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Abstract
In this paper, we demonstrate advantages of qual-
itative learning from experiments in a complex
dynamic domain, in comparison with quantitative
learning. Our learning domain is block pushing by
a mobile robot. Induced qualitative models are in-
tended for the planning of robot tasks of moving a
block to a given position by point-contact pushing.
Quantitative mathematical models of block pushing
are very complex and therefore hard to apply. We
used the QUIN method for learning tree-structured
qualitative models in this domain. We showed that
incomparably simpler and correct qualitative mod-
els can be induced from no more than a few hun-
dreds of examples. Yet these models suffice for
successful planning and plan execution for block
moving tasks.

1 Introduction
In this paper we present a new approach to learning and
task planning in continuous domains. The approach in-
cludes: learning of a qualitative model of the problem domain
through experimentation in the domain, planning with a qual-
itative model to solve a given task, and plan execution in the
real world. We carry out a detailed experimental case study
in applying this approach to the task of moving a block to a
goal position by robot’s pushing the block. A typical task is
illustrated in Figure 1. The results were obtained by a real
robot (Figure 2) using an overhead vision system.

We use the QUIN method for learning tree-structured qual-
itative models. Usual, quantitative mathematical models of
block pushing are very complex compared to induced qualita-
tive models. In section 4 we describe the application of QUIN
to inducing a qualitative model from the measured data. We
validate the induced qualitative model in terms of its consis-
tency with a known mathematical model of the same dynamic
system. The obtained qualitative model is much simpler and
more intuitive than the corresponding mathematical model.

A demonstration video of our work is available at
http://www.youtube.com/watch?v=3xwwoIEDoQo. In addi-
tion to learning a qualitative model, the video also illustrates
planning and plan execution, which is not the topic of this
paper.

2 Related work
The use of machine learning to automatically induce models
of a planning domain to be used for task planning is a tra-
ditional topic in AI. [Zimmerman and Kambhampati, 2003]
give an overview of this research. [Garcia-Martinez and Bor-
rajo, 2000; Veloso et al., 1995] are representative papers in
this field. Our work is different from typical work in this field
because we learn qualitative models of continuous dynamics
of planning domain, as opposed to typically discrete models
used in large majority of that research.

There is a considerable amount of work in the learning of
qualitative models from data. [Bratko and Šuc, 2003] is a
review til then. In this respect, our work is closest to [Šuc,
2003]. Our work is an application of Šuc’s tree structured
qualitative learning to a dynamic domain.

The problem of pushing objects by a robot has been stud-
ied in various settings. In [Lynch and Mason, 1996; Bajd and
Balorda, 1994] a two point or a line contact between a robot
and an object is assumed. More challenging, one point con-
tact has also been discussed in [Behrens et al., 2010; Lau et
al., 2011]. Problem of modeling the object-pushing domain
has been addressed from two aspects. One assumed a prede-
fined model for predicting consequences of robot’s actions, as
in [Lynch and Mason, 1996; Behrens, 2010]. The other used
machine learning techniques to induce models from learning
examples collected by robot’s experimentation [Kopicki et
al., 2009; Lau et al. 2011].

Predefined models can be based on human intuition [Em-
ery and Balch, 2001] or more traditional, based on the laws of
physics [Behrens 2010; Lynch and Myson; 1996]. In [Lau et
al. 2011] a simple learning problem using only robot position
and direction of pushing as independent variables was exam-
ined. In [Kopicky et al. 2009] a more extensive approach us-
ing Gaussian machine learning methods was proposed. Com-
plex models are, due to high computational complexity, found
difficult to use for the planning purposes. They only allow
planning a few actions ahead [Walker and Salisbury, 2008].
An approach to plan six actions ahead was proposed in [Lau
et. al 2011]. Discussed approaches have problems to cap-
ture the necessary details to perform more complicated tasks
(e. g. model robot’s angular velocity as an independent vari-
able, which is needed for balancing the object while pushing
it under single point of contact) and to enable time efficient
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Figure 1: The robot’s task is to move the object (dark rect-
angle) to the goal position (white rectangle) with the block in
the indicated orientation (arrows). The robot may push the
object by the tip of its triangular bumper. Dark rectangles of
the robot’s shape are the robot’s wheels.

planning at the same time.

