
Abstract 

Configuring system models based on a model 
library is the crucial means to make modeling 
cheap. However, different tasks may require 
models with modeling assumptions, phenomena 
captured, and, especially, different levels of 
granularity. The only solution to this dilemma is 
generating the required abstractions of the most 
fine-grained model available automatically. This 
paper focuses on domain abstraction and describes 
the implementation of an algorithm for producing 
such abstract models, i.e. finite constraints, from a 
numerical model with directed computation, such 
as Matlab/Simulink.  The context for this 
implementation is MOM, an environment for 
multiple modeling. Instead of requiring a 
specialized implementation of model abstraction 
for a particular numerical simulation system and a 
particular constraint system, MOM provides 
abstract interfaces to classes of such modeling 
systems and, thus, enables us to implement a 
generic abstraction operator for arbitrary instances 
of numerical modeling and constraint satisfaction 
algorithms. We describe these abstract interfaces in 
MOM and how the abstraction operator uses them.  

1 Introduction 
The set of models used in science and engineering is vast 
and extremely heterogeneous. Even when the same system 
is modeled, and even if this is done for similar purposes, 
and even if this happens in one company or department – 
there probably exist different variants and types of models. 
Actually, this limits the utility of models severely, since it 
increases the efforts spent on model building, prevents 
existing models from being re-used and integrated, and 
blocks potential synergy effects which could be achieved by 
combining complementary models.  

There are several reasons for and dimensions of such a 
variety of models; besides ignorance, individual 
preferences, and biased education of modelers, there exist 
undeniable justifications for using different models: 

• the problem to be solved may require models with 
different properties and power. For instance, the 

engine control unit in a car must, of course, calculate 
numerical values for fuel injection, while diagnosis or 
failure-modes-and-effects analysis (FMEA) may have 
to work with information about qualitative behavior 
deviations; also a model for control purposes usually 
includes nominal behavior only (which some people 
consider a big mistake), while a model for test 
generation or FMEA cannot do without fault models. 

• The system to be modeled may demand for different 
kinds of modeling. For many artifacts, the component 
structure and, hence, the model structure can be 
assumed as fixed, while a model of an ecological 
system may have to be more open and allow for 
dynamic extensions.  

• Different modeling and simulation tools reflect 
particularities of the respective system models and, 
thus, are able to provide efficient computation.  

Among the most important resulting variations, we can 
identify different 

• modeling ontologies ((differential) equations, 
constraints, difference equations, finite element 
analysis, … and at the conceptual level components, 
processes, causal graphs, …), 

• temporal granularity: continuous vs. discretized 
time. What can be considered instantaneous?  

• structural granularity, both related to 
− the conceptual (physical) layer: what are the 

elementary units to be modeled? Which types of 
quantities are relevant? 

− the behavior modeling: which variables have to be 
involved (magnitude, derivative, deviation, …)? 

• granularity of variable domains: are numerical 
values need (and available), intervals, or simply 
signs? 

• tools used to represent the model and implement the 
calculations. 

Our work on MOM (Model manipulation system) aims at 
providing an environment for the integration of different 
models along these dimensions, at the time being focusing 
on the last three issues. The second goal of MOM is to 
facilitate the automated transformation of models in order 
to achieve solutions tailored to particular requirements. In 
[Struss and Regassa, 2010] we presented the basics of 
MOM, especially the structuring of different layers of 
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models. In this paper, we focus on the last two dimensions 
and describe MOM’s facilities for 

• the automated generation of qualitative models from 
numerical ones (more specifically, directed ones), i.e. 
we focus exclusively on domain abstraction (as 
opposed, for instance, to functional or structural 
abstraction) 

• the integration of different tools, namely the ones 
needed for domain abstraction: directed numerical 
models and constraint systems. 

