction)

• the integration of different tools, namely the ones
needed for domain abstraction: directed numerical
models and constraint systems.

The task of organizing and generating multiple models
has been subject to research in qualitative modeling (see, as
a small selection, [Addanki et al., 1989], [Falkenhainer and
Forbus, 1991], [Struss, 1992], [Weld, 1992], [Nayak, 1995],
[Ressencourt et al., 2006], [Sachenbacher and Struss, 2005],
[Torta and Torasso, 2009]), although most of the work takes
a rather academic perspective. The motivation for the work
presented here arose from our industrial projects, for
instance in diagnosis, fault analysis, and testing, we were
often confronted with existing numerical system models
built by engineers, usually in order to validate control.
Models supporting diagnostic tasks are usually qualitative,
but still only valid if they are abstractions of proper
engineering models. Hence, the task of automatically
generating them from the numerical models, rather than
constructing them by hand from scratch, is quite important
from a practical perspective and can even be crucial to the
feasibility of an industrial application.

The following section discusses the mathematical
background for qualitative abstraction of (monotonic) real-
valued functions, while section 3 summarizes the part of
MOM that is relevant in the context of this paper. Section 4
presents the abstract interfaces for the source (Directed-
NumericalBehaviorDescription) and target (Finite-
ConstraintBehaviorDescription) of the abstraction operator,
which is then discussed in section 5.

2 Automated model Abstraction Background
The section describes qualitative abstraction, i.e.
discretization w.r.t. a finite set of discrete values (called
landmarks) of a numerical function in mathematical terms
(extending [Struss, 2002]).

We account for the fact that every numerical model is
only approximate and that the abstraction step has to reflect
the limited precision. Since a function with n dependent
variables can be replaced by n single-output functions, the
input to the abstraction is given by:

• a numerical model that computes one output variable
y as a function of n input variables, xi:

y = f(x1, …, xn)
• a set of landmark values for all input variables xi and

the output variable, i.e. {l ij} ⊂ R
• two continuous functions, ε-(x1, ..., xn), ε+(x1, ..., xn),

that characterize the precision of the model, i.e. the
base model is given by the envelope of f:
R0(f, ε-, ε+) = {(x1, ..., xn, y) | f(x1, ..., xn) - ε-(x1, ..., xn)
< y < f(x1, ..., xn) + ε+(x1, ..., xn)}.

For monotonic (sections of) functions, it is
straightforward to define and compute the model abstraction
for a given sets of landmarks.

We define a qualitative value as an interval between two
adjacent landmarks: qi,j := (l i,j, l i,j+1).

For each tuple of qualitative input values, (q1,j1, ... , qn,jn),
we have to compute the qualitative values of y that are
consistent with this tuple. Then a tuple of qualitative input
values is the cross product of such intervals, i.e. an n-
dimensional rectangle, which we call an input cell. The
corners of such a cell are given by the tuples that combine
the bounding landmarks:

Corners(celli) = Corners(q1,j1, ... , qn,jn) :=
 { (l1,k1, ..., ln,kn) | qi,j := (l i,j, l i,j+1) ∧ ki ∈{j, j+1} }.
If f is a continuous function, the consistent qualitative

values of y are those that have a non-empty intersection with
the interval between the minimal and the maximal value
that, f - ε-, f + ε+ take on in the rectangle.

Definition (Qualitative Abstraction of a Function)
Let be:

• f-ε- , f+ε+ continuous for each xi,
• {q i,j} the qualitative values for xi,
• Cells the set of cells defined by {{qi,j}},
• {qy,j} the qualitative values for y.

For each input cell, celli ∈ Cells, the range of the output y is
inty(celli) :=

 [min {(f-ε-)(x) | x ∈ celli },
 max {(f+ε+)(x) | x ∈ celli}]
Then

Rabstr(f, ε-, ε+) :=
 {(q1,j1, ... , qn,jn, qy,j)|qy,j ∩inty(celli)≠∅}
is the qualitative abstraction of R0(f, ε-, ε+).

Figure 1 illustrates this and conveys the intuition that a
coverage of the envelope is constructed.