3 The pushing task
Figure 1 illustrates our robot’s task of moving a block from
its start position to the given goal position. The object is very
light compared to the robot. The robot may push the object
by making a point contact between the object and the tip point
of the triangular bumper part of the robot. Note that the task
involves both the translation and rotation of the object. The
difficulty of the task comes from the complex translational
and rotational movement of the object when the robot bumps
into it. Models of point-contact pushing are very complicated.

Our robot, shown in Figure 2, was constructed from the
Lego Mindstorms kit. The dimensions of the block were
20x11 cm, and the robot was of comparable size. The cur-
rent position and orientation of the robot and the object were
observed by an overview camera. Figure 3 shows the vari-
ables chosen to represent the measured data, where v is the
velocity of the robot’s center of gravity, ω is the robot’s ro-
tational velocity, α is a central angle used to define contact
point between the robot and the object and φ is an angle un-
der which the robot touches the object. The object’s position
is (xo, yo), and orientation is θo. The situation in Figure 3
is shown in adjusted coordinate system (x�, y�, θ�) chosen so
that the block’s coordinates in this coordinate system are 0
which is convenient as it simplifies the presentation of the
learned model.

4 Learning a qualitative model of pushing
4.1 The learning problem
The robot’s actions last for a fixed time interval empirically
chosen in our case to be 0.5 sec. The learning problem to
induce a suitable dynamical model of pushing was formu-
lated as follows. A robot’s action is defined by the variables
α, φ, v and ω. So these are the independent variables. The
results of an action are the changes in the object’s position
(�xo,�yo) and orientation �θo, and in the robot’s posi-
tion relative to the object given by (�α,�φ). Thus a model

Figure 2: The robot.
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Figure 3: Variables defining the position and orientation of
the robot relative to the block.

consists of five functions: ∆xo = fx(α,φ, v,ω), ∆yo =
fy(α,φ, v,ω), ∆θo = fθ(α,φ, v,ω), ∆α = fα(α,φ, v,ω),
and ∆φ = fφ(α,φ, v,ω).

The problem of learning a qualitative model in our case is
to find a qualitative statement of these five dependences.

The learning data were collected by the robot performing
a number of example actions of pushing, and measuring the
actions’ effects (5-tuples) with the camera. The example ac-
tions were chosen so as to systematically cover the problem
space with uniform sampling, without any sophisticated sam-
pling strategy. The chosen number of examples for learning
was 432. Due to the symmetries with respect to left-right and
above-below, the actual number of measurements taken by
the robot was 108. The robot was able to physically collect
such a sample in about 15 minutes.

4.2 The qualitative learning tool
We used the QUIN program [Šuc, 2003] for learning tree-
structured qualitative models from data. Induction of quali-
tative trees is similar to the induction of decision trees. The
difference is that in decision trees, the leaves are labeled with
values of the dependent variable, whereas in qualitative trees
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the leaves are labeled with what we call monotonic qualitative
constraints (abbreviated as MQC).

Examples of qualitative trees will be given later. MQCs
define qualitative constraints on the dependent variable. The
dependent variable is also called class variable, and the other,
independent variables are also called attributes. MQCs are
a version of monotonicity constraints that are often used
in qualitative reasoning [Kuipers, 1996; Forbus, 1997] give
overviews and discuss various abstractions of mathematical
relations used in qualitative reasoning. MQCs have the form
MSigns(x1, x2, ...) where Signs is a sequence of + or –
signs, each of them corresponding to a variable xi. For ex-
ample, formula p = M+,−(T, V ) says that p is “positively
related” to T and “negatively related” to V . That means: if T
increases and V stays unchanged then p also increases, and if
V increases and T stays unchanged then p decreases.

