
Abstract 

Diagrams are frequently used in problem solving to 
convey spatial and conceptual information.  They 
can guide problem solving in domains that require 
both qualitative and quantitative reasoning about 
causal systems.  One such domain is physics, 
which requires qualitative and quantitative reason-
ing for conceptual mastery.  However, almost no 
physics problem solving systems use diagrams or 
hand drawn sketches as input.  We present a sys-
tem that uses qualitative process theory and quali-
tative mechanics to solve diagrammatic ranking 
exercises from a physics textbook.  The combina-
tion of quantitative and qualitative reasoning over 
sketches enables the software to understand physi-
cal situations in human-like ways that are similar to 
humans.  The application of these reasoning tech-
niques to sketched physical systems may be useful 
for educational software in physics and engineering 
design. 

1 Introduction 

Humans are constantly engaging in qualitative reasoning 
about physical situations.  We can interact with, and make 
predictions about, the physical world in the face of limited 
information and uncertainty.  Physics educators have argued 
that qualitative, concept-based instruction helps students 
select problem solving strategies [Leonard et al., 1996].  
This has led many educators to make qualitative physics the 
focus of early physics education, under the premise that 
qualitative, conceptual understanding precedes formal profi-
ciency.  Thus, educational software that is designed to un-
derstand physical concepts in ways similar to humans must 
have the ability to reason about qualitative, incomplete de-
scriptions of physical systems. 

Representations of physical systems are also enriched by 
sketches and diagrams.  Externalized diagrammatic repre-
sentations have the advantages of reducing working memory 
load and allowing spatial inferences to be computed with 
greater ease [Larkin and Simon 1987].  The process of 
sketching is also a hallmark of classroom activities in spatial 
domains.  Sketching is a critical step in the design of physi-
cal systems and sketching behavior may be indicative of 

expertise (e.g. biology [Kindfield, 1992] and geological 
processes [Jee et al., 2009]).  Arguably, any educational 
software that deals with physics understanding and lacks 
sketches or diagrammatic representations is incomplete. 

One approach for solving everyday physics problems is 
via case-based reasoning.  In [Klenk et al., 2005], analogical 
retrieval was used to recall and apply causal models from 
past experiences to novel problems.  Causal information 
from previous situations along with qualitative mechanics 
inferences were used to solve comparative analysis prob-
lems from the Bennett Mechanical Comprehension test.  
This involved comparing two quantities across two or three 
different, but structurally similar, scenarios. 

The conceptual physics ranking exercises described in 
this paper are very similar to the comparative analysis ques-
tions examined by [Klenk et al., 2005].  Our approach, 
however, uses first principles analysis to form causal models 
for each new problem, rather than using analogy to recall 
past causal models.  Our system is also designed to resolve 
quantity differences between any number of different, but 
structurally similar, scenarios.  

In this paper, we describe how qualitative spatial reason-
ing, qualitative mechanics and qualitative process theory 
can be used to solve diagrammatic ranking exercises from a 
physics textbook.  We begin by briefly reviewing Cog-
Sketch, qualitative mechanics, and QP theory.  Then we 
describe our approach, and illustrate its utility by showing 
its performance of a set of ranking problems.  We close with 
a discussion of related and future work. 

2 CogSketch 

CogSketch is an open-domain sketch understanding system 
[Forbus et al., 2011].  It collects and understands user drawn 
sketches by modeling the perceptual and spatial understand-
ing that humans use when sketching.  CogSketch uses quali-
tative spatial representations, embracing the informal (and 
robust) nature of human to human sketching.  Examples of 
qualitative spatial relations include positional relations (e.g. 
above, rightOf) as well as topological relations (i.e. re-
gion connection calculus [Cohn et al., 1997]). 