It is easy to see that the resulting qualitative model does
not lose anything included in the original model and is the
“tightest” abstraction w.r.t. the given landmarks:

Lemma 2.1 (Abstraction Property)
Qualitative abstraction is an abstraction, i.e.
 R0(f, ε-, ε+) ⊆ Rabstr(f, ε-, ε+).

Figure 1 - Coverage of the envelope

QR2011: 25th International Workshop on Qualitative Reasoning

168

Lemma 2.2 (Minimality)
The qualitative abstraction is minimal, i.e. any proper subset
of Rabstr(f, ε-, ε+) is not an abstraction of R0(f, ε-, ε+).

If the envelope functions are also monotonic, then

extremal points are taken at some corners of the cell, and
function values need to be computed only the at the corners
in order to obtain the abstraction

Lemma 2.3 (Abstraction of Monotonic Functions)
If f-ε- , f+ε+ are monotonic in each xi, then
 inty (celli) :=
 [min {(f-ε-)(cor) | cor∈Corners(celli)},
 max {(f+ε+)(cor) | cor∈Corners(celli}]

If several variables depend on the same set of input

variables (or, more generally, on sets with a non-empty
intersection), the abstractions of the respective functions can
be computed separately and then combined via a join.

Let y = (y1, y2) = f(x1,…, xn),
 y1 = f 1 (x1,…, xn),
 y2 = f 2 (x1,…, xn).
As the abstraction of f, we compute
 Rabstr(f, ε-, ε+) = Rabstr(f 1, ε-, ε+) Rabstr(f 2, ε-, ε+)
where Rabstr(fj, ε-, ε+) denotes the abstraction of the

function with one dependent variable as described above.
In case of multiple outputs, we may have no other way to

compute the abstraction of the functions because the
numerical model has been implemented this way. In this
case, the result of the abstraction may produce spurious
tuples if the qualitative output values are not unique,
because we have to consider the cross product of the
outputs. An example to illustrate this case can be found in
[Fraracci, 2009].

The solution can also be applied if the functions to be
abstracted do not represent algebraic, but differential
equations in simply treating derivatives as separate
variables. If the numerical model includes integration steps,
they have to be eliminated before applying abstraction (see
[Struss 2002] for a discussion). In general, all model
elements relating values of a variable at different time points
need to be deleted or variables be duplicated in order to
avoid inconsistencies.

3 MOM Background
This section summarizes basic ideas underlying our multiple
modeling environment MOM and classes that are relevant in
the context of this paper (for more coverage, see [Struss and
Regassa, 2010]).

MOM organizes elements of models in 4 layers (see
Figure 2):

• structural layer, which allows to introduce “building
blocks” and aggregate them, e.g. components
connected to form a device,

• physical layer, which results from a decision, which
physical quantities to associate with entities, e.g.
resistance, current, voltage to a resistor,

Figure 2 - Decision-based model building steps

• model frames, which introduce variables representing
certain aspects of the quantities (such as magnitude,
derivative, …) and represent “containers” for
fragments of behavioral descriptions, e.g. “Ohm’s
Law”,

• behavior descriptions, which capture the actual
description of a behavior (aspect), involve a decision
on the variable domain, and implement computations,
e.g. a Matlab model of Ohm’s Law or a constraint as a
qualitative model of the same.

This separation allows us to make the decisions explicit
that underlie the associations between objects at adjacent
layers and, hence, can represent alternative associations and,
thus, multiple models. An important practical impact is that
for different models, all objects and structures that depend
on modeling decisions that are common to them can be re-
used. For instance, all elements of the upper three layers
may be shared between a Matlab model and a qualitative
model of a particular component or device.

This means that in MOM, model abstraction through
domain abstraction is located in the lowest layer and
independent of the others. Only a model frame is involved
providing the hook for the original and the abstracted
behavior description as alternative choices.

QR2011: 25th International Workshop on Qualitative Reasoning

169

 Variables are different objects for model frames and
related behavior descriptions and also for different behavior
descriptions. Therefore, mappings between the respective
variable sets have to be specified and recorded. And since
their domains may be different, also a mapping between
their values is created. Figure 3 illustrates this for variables
of model frame and different behavior descriptions. For
instance, the model frame may represent the domain of the
variable “position” of a valve as {closed, open}, this may be
mapped to a variable “state” with the domain {0, 1} for a
behavior description in Matlab.