4.3 Induced qualitative models
Learned models depend on measured data which may slightly
differ between experiments at least due to measurement er-
rors. An induced model consists of five qualitative trees, one
for each dependent variable. We here present a typical such
model. Figure 4 shows the qualitative tree for the change�θo
in the orientation of the object.

This tree applies to the cases when the robot’s bumper is
in contact with the left side of the rectangle (see Figure 3).
When the contact is in the middle of this side, α = 90◦. When
the point of contact is above the middle of the side, α < 90◦.
This tree is intuitively quite sensible and corresponds to com-
mon sense human models of block pushing. Let us consider
the leftmost leaf of the tree. This leaf applies to the cases
when α < 76.82◦. The formula in the leaf states the qualita-
tive relation �θo = M−(v). That is, the greater the robot’s
velocity, the faster the block will rotate in the clockwise di-
rection (that is θo will decrease). The tree tends towards sym-
metry between the contact above or below the middle of the
left side of the block. The tree is however not completely
symmetrical. First, the thresholds for α are not symmetrical
w.r.t. 90◦ as expected. So, for example, the threshold 87.19◦

should theoretically be 90◦. Also, the MQCs in the middle
two leaves should mention the same variables. The reason for
this asymmetry lies in the differences between measurement
data that fall into these leaves. The monotonicity constraint
with respect to α is very weak and was not detected in the data
in one of these two leaves. The rest of the induced qualitative
models are presented on Figure 5.

Again, most of the relations in these trees can be explained
by common sense physics, although the symmetries in the
thresholds are not ideal.

4.4 Validation against mathematical model
In addition to studying the intuitive plausibility of induced
qualitative models, we also made an attempt to validate these
models against known mathematical models. We started with
the models by Yia and Erdmann [1996, 1998, 1999] that de-
scribe the point-contact pushing an object of any shape in the
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Figure 4: Qualitative dependence of the change �θo of the
orientation θo on the parameters of the action. mesured be-
tween positive y-axis and the line through the point of contact
and the origin.
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Figure 6: Model of pushing rectangular objects.

x− y plane. We extended the model with robot’s angular ve-
locity ωr and then applied the model to rectangular objects
(see Figure 6). Object is described with a piecewise smooth
closed curve β. Notation ‘´’ means differentiation with re-
spect to a position change along curve.

Pushing was described by Newton’s (Equation 1) and Eu-
ler’s (Equation 2) formula. Newton’s formula describes trans-
lation and Eulers’s formula rotation of the object. µ re-
presents coefficient of friction between the robot and the
object, η is the object’s area density, R rotation matrix, and
J = 1

12m(a2 + b2) moment inertia of a rectangular object.

Vector −→A2 = 4(
´ a

2

0

´ b
2

0

�
x2 + y2dxdy)ω̂o is used to describe

dynamic friction due to rotation of the object around its center
of mass.

−→
F − µηgabv̂o = m−̇→vo (1)

R
−→
β ×−→

F − µηg
−→
A2 = J−̇→ωo (2)

Another equation was needed to describe the movement of
point of contact between robot and object. For this purpose
two cases were found.

If static friction between object and robot is the interval
described with Equation 3, where γ = arctan(ωr ∗ r ∗ d/vr)
and ψ = arctan(µ), then point of contact does not move.

R(
π

2
+γ+ψ)R

−→
β� ×−→

F < 0 < R(
π

2
+γ−ψ)R

−→
β� ×−→

F (3)

If static friction is not this interval, then contact point
moves along one of the sides as defined with Equation 4,
where −→

d represents a vector from robot’s center of mass to
the end of the bumper.

