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Abstract 
When developing QR software there are choices to be made 
regarding the exact reasoning of the software. Moreover, 
what works well in one situation, may become a problem in 
another, or experts may disagree on the preferred reasoning. 
Instead of forcing a solution and potentially end-up with a 
partially suboptimal tool for users or certain models, we 
have developed and implemented the idea of Simulation 
Preferences. In Garp3 and DynaLearn users can fine-tune 
the working of the reasoning engine to their particular 
insights and needs. These preferences are stored in the 
model, and automatically activated when re-opening the 
model. This paper reports on these Simulation Preferences. 

 Introduction 
Working with domain experts on building qualitative 
models [6,7,8,9] inspired us to augment the problem solver 
underlying Garp31 [1] and DynaLearn2 [2] with user 
definable features controlling the reasoning behaviour of 
the engine. These Simulation Preferences allow modellers 
to build models taking a certain reasoning perspective. 
 Over the years, three drivers have steered the 
development of simulation preferences. First, the tension 
between generating a fully correct simulation output, and 
keeping those results simple and easy understand. For 
instance, imposing reasoning with higher order derivatives 
improves the quality of the output, yet the result may 
become confusing for less knowledgeable users, e.g. in 
learning situations. Second, maintaining upward 
compatibility in the context of ongoing software 
improvements. In many ‘knowledge capture’ projects the 
development of tools happens in parallel with the 
construction of knowledge, often as a deliberate choice to 
have the reasoning actually accommodate the needs 
emerging from the knowledge construction effort. But, 
when new features become available they may 
significantly change or even invalidate earlier results, 

                                                
1 http://www.Garp3.org  
2 http://www.DynaLearn.eu  

leading to the knowledge engineers having to (partially) 
redo their earlier work. However, such redoing may not be 
possible or undesirable by those involved, and a better 
solution may be to have the option to put those new 
features off in order to retain the earlier established results. 
Third, enabling step-wise development and feature 
discovery in collaboration with users. Both, building 
problem solvers and knowledge construction are iterative 
processes for which the ‘real’ requirements are often 
established while being submerged in the process. This 
means that recently developed features need to be explored 
and used in context to better understand their use and 
required functioning. Following such a maturation process 
some features become fully intertwined with the basic 
reasoning, others get abandoned, and yet others remain as 
choices that some users will select and others will not. 
 This paper discusses the simulation preferences 
available in both Garp3 and DynaLearn. The next section 
highlights the elementary reasoning of the problem solver 
for both these workbenches. The subsequent sections 
discuss the simulation preferences. 

Essentials of the problem solver used in Garp3 
and DynaLearn  

The qualitative reason engine underlying the Garp3 and 
DynaLearn workbenches generates state-graphs using a 
depth-first state-by-state approach, essentially following 
the evolution of the predicted system behaviour over time. 
The primary reason for taking this step-wise approach is to 
allow users to be in control regarding the paths of 
behaviours to explore. This is beneficial for experts when 
creating a new model, but also for learners engaged in 
learning by modelling, as it automatically provides an 
intuitive guide through a complex web of possibilities 
[3,4]. 
 Garp3 and DynaLearn are advanced workbenches for 
conceptual knowledge capture, using a multitude of 
problem solving functions to predict and explain system 



behaviour. State and Transition are key notions in this 
context (Fig. 1). States represent unique sets of constrains 
on quantity values (pairs of <magnitude, derivative>) such 
as: magnitude X=0, magnitude in/equality X=Y, derivative 
∂X=0, and derivative in/equality ∂X=∂Y. Transitions from 
a state to its successor(s) reflect changes in such sets, e.g. 
X=0 → X>0, X=Y → X>Y, ∂X=0 → ∂X>0, and ∂X=∂Y 
→ ∂X>∂Y (and also for 2nd and 3rd order derivatives). 
 

Figure 1. Garp3 reasoning engine global architecture (from [1]). 
The two main inferences are Find states and Find transitions. A 
simulation takes as input a scenario and a library of model 
fragments, and generates a state-graph (or behaviour-graph). A 
state-graph may have multiple behaviour-paths (unique 
successive state trajectories). 
 
Computing states and transitions is performed by the 
following two top-level inferences. 
 
Find states: 
• Select and Apply MFs – Assembling the model-

fragments from the library that match the scenario. 
• Apply causal model – Computing the net result of the 

causal dependencies (typically Influences (I’s) and 
Proportionalities (P’s) [10]) and if present exogenous 
quantity behaviours [5]. 