Through these mappings, MOM provides the means for
relating and even gluing together behavior descriptions of
different modeling environments: structuring and executing
a system model (and also transforming it), can be done
without fixing or knowing how the various behavior
descriptions are implemented.

Obviously, in MOM, we capture the domain abstraction
underlying model abstraction as described in section 2, by
domain mappings. The major methods of variable mapping
are

• MapVariable (variable)
returning the counterpart of the argument variable,

• MapValues (valueOrSetOfValues, variable)
returning the values of the counterpart of variable that
are consistent with a given value or a set thereof (for
instance, specified as an interval).

Figure 3 - Association between ModelFrame and two Behavior-

Descriptions and the related VariableMappings and
DomainMappings

In MOM, the principle of re-use and integration is not
only applied to the objects of a represented model, but also
to operators that transform models. For instance, the
algorithmic structure of an implementation of the model
abstraction defined in section 2 is independent of the system
that performs the numerical computations (determining
maximum and minimum of a function for a cell) and also
independent of the system that represents the resulting finite
constraints. Hence, the operator should be implemented
independently of these choices. Therefore, MOM offers
abstract interfaces to different types of behavior
descriptions. Implementing this abstract interface for your
favorite modeling environment suffices to exploit the entire
functionality of MOM and, especially, the model operators.

Figure 4 shows the abstract behavior description classes
in MOM with some instances for illustrations (where CS3 is
the constraint system used in Raz’r [OCC'M, 2011]).

MOM contains an abstraction operator written against the
interfaces DirectedNumericalBehaviorDescription and
FiniteConstraintBehaviorDescription. The following
section presents the parts that are relevant to this operator.

4 Numerical and Qualitative Models in MOM

4.1 Directed Numerical Models
In the version of an abstraction operator presented in this
paper, the source of abstraction is some system that
computes (vectors of) output values for a vector of input
values, where these values can be continuous (reals) or
discrete. Many standard modeling and simulation tools,
such as Matlab, belong to this class, which is called
DirectedNumericalBehaviorDescription in MOM. In
contrast, Modelica is one of the instances of Undirected-
NumericalBehaviorDescription, because it does not fix what
is input and output for a computation.

Instead of implementing an abstraction operator tailored
to Matlab/Simulink models, we did so using the abstract
interface and then implementing it for Matlab/Simulink. For
the task at hand, the key part of it is

• ComputeMinMaxMonotonic (cell)
returning the interval of minimal and maximal values
at the corners of the cell (i.e. assuming monotonic
functions) and using

• ComputeOutputVariables (inputvector)
returning the vector of output values for the input.

The latter one is the only method that needs to be
implemented for a specific computation or simulation
system, apart from methods organizing the access to the tool
and extracting the variables:

• GetVariables (direction)
returns the list of variables for direction∈{input,
output},

• OpenSession
which in case of Matlab/Simulink establishes the
connection to a particular Simulink block in a
particular file

• CloseSession.

QR2011: 25th International Workshop on Qualitative Reasoning

170

If a tool is able to compute the minimum and maximum
values of the output variable for an input cell, then the
abstraction operator can properly handle functions that are
not monotonic.

4.2 Finite Constraints
For representing and further processing abstract qualitative
models that are generated from the DirectedNumerical-
BehaviorDescription, the class FiniteConstraintBehavior-
Description (see Fig. 4) is used in MOM. A finite constraint
is given by a set of variables, each with a finite domain
assigned (i.e. a set of qualitative values), and a finite set of
tuples, each of which represents one particular binding of
the variables to respective values. The set of variables
together with their domains is called the signature of the
constraint.

Again, FiniteConstraintBehaviorDescription has been
implemented as an abstract interface for defining and
representing generic finite constraints in a particular
constraint solver. Like the DirectedNumericalBehavior-
Description, the interface is independent of the underlying
constraint satisfaction algorithm, such that the respective
system can be chosen at runtime without modifying the
implementation. In the following, we describe this interface
and demonstrate its usage by means of two particular
constraint solvers, namely CS3 ([OCC'M, 2011]) and
Toulbar2 ([Sanchez et al., 2008], [Schiex, 2011]).