The spatial information in CogSketch is tied to conceptu-
al information via conceptual labeling, which allows users 
to label their drawn elements with concepts from the Open-
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.  Quantities can be denoted us-

ing sketch annotations, which associate specific quantities 
(e.g. height, gravitational force, etc.) with drawn objects.  
Thus, CogSketch understands that the sketched objects rep-
resent entities and quantities with corresponding properties.  
This means that CogSketch does not rely on sketch recogni-
tion.  This is a deliberate design decision based on the ob-
servation that humans rarely sketch things neatly enough to 
be reliably recognized; instead, they typically rely on natural 
language or gesture to indicate what their drawing repre-
sents.  Additionally, CogSketch is designed for open-
domain sketch understanding. Today’s sketch recognition 
algorithms are limited to small to medium sized domains 
that are completely specified in advance. 

The spatial and conceptual information gathered by Cog-
Sketch can be reasoned about using the structure mapping 
engine (SME) [Falkenhainer et al., 1989], which is based on 
the structure-mapping theory of analogy [Gentner, 1983].  
SME can be used to compare spatial representations to high-
light qualitative similarities and differences.   

CogSketch has been used to model spatial problem solv-
ing (e.g. geometric analogies and Raven’s Progressive Ma-
trices) [Lovett & Forbus, 2010] and to collect sketching 
information for psychological experiments [Jee et al., 2009].  
In education, CogSketch has been used as a platform for 
software-based sketch worksheets [Yin et al., 2010] and as a 
tool to help engineering students learn to communicate 
about their design sketches [Wetzel & Forbus, 2010]. 

3 Qualitative Mechanics 

As described in Wetzel and Forbus [2008], we use a model 
of qualitative mechanics (QM) that is based on the work of 
Nielsen [1988] and Kim [1993].  Like their work, our model 
of qualitative mechanics works in 2-dimensional space and 
is able to represent forces acting on/between objects, calcu-
late the direction of net force and motion of an object and 
predict the behavior of future states.  Unlike their work, our 
system can take hand drawn sketches as input.  Our qualita-
tive mechanics reasoning facilities are built in to CogSketch. 
   Qualitative mechanics allows CogSketch to understand 
sketched mechanical systems and has been used in educa-
tional software intended for engineering design education 
[Wetzel & Forbus, 2010].  However, the previous imple-
mentations did not deal with ordinal relationships between 
quantities. This is one of the reasons why qualitative process 
theory (reviewed next) was used in our approach for solving 
conceptual physics ranking exercises.  In this work we ex-
tend qualitative mechanics by taking qualitative velocity and 
net force vectors (which QM could calculate before) and 
making statements about the magnitude of those vectors.   
Thus, the same representations which worked in QM can be 
used in this new system. 

                                                 
1 www.opencyc.org 

4 Qualitative Process Theory 

Qualitative process (QP) theory is a representational system 
that organizes physical phenomena around physical pro-
cesses, which impose causal relationships on continuous 
quantities [Forbus 1984].  Physical processes are the sole 
mechanism of change in QP theory.  Examples of physical 
processes include things like liquid flow, heat flow and boil-
ing.  Every process can have logical consequences and di-
rect influences on continuous quantities (e.g. amount of liq-
uid, amount of heat, amount of steam).  A causal relation-
ship can be an indirect influence as well.  Indirect influences 
can be used to describe functional dependence between con-
tinuous quantities.  To say that one quantity increases mono-
tonically with another, all else being equal, we say that the 
first is qualitatively proportional (qprop) to the second.  To 
say that one quantity decreases monotonically with another, 
all else being equal, we use a negative qualitative propor-
tionality (qprop-) between the first quantity and the se-
cond. Qualitative proportionalities can be combined to form 
more complete causal models for quantities.  For example, 
the functional dependence between acceleration and force 
and mass as described in Newton’s second law, F = m * a, 
can be summarized as: 

(qprop a F) 

(qprop- a m) 

Here we use only two of the basic inferences of QP theo-
ry, namely model formulation and influence resolution

2
.  