The task of organizing and generating multiple models 
has been subject to research in qualitative modeling (see, as 
a small selection, [Addanki et al., 1989], [Falkenhainer and 
Forbus, 1991], [Struss, 1992], [Weld, 1992], [Nayak, 1995], 
[Ressencourt et al., 2006], [Sachenbacher and Struss, 2005], 
[Torta and Torasso, 2009]), although most of the work takes 
a rather academic perspective. The motivation for the work 
presented here arose from our industrial projects, for 
instance in diagnosis, fault analysis, and testing, we were 
often confronted with existing numerical system models 
built by engineers, usually in order to validate control. 
Models supporting diagnostic tasks are usually qualitative, 
but still only valid if they are abstractions of proper 
engineering models.  Hence, the task of automatically 
generating them from the numerical models, rather than 
constructing them by hand from scratch, is quite important 
from a practical perspective and can even be crucial to the 
feasibility of an industrial application.  

The following section discusses the mathematical 
background for qualitative abstraction of (monotonic) real-
valued functions, while section 3 summarizes the part of 
MOM that is relevant in the context of this paper. Section 4 
presents the abstract interfaces for the source (Directed-
NumericalBehaviorDescription) and target (Finite-
ConstraintBehaviorDescription) of the abstraction operator, 
which is then discussed in section 5.  

2 Automated model Abstraction Background 
The section describes qualitative abstraction, i.e. 
discretization w.r.t. a finite set of discrete values (called 
landmarks) of a numerical function in mathematical terms 
(extending [Struss, 2002]).  

We account for the fact that every numerical model is 
only approximate and that the abstraction step has to reflect 
the limited precision. Since a function with n dependent 
variables can be replaced by n single-output functions, the 
input to the abstraction is given by:  

• a numerical model that computes one output variable 
y as a function of n input variables, xi:   

y = f(x1, …, xn)  
• a set of landmark values for all input variables xi and 

the output variable, i.e. {l ij} ⊂ R 
• two continuous functions, ε-(x1, ..., xn), ε+(x1, ..., xn), 

that characterize the precision of the model, i.e. the 
base model is given by the envelope of f:  
R0(f, ε-, ε+) = {(x1, ..., xn, y) |  f(x1, ..., xn) - ε-(x1, ..., xn) 
< y < f(x1, ..., xn) + ε+(x1, ..., xn)}. 

For monotonic (sections of) functions, it is 
straightforward to define and compute the model abstraction 
for a given sets of landmarks.  

We define a qualitative value as an interval between two 
adjacent landmarks: qi,j := (l i,j, l i,j+1). 

For each tuple of qualitative input values, (q1,j1, ... , qn,jn), 
we have to compute the qualitative values of y that are 
consistent with this tuple. Then a tuple of qualitative input 
values is the cross product of such intervals, i.e. an n-
dimensional rectangle, which we call an input cell. The 
corners of such a cell are given by the tuples that combine 
the bounding landmarks: 

Corners(celli) = Corners(q1,j1, ... , qn,jn) :=  
 { ( l1,k1, ..., ln,kn) | qi,j := (l i,j, l i,j+1) ∧ ki ∈{j, j+1} }. 
If f is a continuous function, the consistent qualitative 

values of y are those that have a non-empty intersection with 
the interval between the minimal and the maximal value 
that, f - ε-, f + ε+ take on in the rectangle.  

 
Definition (Qualitative Abstraction of a Function) 
Let be: 

• f-ε- , f+ε+ continuous for each xi,  
• {q i,j} the qualitative values for xi,  
• Cells the set of cells defined by {{qi,j}},  
• {qy,j} the qualitative values for y.  

For each input cell,  celli ∈ Cells, the range of the output y is 
inty(celli) :=   

 [min {( f-ε- )(x) |  x  ∈ celli },  
  max {(f+ε+)(x) |  x  ∈ celli}] 
Then  

Rabstr(f, ε-, ε+) := 
 {(q1,j1, ... , qn,jn, qy,j)|qy,j ∩inty(celli)≠∅}  
is the qualitative abstraction of R0(f, ε-, ε+). 
 

Figure 1 illustrates this and conveys the intuition that a 
coverage of the envelope is constructed. 

It is easy to see that the resulting qualitative model does 
not lose anything included in the original model and is the 
“tightest” abstraction w.r.t. the given landmarks: 

 
Lemma 2.1 (Abstraction Property) 
Qualitative abstraction is an abstraction, i.e. 
 R0(f, ε-, ε+) ⊆ Rabstr(f, ε-, ε+). 
 