Figure 4 – Various behavior description classes as interfaces

Since each constraint solving system uses its own
representation of finite constraints, i.e. variables, domains
and relations, an abstract interface must implement some
mechanism for mapping between the distinct
representations. In Toulbar2, for instance, the WCSP format
([Graphmod, 2011]) is used for encoding a constraint, which
uses integer values for representing variables and domains,
whereas in CS3, arbitrary strings can be used for variable
names and domain values. Therefore, we employ the
variable mapping algorithms that are already implemented
in MOM in order to transform variables and their respective
values into representations specific to the solvers.

Additionally, the procedures of how to define a constraint
in the systems significantly differ and must be considered in
designing the interface. CS3, for example, provides a
programming interface for interactively defining variables
and their domains, as well as the tuples of values, whereas
Toulbar2 can only handle these definitions in batch mode.
Therefore, in a Toulbar2 implementation of the interface,
the tuples, the variables and the domains must be cached
and handed over to Toulbar at once. Figure 5 shows an
overview of the interface definition.

FiniteConstraintBehaviorDescription, as a subclass of
UndirectedBehaviorDescription is implemented as an
abstract class that defines interface methods for defining a
generic constraint. Among these are

• CreateDomain (domain)
creates and returns the solver-specific representation
of domain (e.g. the domain {-, 0, +} becomes {1,2,3}
in Toulbar2

• CreateVariable (variable)
transforming the MOMvariable into the solver-
specific representation of a variable (e.g. an integer in
Toulbar2) and returns it.

Figure 5 - Finite Constraint Behavior Description

QR2011: 25th International Workshop on Qualitative Reasoning

171

• DefineSignature (variables)
takes a set of variables as an argument and initializes
a constraint's signature in the respective constraint
solver. It uses the previous two methods and the
variable/domain mapping facilities described in
section 3.

• AddTuples (tuples)
Incrementally generates the relation specifying the
variable-value assignments.

We implemented three subclasses of FiniteConstraint-
BehaviorDescription, in particular

• CS3BehaviorDescription, which implements the
interface to the CS3 constraint solver

• TB2BehaviorDescription, which implements the
interface to the Toulbar2 solver

• MOMTableBehaviorDescription, which only
represents the relation and can be used as an
intermediate representation when the relation should
be exported to various specific constraint solvers or if
constraint satisfaction is not needed.

Since the DefineSignature and AddTuple methods are
defined over MOM variables and domains, the three
implementations are interchangeable and can be used
transparently. Additionally, the Initialize method allows to
specify a solver-specific parameter string, e.g. for specifying
a path to where the solver is installed in the file system.

5 Implementing Model Abstraction in MOM
Operators in MOM are any kind of algorithms that
transform or generate objects at any level from other
objects. They may transform structures, such as adding or
removing structural entities in an aggregate entity (e.g.
dependent on whether or not wires connecting components
need to be considered or not. They can generate new
behavior descriptions, such as compressing a
FiniteConstraintBehaviorDescription by projecting out
irrelevant variables or eliminating elements with integration
or delay from a DirectedNumericalBehaviorDescription
which represents ordinary differential equations.

The latter is indeed the operation that has to be performed
before applying the abstraction as stated at the end of
section 2.

The operator NumericDomainAbstractionDirected, which
implements the computation described in section 2, takes an
existing DirectedNumericalBehaviorDescription as a source
and generates a new FiniteConstraintBehaviorDescription
as the target. More precisely, usually, initially there is a
model frame with the numerical behavior description
associated to it including the variable mapping, i.e. the left-
hand side of the diagram in Figure 3. The involved domain
mappings will be identities on the RealNumberDomain (or
double) and potentially mappings of discrete domains. If
one only has, say, a Matlab/Simulink model as the starting
point, the respective model frame and mappings have to be
constructed first, if needed.