This requires a scenario description and one or more domain 
theories.  The scenario description is a predicate calculus 
representation of the objects and relationships that we want 
to reason about. The domain theory defines the processes, 
quantities and influences that can be used to formulate caus-
al models about the scenario and make inferences.  Model 
formulation [Falkenhainer & Forbus, 1991] is the process of 
analyzing the scenario description and determining what 
qualitative models from the domain theory are applicable.  
If a model is applicable to the scenario and its preconditions 
are met, then its consequences are inferred to the scenario 
model.  These inferences often include causal relationships 
between quantities.  Once a qualitative causal model is 
formed about the scenario, influences on quantities can be 
resolved.  This allows knowledge about quantities to be 
propagated along a causal chain.  For example, if we know 
that acceleration increases with force and we know that 
force is increasing, then we know that acceleration is in-
creasing as well. 

These building blocks are powerful enough to create 
qualitative models and simulations of a wide range of physi-
cal and conceptual phenomena.  Qualitative models using 
QP theory can represent physical phenomena like fluid dy-
namics and thermodynamics as well as conceptual phenom-
ena like describing how a credit card works.  The basic 
building blocks remain the same across domains, making 

                                                 
2 Limit analysis is not needed because, for the ranking prob-

lems in [Hewitt  2010], each situation being compared consists of 

only a single qualitative state. 
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QP theory a powerful representation system for teaching 
complex models in a simple manner.  

5 Approach 

Our approach for solving conceptual physics ranking exer-
cises can be broken down into four major steps.  First, the 
problem scenario is sketched by hand into CogSketch, 
which captures spatial, conceptual and quantity information 
about the sketch.  Next, QM is used to determine net forces 
on objects, surface contacts and possible future states.  
Then, QP theory is used to detect causal models and contin-
uous processes in the problem scenario.  It is here that quali-
tative causal relationships enable reasoning about inexact 
quantities.  Lastly, differential qualitative analysis results in 
ordinal relationships between quantities in different scenari-
os.  This last step is what allows the system to rank the sce-
narios along a particular quantity.  

5.1 Conceptual Physics Ranking Exercises 

To evaluate the ability to solve conceptual physics prob-
lems, we attempted to solve ranking exercises from Hewitt’s 
[2010] Conceptual Physics textbook.  The textbook is di-
vided by topic into eight parts.  We focused on the first part 
of the book: mechanics.  In part one, there are four chapters 
with 27 ranking exercises in total.  These exercises tap 
knowledge of forces, acceleration, velocity, friction, tension 
and kinetic and potential energy.  As a starting point, we 
selected the ranking exercises that covered net force, net 
velocity and tension, which make up 12 of the 27 exercises.  
The results reported below describe the performance of our 
system on those 12 exercises.   

Ranking exercises are physics problems in which two to 
four similar physical scenarios are presented and the student 
is asked to rank the value of a quantity across them.  Figure 
1 shows an example from [Hewitt 2010] in which two peo-
ple are standing on a scaffold supported by two ropes. The 
goal is to rank the tension in the left rope in the three situa-
tions from greatest to least.   
 Many of the ranking exercises are like Figure 1, highly 

qualitative in nature, which makes QP theory well suited to 
the task.  Some of the problems however are more quantita-
tive in nature, like Figure 2.  For problems like this, where a 
qualitative causal model is not necessary, we determine the 
quantities at each step using an extended version of qualita-
tive mechanics and then compare the values directly to 
reach the answer.  The extensions to QM include a represen-
tation for one object moving in a large moving object (e.g. a 
person on a train, a boat in a river) and finding net vector 
magnitudes (previously it was only direction). 

5.2 Problem Scenario Descriptions 

Textbook diagrams describing ranking problems contain 
multiple parts, each of which must be represented and rea-
soned about separately before combining the results to solve 
the problem.  CogSketch handles such situations naturally, 
since its sketches are further decomposed into subsketches.  
The “whole thing” is represented on the metalayer, where 
each subsketch is treated as an object.  Each subsketch has 
its own reasoning context, i.e. a Cyc microtheory.  The mi-
crotheory for a subsketch contains facts about that subsketch 
including spatial relationships automatically computed by 
CogSketch, conceptual labels chosen by the user, and values 
for quantities entered by the user (e.g. the forces and masses 
in Figure 2).   
 Consequently, sketching a ranking problem consists of 
making one subsketch per portion of the problem.  The en-
tire sketch itself constitutes the problem. 