Figure 1 - Coverage of the envelope 
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Lemma 2.2 (Minimality) 
The qualitative abstraction is minimal, i.e. any proper subset 
of Rabstr(f, ε-, ε+) is not an abstraction of R0(f, ε-, ε+). 

 
If the envelope functions are also monotonic, then 

extremal points are taken at some corners of the cell, and 
function values need to be computed only the at the corners 
in order to obtain the abstraction  

 
Lemma 2.3 (Abstraction of Monotonic Functions) 
If  f-ε- , f+ε+ are monotonic in each xi, then 
 inty (celli) :=  
 [min {( f-ε- )(cor) | cor∈Corners(celli)},  
  max {(f+ε+)(cor) | cor∈Corners(celli}] 

 
If several variables depend on the same set of input 

variables (or, more generally, on sets with a non-empty 
intersection), the abstractions of the respective functions can 
be computed separately and then combined via a join. 

Let  y = (y1, y2) = f(x1,…, xn),  
 y1 = f 1 (x1,…, xn),  
 y2 = f 2 (x1,…, xn).  
As the abstraction of f, we compute 
 Rabstr(f, ε-, ε+)  =  Rabstr(f 1, ε-, ε+)  Rabstr(f 2, ε-, ε+)  
where Rabstr(fj, ε-, ε+) denotes the abstraction of the 

function with one dependent variable as described above. 
In case of multiple outputs, we may have no other way to 

compute the abstraction of the functions because the 
numerical model has been implemented this way. In this 
case, the result of the abstraction may produce spurious 
tuples if the qualitative output values are not unique, 
because we have to consider the cross product of the 
outputs. An example to illustrate this case can be found in 
[Fraracci, 2009]. 

The solution can also be applied if the functions to be 
abstracted do not represent algebraic, but differential 
equations in simply treating derivatives as separate 
variables. If the numerical model includes integration steps, 
they have to be eliminated before applying abstraction (see 
[Struss 2002] for a discussion). In general, all model 
elements relating values of a variable at different time points 
need to be deleted or variables be duplicated in order to 
avoid inconsistencies. 

3 MOM Background  
This section summarizes basic ideas underlying our multiple 
modeling environment MOM and classes that are relevant in 
the context of this paper (for more coverage, see [Struss and 
Regassa, 2010]).  

MOM organizes elements of models in 4 layers (see 
Figure 2): 

• structural layer, which allows to introduce “building 
blocks” and aggregate them, e.g. components 
connected to form a device, 

• physical layer, which results from a decision, which 
physical quantities to associate with entities, e.g. 
resistance, current, voltage to a resistor, 

 

Figure 2 - Decision-based model building steps 

• model frames, which introduce variables representing 
certain aspects of the quantities (such as magnitude, 
derivative, …) and represent “containers” for 
fragments of behavioral descriptions, e.g. “Ohm’s 
Law”, 

• behavior descriptions, which capture the actual 
description of a behavior (aspect), involve a decision 
on the variable domain, and implement computations, 
e.g. a Matlab model of Ohm’s Law or a constraint as a 
qualitative model of the same.  

This separation allows us to make the decisions explicit 
that underlie the associations between objects at adjacent 
layers and, hence, can represent alternative associations and, 
thus, multiple models. An important practical impact is that 
for different models, all objects and structures that depend 
on modeling decisions that are common to them can be re-
used. For instance, all elements of the upper three layers 
may be shared between a Matlab model and a qualitative 
model of a particular component or device.  

This means that in MOM, model abstraction through 
domain abstraction is located in the lowest layer and 
independent of the others. Only a model frame is involved 
providing the hook for the original and the abstracted 
behavior description as alternative choices. 
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 Variables are different objects for model frames and 
related behavior descriptions and also for different behavior 
descriptions. Therefore, mappings between the respective 
variable sets have to be specified and recorded. And since 
their domains may be different, also a mapping between 
their values is created. Figure 3 illustrates this for variables 
of model frame and different behavior descriptions. For 
instance, the model frame may represent the domain of the 
variable “position” of a valve as {closed, open}, this may be 
mapped to a variable “state” with the domain {0, 1} for a 
behavior description in Matlab.  