−→vr +−→ωr ×
−→
d = −→vo +−→ωo ×R

−→
β +R

−→a
2 cos2 α̇

(4)

Since the point of contact is now moving, we have a dy-
namic friction instead of static one. Dynamic friction is cap-
tured with equation 5. Decision on using + or − depends on
a direction of contact point movement.

−→
F ·R(θo + γ ± ψ)

−→
β� = 0 (5)

We will not discuss details of this mathematical model as
complete understanding is not needed for the rest of the paper.
The point to be noted is the striking difference in the comple-
xity of this model in comparison with the induced qualitative
model. The mathematical model above cannot be solved ana-
lytically, so the correctness of the induced qualitative model
cannot be directly verified by considering the formulas above.
It is, however, possible to detect inconsistencies between the
two models by considering results of numerical simulation
based on the mathematical model. We ran numerical simula-
tions targeted at checking various parts of the qualitative mo-
del. Inconsistencies between the qualitative constraints in the
qualitative model can thus be caught in numerical simulation
traces. We will present an example of finding inconsistences
for qualitative tree for �θo. For the rest of the trees, we will
just describe the results.

Qualitative tree for �θo This tree was consistent with the
numerical simulations up to the asymmetry between the two
middle leaves. Figure 7 (above) depicts results of the simula-
tion with the initial conditions α = 96◦, v = 10cm/s, and for
Case 1 ω = −9◦s−1 and φ = −15◦, for Case 2 ω = −9◦s−1

and φ = 15◦, for Case 3 ω = 9◦s−1 and φ = −15◦, and
for Case 4 ω = 9◦s−1 and φ = 15◦. The results are con-
sistent with MQC M+,−(ω,φ). To test if this QMC should
also include dependency on α a series of experiments with
initial conditions v = 10 cm/s, ω = 0, φ = 0 and for Case
1 α = 102◦, for Case 2 α = 98◦, and for Case 3 α = 94◦

were carried out. Results are shown on Figure 7 (below). Nu-
merical simulation showed that the correct QMC includes α.
However, it is obvious that this influence is weak, being in the
order of measurement errors. This explains why dependence
on α was only detected in one of the two leaves.

Qualitative tree for �xo This tree was completely con-
sistent with numerical simulations.

Qualitative (single node) tree for�yo This tree was com-
pletely consistent with numerical simulations.

Qualitative tree for �α Induced threshold φ = 9.25◦ cor-
responds well to the transition point between static friction
and dynamic friction, which is explained in the description
of the mathematical model. However, due to the symmetry,
there should be a similar threshold also for negative φ. In the
region of static friction ∆α = 0, which cannot be described
with a QMC. Thus QUIN induced a QMC in this region that
corresponds only to the noise in the learning examples.
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Figure 7: Results of numerical simulation for �θo.

Qualitative tree for �φ This tree was consistent with all
numerical simulations.

To conclude this comparison between the induced qualita-
tive model and the mathematical model, we observe that the
qualitative model is remarkably consistent with the mathema-
tical model. The qualitative model has strong advantage in
respect of simplicity and interpretability. The mathematical
model, on the other hand, enables accurate numerical predi-
cations whereas the qualitative model can only make quali-
tative predictions about the direction of change of dependent
variables.

5 Conclusions
The main contribution of this paper is the learning and vali-
dation of a qualitative model of block pushing by a robot with
one point contact. This model is incomparably simpler than
known mathematical models of pushing. It is intuitive and
thus gives human-understandable insight into the dynamics
of pushing an object. Even though it cannot predict numeri-
cal values precisely, it can still be successfully used in task
planning (for initial results see video in the Introduction).

Future work mainly address utilization of qualitative mo-
dels in planning tasks. We believe that the learning of (qua-
litative) models from examples in dynamic domains may be
in some applications more practical than the use of mathe-
matical models, even in cases when mathematical models are
already known beforehand. They may, however, due to their
complexity be too demanding and impractical to use in com-
parison with the learning of simpler, qualitative models.
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