5.3 QP domain theory 

We created a domain theory for describing two dimensional 
mechanics.  This domain theory consists of axioms, rules, 
and qualitative model fragments which define the processes, 
quantities, and influences used in QP theory.  Quantities we 
modeled included net force, position, velocity, acceleration, 
inertia, gravitation, normal forces, friction, mass, tension 
and distance between objects. 
 The continuous processes modeled include motion (with 
or without friction) and acceleration.  These processes have 
direct influences on position and velocity respectively.  
Physical model fragments encode particular phenomena that 
can occur in situations (e.g. a scaffold hanging by two 
ropes), an object with inertia and an object in free fall.   

Figure 3 illustrates a model fragment that represents the 
relationships between tensions that arise from two ropes 
supporting something.  The model fragment has four partic-
ipants: two hangers (ropes), one hanging thing (a solid 
thing) and a set of all things supported by the system.  In 
order for this model fragment to be instantiated for a given 
physical scenario, certain constraints must be met.  In this 
case, the hanging thing must hang from both hangers.  Addi-
tionally, the set of all things supported by the system in-
cludes the hanging thing and all the things that the hanging 
thing supports.  Using the problem in Figure 1 as an exam-
ple, this set would include the scaffold and the two persons 
that are supported by the scaffold.  The vertical tensions 
depend on the downward forces of all the hanging things in 
the system.  The actual values of those forces are unknown, 

 
Figure 1.  Ranking problem example: rank the tensions 

in the left rope from greatest to least.  The answer is C > 

B > A. 

 
Figure 2.  Ranking problem example: rank the net-force 

on the boxes.  The answer is D > A = B = C. 
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but it can still be inferred that the vertical tensions are de-
pendent on the location of the center of mass of all the hang-
ing things.  More specifically, the closer a rope is to the cen-
ter of mass of all the hanging things, the greater that rope’s 
vertical tension.  This functional dependence is captured by 
the negative qualitative proportionalities (qprop-) in the 
model fragment. 

As usual, multiple model fragments can be active at once 
and that is typically necessary to make meaningful infer-
ences about a scenario. 

5.5 Differential Qualitative Analysis 

To solve a ranking exercise we must compare the value of a 
quantity in one subsketch to that in another and figure out 
the ordinal relationship between the two.  This process is 
called differential qualitative analysis (DQA) [Weld, 1988].  
The input to our DQA algorithm consists of a sketch, the 
name of the quantity being ranked, and the object to which 
that quantity belongs.  First, QP analysis is performed on 
each subsketch in the sketch.  This begins with model for-
mulation and, if model formulation is successful, continues 
with influence resolution. When the QP analysis is success-
ful, it means that one or more model fragments were appli-
cable and active in the scenario.  When a model fragment is 
active, its consequences are inferred.  Since these conse-
quences can be ordinal or functional relationships, they in-
fluence other quantities in the scenario.  Influence resolution 
determines the causal chain between quantities, which is 
used for propagating DQ values through the quantities of a 
situation. 

 When the QP analysis is unsuccessful, we assume that 
annotations and qualitative mechanics suffice (e.g. Figure 2) 
and proceed to try to find the quantity values directly.  Con-
crete quantities can be inferred from a subsketch in two 
ways: via sketch annotations or via quantitative analysis of 
the sketching space.  An example of using a sketch annota-
tion to derive a quantity is illustrated in Figure 2, where 
each force arrow is a sketch annotation with a particular 
quantity associated with it.  In this case, the quantity can be 
looked up in the sketch’s knowledge (i.e. microtheories).  
This is the easiest method for finding quantities, but sketch 
annotations with specific quantities can only be used if the 
problem provides us with that information.  For problems 
that are more qualitative in nature, like the hanging scaffold 
problem in Figure 1, we have to infer some visual quantities 
by using the x and y coordinates of the sketching space.  
This is how distance is computed between objects in the 
hanging scaffold problem.  Although the actual values are 
not needed for calculations, the ordinal relationships be-
tween them are needed to solve the problem.   