Through these mappings, MOM provides the means for 
relating and even gluing together behavior descriptions of 
different modeling environments: structuring and executing 
a system model (and also transforming it), can be done 
without fixing or knowing how the various behavior 
descriptions are implemented. 

Obviously, in MOM, we capture the domain abstraction 
underlying model abstraction as described in section 2, by 
domain mappings. The major methods of variable mapping 
are 

• MapVariable (variable)  
returning the counterpart of the argument variable, 

• MapValues (valueOrSetOfValues, variable) 
returning the values of the counterpart of variable that 
are consistent with a given value or a set thereof (for 
instance, specified as an interval). 

 

 
Figure 3 - Association between ModelFrame and two Behavior-

Descriptions and the related VariableMappings and 
DomainMappings 

In MOM, the principle of re-use and integration is not 
only applied to the objects of a represented model, but also 
to operators that transform models. For instance, the 
algorithmic structure of an implementation of the model 
abstraction defined in section 2 is independent of the system 
that performs the numerical computations (determining 
maximum and minimum of a function for a cell) and also 
independent of the system that represents the resulting finite 
constraints. Hence, the operator should be implemented 
independently of these choices. Therefore, MOM offers 
abstract interfaces to different types of behavior 
descriptions. Implementing this abstract interface for your 
favorite modeling environment suffices to exploit the entire 
functionality of MOM and, especially, the model operators.  

Figure 4 shows the abstract behavior description classes 
in MOM with some instances for illustrations (where CS3 is 
the constraint system used in Raz’r [OCC'M, 2011]).  

MOM contains an abstraction operator written against the 
interfaces DirectedNumericalBehaviorDescription and 
FiniteConstraintBehaviorDescription. The following 
section presents the parts that are relevant to this operator.   

4 Numerical and Qualitative Models in MOM 

4.1 Directed Numerical Models 
In the version of an abstraction operator presented in this 
paper, the source of abstraction is some system that 
computes (vectors of) output values for a vector of input 
values, where these values can be continuous (reals) or 
discrete. Many standard modeling and simulation tools, 
such as Matlab, belong to this class, which is called 
DirectedNumericalBehaviorDescription in MOM. In 
contrast, Modelica is one of the instances of Undirected-
NumericalBehaviorDescription, because it does not fix what 
is input and output for a computation.  

Instead of implementing an abstraction operator tailored 
to Matlab/Simulink models, we did so using the abstract 
interface and then implementing it for Matlab/Simulink. For 
the task at hand, the key part of it is 

• ComputeMinMaxMonotonic (cell) 
returning the interval of minimal and maximal values 
at the corners of the cell (i.e. assuming monotonic 
functions) and using 

• ComputeOutputVariables (inputvector) 
returning the vector of output values for the input. 

The latter one is the only method that needs to be 
implemented for a specific computation or simulation 
system, apart from methods organizing the access to the tool 
and extracting the variables: 

• GetVariables (direction) 
returns the list of variables for direction∈{input, 
output}, 

• OpenSession 
which in case of Matlab/Simulink establishes the 
connection to a particular Simulink block in a 
particular file 

• CloseSession. 
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If a tool is able to compute the minimum and maximum 
values of the output variable for an input cell, then the 
abstraction operator can properly handle functions that are 
not monotonic.  

4.2 Finite Constraints 
For representing and further processing abstract qualitative 
models that are generated from the DirectedNumerical-
BehaviorDescription, the class FiniteConstraintBehavior-
Description (see Fig. 4) is used in MOM. A finite constraint 
is given by a set of variables, each with a finite domain 
assigned (i.e. a set of qualitative values), and a finite set of 
tuples, each of which represents one particular binding of 
the variables to respective values. The set of variables 
together with their domains is called the signature of the 
constraint. 

Again, FiniteConstraintBehaviorDescription has been 
implemented as an abstract interface for defining and 
representing generic finite constraints in a particular 
constraint solver. Like the DirectedNumericalBehavior-
Description, the interface is independent of the underlying 
constraint satisfaction algorithm, such that the respective 
system can be chosen at runtime without modifying the 
implementation. In the following, we describe this interface 
and demonstrate its usage by means of two particular 
constraint solvers, namely CS3 ([OCC'M, 2011]) and 
Toulbar2 ([Sanchez et al., 2008], [Schiex, 2011]). 
 