The preparative steps are then the following:
• Generate the targetBehaviorDescription, a Finite-

ConstraintBehaviorDescription along with the

respective mappings, i.e. the right-hand side of Fig. 3.
The domain mappings are between real numbers and
qualitative domains given by the landmarks of the
various variables or (identity) mappings of discrete
domains.

• DefineSignature for this targetBehaviorDescription,
whose defining relation has to be constructed now by
the abstraction operator.

This is done by the method GenerateRelation (see Fig. 6).
It needs the following parameters:

• modelFrame: as an instance of ModelFrame
• sourceBehaviorDescriptionAssociation: as an

instance of BehaviorDescriptionAssociation to
associate modelFrame to sourceBehaviorDescription;
in our context, an instance of (a subclass of)
DirectedNumericalBehaviorDescription

• targetBehaviorDescriptionAssociation to link
modelFrame with targetBehaviorDescription;

• modelVariables: the list of Variables to occur in the
relation as a result of the abstraction process; it can be
a proper subset of the respective input/output
variables of the sourceBehaviorDescription. If some
input variables are excluded, they need to be used in
the computation with their complete range, but are not
included in the targetBehaviorDescription.

GenerateVariableMapping creates the mapping between
the variables of source and target and their domains by
concatenating the mappings from source to model frame and
from model frame to target. Note, that such a concatenation
establishes also a variable mapping and domain mappings. It
can be compiled into a new one, but does not have to.
sourceInputCell will be built recursively by Generate-
RelationRecursively, whose pseudo code is shown in Fig. 7.

1Figure 6 - GenerateRelation pseudo code

1 BD: BehaviorDescription

GenerateRelation (ModelFrame,
 sourceBD1Association,
 targetBDAssociation,
 modelVariables)
{
 variableMapping =
 modelFrame.GenerateVariableMapping
 (sourceBDAssociation,
 targetBDAssociation,
 modelVariables)

 sourceBD = sourceBDAssociation.BehaviorDescription
 targetBD = targetBDAssociation.BehaviorDescription
 sourceInputCell = new ValueSet[input variable count]

 GenerateRelationRecursively (0,
 sourceBD,
 targetBD,
 variableMapping,
 sourceInputCell)
}

QR2011: 25th International Workshop on Qualitative Reasoning

172

Figure 7 - GenerateRelationRecursively pseudo code

It iteratively maps all target values to the source domain
to extend the source input cell until it is complete.

Then ComputeMinMaxMonotonic is invoked, and in
GenerateTuples, the resulting intervals for the source output
variables are mapped to the respective set of qualitative
values. If there are several output values, the Cartesian
product of these sets is constructed, and each of its tuples
prefixed by the input tuple.

AddTuples extends the constraint by this set.

6 Discussion
The presentation in this paper attempted to illustrate both
the facilities in MOM for representing variants of models
while re-using the shared part and their utility for
implementing automated model abstraction. The re-
implementation of our model abstraction algorithm in this
environment provides the benefit that it can be applied to
whatever numerical modeling system has the source and
that it can generate finite constraints in your favorite
constraint solving system – provided the abstract interfaces
(which are quite narrow for this task) have been
implemented.

Our work on task-dependent model abstraction
([Sachenbacher and Struss, 2005]) assumed the existence of
a fine-grained, but finite model relation. The abstraction
operator presented here starts from a numerical model and
could be used to generate a finite model to apply task-
dependent abstraction.

The previous implementation of the operator has been
used to generate a qualitative model for failure-modes-and-
effects analysis of a simplified landing gear of an aircraft
from a library of hydraulic Matlab models ([Fraracci,
2009]).

Due to the inherent limitations of model abstraction from
a directed numerical computation in case of multiple
qualitative output values, implementing an abstraction
operator for UndirectedNumericalBehaviorDescription and
Modelica as an instance will be challenging.