To represent ordinal relationships between quantities in 
different subsketches, we must first compare the subsketch-
es to each other to determine which objects and quantities 
are in correspondence.  SME is used for this comparison 
because it puts objects into correspondence based on com-
mon relational structure.  For example, in Figure 1, when we 
refer to the tension in the left rope, we know that we must 
compare the tension in the left rope in scenario A, to the 
tension in the corresponding rope in scenarios B and C. 
 The differential qualitative value relationship itself is 
represented using a relationship called dqValue: 

(dqValue ?quantity ?mapping ?value) 

Where ?quantity is a named quantity like tension, ?map-
ping is an analogical mapping between two scenarios, 
which puts objects into correspondence, and ?value is one 
of four values: IncreasedDQ, DecreasedDQ, Un-
changedDQ or AmbiguousDQ.   
 The dqValue of a particular quantity between two 
subsketches can be derived in one of two ways: 
 directly – The dqValue can be derived directly if the 

quantity is readily available in the sketch as an assump-
tion, a sketch annotation or if the quantity can be in-
ferred using QM or a quantitative analysis of the 
sketching space.  

 via influences – The dqValue can be derived via influ-
ences if the quantity cannot be derived directly but it 
has causal antecedents that are known. 

The challenge with DQA, then, is formalizing the mecha-
nisms for deriving quantities based on their causal anteced-
ents.  To do this, the dependency order that is created by 
influence resolution in QP analysis is used to determine 
what quantities should be solved for based on a particular 
goal quantity. 
 Lastly, the results of the DQA (increased, decreased, un-
changed or ambiguous) are used to determine the ordering 
of the subsketches, which is passed as the solution to the 
exercise. 

Model fragment HangingSomething-ByTwo 

Participants: 

 firstHangerOf: ?left, a Rope 

secondHangerOf: ?right, a Rope 

hangingThingOf: ?scaffold, a Solid 

  (hangsFrom ?scaffold ?left) 

  (hangsFrom ?scaffold ?right) 

 hangingThingsOf: ?allHangingThings, a Set 

  (evaluate ?allHangingThings 

     (SetUnionFn ?scaffold 

      (TheClosedRetrievalSetOf ?thing 

       (supportedBy ?thing ?scaffold)))) 

Conditions: 

 (hasQuantity ?right (YTensionFn ?right)) 

 (hasQuantity ?left (YTensionFn ?left)) 

Consequences: 

 (qEqualTo (XTensionFn ?left) 

           (XTensionFn ?right)) 

 (qprop- (YTensionFn ?left) 

     (DistanceFn ?left ?allHangingThings)) 

 (qprop- (YTensionFn ?right) 

     (DistanceFn ?right ?allHangingThings)) 

Figure 3: Example model fragment describing a scaf-

fold hanging by two ropes.  The vertical tension in 

each rope is negatively qualitatively proportional to 

the distance between the ropes and the group of things 

it supports. 
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8 Results 

The system correctly ranked 9 out of 12 net force, net veloc-
ity and tension questions in part one (mechanics) of the 
textbook.   
 