Figure 4 – Various behavior description classes as interfaces 

Since each constraint solving system uses its own 
representation of finite constraints, i.e. variables, domains 
and relations, an abstract interface must implement some 
mechanism for mapping between the distinct 
representations. In Toulbar2, for instance, the WCSP format 
([Graphmod, 2011]) is used for encoding a constraint, which 
uses integer values for representing variables and domains, 
whereas in CS3, arbitrary strings can be used for variable 
names and domain values. Therefore, we employ the 
variable mapping algorithms that are already implemented 
in MOM in order to transform variables and their respective 
values into representations specific to the solvers. 

Additionally, the procedures of how to define a constraint 
in the systems significantly differ and must be considered in 
designing the interface. CS3, for example, provides a 
programming interface for interactively defining variables 
and their domains, as well as the tuples of values, whereas 
Toulbar2 can only handle these definitions in batch mode. 
Therefore, in a Toulbar2 implementation of the interface, 
the tuples, the variables and the domains must be cached 
and handed over to Toulbar at once. Figure 5 shows an 
overview of the interface definition. 

FiniteConstraintBehaviorDescription, as a subclass of 
UndirectedBehaviorDescription is implemented as an 
abstract class that defines interface methods for defining a 
generic constraint. Among these are 

• CreateDomain (domain) 
creates and returns the solver-specific representation 
of domain (e.g. the domain {-, 0, +} becomes {1,2,3} 
in Toulbar2 

• CreateVariable (variable) 
transforming the MOMvariable into the solver-
specific representation of a variable (e.g. an integer in 
Toulbar2) and returns it.  

 

Figure 5 - Finite Constraint Behavior Description 
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• DefineSignature (variables) 
takes a set of variables as an argument and initializes 
a constraint's signature in the respective constraint 
solver. It uses the previous two methods and the 
variable/domain mapping facilities described in 
section 3. 

• AddTuples (tuples) 
Incrementally generates the relation specifying the 
variable-value assignments. 

We implemented three subclasses of FiniteConstraint-
BehaviorDescription, in particular  

• CS3BehaviorDescription, which implements the 
interface to the CS3 constraint solver 

• TB2BehaviorDescription, which implements the 
interface to the Toulbar2 solver 

• MOMTableBehaviorDescription, which only 
represents the relation and can be used as an 
intermediate representation when the relation should 
be exported to various specific constraint solvers or if 
constraint satisfaction is not needed. 

Since the DefineSignature and AddTuple methods are 
defined over MOM variables and domains, the three 
implementations are interchangeable and can be used 
transparently. Additionally, the Initialize method allows to 
specify a solver-specific parameter string, e.g. for specifying 
a path to where the solver is installed in the file system.   

5 Implementing Model Abstraction in MOM 
Operators in MOM are any kind of algorithms that 
transform or generate objects at any level from other 
objects. They may transform structures, such as adding or 
removing structural entities in an aggregate entity (e.g. 
dependent on whether or not wires connecting components 
need to be considered or not. They can generate new 
behavior descriptions, such as compressing a 
FiniteConstraintBehaviorDescription by projecting out 
irrelevant variables or eliminating elements with integration 
or delay from a DirectedNumericalBehaviorDescription 
which represents ordinary differential equations. 

The latter is indeed the operation that has to be performed 
before applying the abstraction as stated at the end of  
section 2. 

The operator NumericDomainAbstractionDirected, which 
implements the computation described in section 2, takes an 
existing DirectedNumericalBehaviorDescription as a source 
and generates a new FiniteConstraintBehaviorDescription 
as the target. More precisely, usually, initially there is a 
model frame with the numerical behavior description 
associated to it including the variable mapping, i.e. the left-
hand side of the diagram in Figure 3. The involved domain 
mappings will be identities on the RealNumberDomain (or 
double) and potentially mappings of discrete domains. If 
one only has, say, a Matlab/Simulink model as the starting 
point, the respective model frame and mappings have to be 
constructed first, if needed. 