7 References
[Addanki et al. 1989] Addanki, S., Roberto Cremonini, J.

Scott Penberthy. Graphs of models. Artificial
Intelligence (51) 1-3, 1991, p.145-177

[Falkenhainer and Forbus, 1991] Falkenhainer, B., and
Forbus, K. Compositional modeling: Finding the right
model for the job. Artificial Intelligence, 51, 1991, p. 95-
143

[Fraracci, 2009] Fraracci, A. Model-based Failure-modes-
and-effects Analysis and its Application to Aircraft
Subsystems. Dissertationen zur Künstlichen Intelligenz
DISKI 326, AKA Verlag, ISBN 978-3-89838-326-4,
IOS Press, ISBN 978-1-60750-081-0

[Graphmod, 2011]
http://graphmod.ics.uci.edu/group/WCSP_file_format

[Nayak, 1995] Nayak, P. Causal approximations. Artificial
Intelligence (70), Issue 1-2, 1994, p. 277 – 334

[OCC'M, 2011] OCC'M Software GmbH. CS3 Constraint
Solver, Germany, 2011. http://www.occm.de/

[Ressencourt et al., 2006] H. Ressencourt, L. Travé-
Massuyès, J. Thomas, Hierarchical modelling and
diagnosis for embedded systems, 17th International
Workshop on Principles of Diagnosis DX'06, Aranda de
Duero (Spain), June 26-28, 2006, pp. 235-242

GenerateRelationRecursively
 (sourceInputVariableIndex,
 sourceBD,
 targetBD,
 variableMapping,
 sourceInputCell)
{
IF sourceInputVariableIndex == sourceInputCell.Length
 //every input value was chosen

THEN //compute the numerical output interval, the

respective qualitative values and return them
together with the input values

 sourceValues = CONCAT(sourceInputCell,
 sourceBD.ComputeMinMaxMonotonic
 (sourceInputCell))
 tuples = GenerateTuples (sourceValues,
 variableMapping)
 targetBD.AddTuples (tuples)

ELSE //extends sourceInputCell

 sourceInputVariable = sourceBD.InputVariables
 [sourceInputVariableIndex]

 //retrieve the mapping for the sourceInputVariable
 targetInputVariable = variableMapping.MapVariable
 (sourceInputVariable)

 FOR EACH targetValue IN
 targetInputVariable.Domain.Values

 sourceInputCell[sourceInputVariableIndex] =
 variableMapping.MapValues (targetInputVariable,
 targetValue)

 GenerateRelationRecursively
 (sourceInputVariableIndex + 1,
 sourceBD,
 targetBD,
 variableMapping,
 sourceInputCell)
 END FOR

END IF
}

QR2011: 25th International Workshop on Qualitative Reasoning

173

[Sachenbacher and Struss, 2005] Sachenbacher, M. , Struss,
P. Task-dependent qualitative domain abstraction,
Artificial Intelligence, (162)1-2, 2005, p. 121-143

[Sanchez et al., 2008] M. Sanchez, S. Bouveret, S. de Givry,
F. Heras, P. Jégou, J. Larrosa, S. Ndiaye, E. Rollon, T.
Schiex, C. Terrioux, G. Verfaillie, and M. Zytnicki.
Max-csp competition 2008: toulbar2 solver description.
In Proceedings of the Third International CSP Solver
Competition, 2008

[Schiex, 2011] Schiex, T. ToulBar2 an open source
weighted constraint satisfaction solver, France, 2011.
http://mulcyber.toulouse.inra.fr/projects/toulbar2/

[Struss, 1992] Struss, P., What's in SD? Towards a Theory
of Modeling for Diagnosis. In Hamscher et al. (eds.),
Readings in Model-based Diagnosis. Morgan Kaufmann
Publishers, 1992, p. 419-450

[Struss, 2002] Struss, P., Automated abstraction of
numerical simulation models – theory and practical
experience. In Sixteenth International Workshop on
Qualitative Reasoning, Sitges, Catalonia, Spain, 2002

[Struss and Regassa, 2010] Struss, P., Regassa, T. MOM –
An Environment for Multiple Modeling. In 24th
International Workshop on Qualitative Reasoning,
Portland, USA, 2010

[Torta and Torasso, 2009] Torta, G., Torasso, P. Parametric
abstraction of behavioral modes for model-based
diagnosis. AI Communications (22) 2, 2009, p.73-96

[Weld, 1992] Weld, D. Reasoning about model accuracy,
Artificial Intelligence (56) 2-3, 1992, p. 255-300

QR2011: 25th International Workshop on Qualitative Reasoning

174