Concept Number of 
Test Cases 

Number 
Solved 

Net Force 4 3 
Net Velocity 4 3 

Tension 4 3 

 
These results are based on first principles approach to prob-
lem solving and suggest that using QP theory and QM to 
derive qualitative differences between scenarios is feasible 
and promising.  
 The problems that were not solved (one from each con-
cept category) suggest areas for improvement.  The net 
force problem that failed was a question about weight on 
different planets.  It required the system to infer gravitation-
al force of objects based on their mass alone.  In other 
words, it required the assumption of gravitational force 
without an explicit force arrow.  In other net force problems 
(e.g. Figure 2) all the forces needed to solve the problem 
were represented explicitly with force arrows.  However, the 
system cannot assume gravitational forces in all cases be-
cause this would cause other problems to be reasoned about 
incorrectly.  Instead, we will need to extend the system so 
that it can determine when gravity should be assumed and 
when it shouldn’t, perhaps by using the textual problem 
statement as a guide.  The net velocity problem that failed 
involved inferring the amount of time (which relied on the 
vector sum of velocities) it took an object to reach a destina-
tion.  In this case, it was not the qualitative vector summa-
tion that failed, but the link from qualitative vector to time.  
Lastly, the tension problem that failed involved inferring the 
ordinal relationship between the net tension of two ropes 
based on the ordinal relationships between the x and y com-
ponents of tension.  At the time of this experiment, this type 
of inference was not supported.  In each of these cases, it 
appears that extending the domain theories to make infer-
ences about more quantities (e.g. time) would be enough to 
arrive at the correct solution.  An important feature to con-
sider is the extent to which these inferences are made auto-
matically.  In order for this system to scale, it is important 
for additional inferences to computed on an on-demand  
basis.  We are currently extending our domain theory to 
overcome these limitations. 

9 Related Work 

Diagrams are essential in scientific domains such as physics 
and biology:  For example, [Chaudhri et al., 2009] found 
that 48% of physics problems on AP exams had diagrams, 
and in 58% of those (28% of the total) the problem could 
not be solved without extracting information from the dia-
gram.  The difficulty of reasoning with diagrams can be 
seen from the fact that despite this analysis, their AURA 
system for question-answering in scientific domains does 

not currently include any diagrammatic reasoning capabili-
ties.  Similarly, while the Atlas-Andes [Rose et al., 2001] 
and Autotutor [Graesser et al., 2003] conceptual physics 
tutors can include diagrams to be presented to the student as 
part of their problem specification, the diagrams are not 
interpreted by the software itself.   

Several efforts have been made to build systems that can 
understand diagrams in the context of physics problems.  
BEATRIX [Novak & Bulko 1990] combines problem in-
formation from text and diagrams.  Its diagrams were creat-
ed by a specialized drafting program, and hence were noise-
free drawings rather than hand-drawn sketches.  BEATRIX 
performed only minimal spatial reasoning, focusing on 
purely quantitative physics problems.  Similarly, the Figure 
Understander [Rajagopoalan, 1995] was limited to precisely 
understood diagrams, and did only qualitative reasoning 
about possible motions.  By contrast,  Lockwood’s 
MMKCAP [Lockwood & Forbus, 2009], combined natural 
language understanding and information from hand-drawn 
sketches to read a chapter on levers and answer questions at 
the end of the chapter.  Unlike this experiment, those ques-
tions did not involve comparing quantities across different 
scenarios.  Lastly, [Klenk et al., 2005] is very similar to this 
work in its use of differential qualitative analysis on sketch-
es, but our qualitative mechanics is more advanced, the 
ranking problems are slightly harder than the straight com-
parison problems explored there, and our approach is to use 
first-principles reasoning, rather than case-based reasoning.   

10 Conclusion  

We have demonstrated that it is possible to use QM and QP 
theory over sketched physics diagrams to solve conceptual 
physics ranking exercises.  Educational software that helps 
people improve their conceptual understanding of physics 
will need human-like qualitative reasoning abilities, in order 
to handle the range of problems that they must help students 
with.  The progress reported here represents a step in that 
direction.   
 Much remains to be done, of course.  Next, we plan to 
extend the coverage of our domain theories to fit all of the 
mechanics ranking problems in [Hewitt, 2010].  Then, the 
utility of these capabilities will be explored by incorporating 
them into the sketch-based educational software systems we 
are building.  Ultimately, we would like to extend coverage 
to all of conceptual physics, to create a Socratic tutor that 
can help students understand physics, using a combination 
of interacting sketching and language. 
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