The preparative steps are then the following: 
• Generate the targetBehaviorDescription, a Finite-

ConstraintBehaviorDescription along with the 

respective mappings, i.e. the right-hand side of Fig. 3. 
The domain mappings are between real numbers and 
qualitative domains given by the landmarks of the 
various variables or (identity) mappings of discrete 
domains.  

• DefineSignature for this targetBehaviorDescription, 
whose defining relation has to be constructed now by 
the abstraction operator. 

This is done by the method GenerateRelation (see Fig. 6). 
It needs the following parameters: 

• modelFrame: as an instance of ModelFrame 
• sourceBehaviorDescriptionAssociation: as an 

instance of BehaviorDescriptionAssociation to 
associate modelFrame to sourceBehaviorDescription; 
in our context, an instance of  (a subclass of) 
DirectedNumericalBehaviorDescription  

• targetBehaviorDescriptionAssociation to link 
modelFrame with targetBehaviorDescription; 

• modelVariables: the list of Variables to occur in the 
relation as a result of the abstraction process; it can be 
a proper subset of the respective input/output 
variables of the sourceBehaviorDescription. If some 
input variables are excluded, they need to be used in 
the computation with their complete range, but are not 
included in the targetBehaviorDescription.  

GenerateVariableMapping creates the mapping between 
the variables of source and target and their domains by 
concatenating the mappings from source to model frame and 
from model frame to target. Note, that such a concatenation 
establishes also a variable mapping and domain mappings. It 
can be compiled into a new one, but does not have to. 
sourceInputCell will be built recursively by Generate-
RelationRecursively, whose pseudo code is shown in Fig. 7.  

1Figure 6 - GenerateRelation pseudo code 

                                                           
1 BD: BehaviorDescription 

GenerateRelation (ModelFrame,  
 sourceBD1Association,   
 targetBDAssociation,  
 modelVariables) 
{  
  variableMapping =    
              modelFrame.GenerateVariableMapping 
 (sourceBDAssociation, 
 targetBDAssociation, 
 modelVariables) 
                                      
 sourceBD = sourceBDAssociation.BehaviorDescription 
 targetBD = targetBDAssociation.BehaviorDescription    
 sourceInputCell = new ValueSet[input variable count] 
    
 GenerateRelationRecursively (0,  
 sourceBD,  
 targetBD,                                         
 variableMapping,  
 sourceInputCell) 
} 
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Figure 7 - GenerateRelationRecursively pseudo code 

It iteratively maps all target values to the source domain 
to extend the source input cell until it is complete. 

Then ComputeMinMaxMonotonic is invoked, and in 
GenerateTuples, the resulting intervals for the source output 
variables are mapped to the respective set of qualitative 
values. If there are several output values, the Cartesian 
product of these sets is constructed, and each of its tuples 
prefixed by the input tuple.  

AddTuples extends the constraint by this set.  

6 Discussion 
The presentation in this paper attempted to illustrate both 
the facilities in MOM for representing variants of models 
while re-using the shared part and their utility for 
implementing automated model abstraction. The re-
implementation of our model abstraction algorithm in this 
environment provides the benefit that it can be applied to 
whatever numerical modeling system has the source and 
that it can generate finite constraints in your favorite 
constraint solving system – provided the abstract interfaces 
(which are quite narrow for this task) have been 
implemented.  

Our work on task-dependent model abstraction 
([Sachenbacher and Struss, 2005]) assumed the existence of 
a fine-grained, but finite model relation. The abstraction 
operator presented here starts from a numerical model and 
could be used to generate a finite model to apply task-
dependent abstraction.  

The previous implementation of the operator has been 
used to generate a qualitative model for failure-modes-and-
effects analysis of a simplified landing gear of an aircraft 
from a library of hydraulic Matlab models ([Fraracci, 
2009]).  

Due to the inherent limitations of model abstraction from 
a directed numerical computation in case of multiple 
qualitative output values, implementing an abstraction 
operator for UndirectedNumericalBehaviorDescription and 
Modelica as an instance will be challenging.  
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