• Compare states – For newly generated states check to 
see if they match an already existing state, or that they 
actually represent new unique behaviour. 

 
Find transitions: 
• Find changes – Find model ingredients in the current 

state that may change and thereby cause the state to 
terminate. These elements are called terminations and 
they consist of the current and the changed ingredients. 

• Combine changes – Analyse the terminations to 
determine the order in which they may happen, and 
determine all valid combinations. 

• Apply continuity – Apply the continuity rules to each 
combination to produce a complete transition scenario. 

A transition is found if a transition scenario leads to a 
valid state. 

 
Notice that solving in/equality, or ordinal, relations is a 
cornerstone within these reasoning steps. Compared to 
structural and causal relations (which usually remain in 
place during an entire simulation), inequality relations 
typically change during the simulation, thereby 
representing the dynamic aspects of the modelled system. 
For each state a coherent mathematical model is 
constructed and maintained using the in/equality reasoning 
capabilities of the engine. 

Preferences on handling unknown 
information 

The simulation preferences addressed in this paper, are 
listed in 3 categories. The first category concerns different 
kinds of missing information (Table 1). The second 
category concerns choices that tighten the reasoning (Table 
2). Note that restricting the reasoning may both enlarge and 
reduce the output (number of states and transitions between 
those). The third group refers to a set of miscellaneous 
preferences (Table 3). In this section, the first category is 
discussed. 

Influence resolution and unknown information (#1 
– #3) 
The preferences #1, #2 and #3, on unknown information, 
address the influence resolution. When evaluating the 
effects of influences and proportionalities unknown 
magnitudes (for the I’s) and derivatives (for the P’s) at the 
start of causal chains can prohibit the evaluation of their 
causal effects. Preference #1 (Assume unknown influence 
to be zero)3 causes the reasoning engine to set influencing 
unknown magnitudes and/or derivatives to 0 for all 
quantities that are themselves not influenced, before 
starting the influence resolution procedure. Users can thus 
decide to leave unknown information unknown, or 
explicitly assume it has no impact on the system behaviour. 
 In some cases this setting may cause conflicts with later 
results of the influence resolution, causing a contradiction 
(due to in/equality for example). In this case, the 
corresponding state is not generated. For example: quantity 
A is proportional to quantity B and C. Furthermore ∂C>0 
and ∂B=‘unknown’. With preference #1 on, ∂B=0 will then 
be assumed. Now suppose that the following equality is 
also present ∂A=∂B. The influence resolution will calculate 
∂A>0, while the equality suggests ∂A=0, a contradiction. 

                                                
3 In earlier work this was called ‘Apply closed world assumption 
in influence resolution’ [11]. 



When evaluating higher order effects on influences and 
proportionalities, preference #2 sets the 2nd order 
derivatives of all unaffected quantities to 0, if these 2nd and 
3rd order derivatives are unknown. Preference #3 does the 
equivalent for 3rd order derivatives. 
 
Table 1. Preferences for handling unknown information 
(T=training/E=expert) 

# Name T E 
1 Assume unknown influence to be zero Off Off 
2 Assume unknown 2nd order influences 

to be 0 
Off Off 

3 Assume unknown 3rd order influences 
to be 0 

Off Off 

4 Assume value terminations Off On 
5 Assume inequality terminations Off On 
6 Generate derivative terminations 

(based on 2nd order derivatives) 
Off On 

7 Terminate ambiguous derivatives Off On 
8 Generate terminations for ≤ & ≥ Off Off 
9 Generate all values for calculated 

quantities 
Off Off 

10 Assume equal quantity spaces have 
equal points 

Off Off 

11 Assume equal length intervals Off Off 

Find terminations using indirect proof (#4 – #8) 
Simulation preferences #4 through #8 affect the Find 
changes step. Notice that as a principle, the reasoning 
engine used in Garp3 and DynaLearn will only generate 
possible terminations that actually ‘have a cause’. That is, 
for which there is information available that necessarily 
leads to the change. For instance, quantity X will want to 
change magnitude when ∂X≠0, but not when 
∂X=’unknown’. This is a strict interpretation, which is 
particular relevant in the context of education, and for 
providing explanations. Not having a clear cause for a 
change hampers the software’s ability to present an 
argument on why the system behaviour evolved as it did. 
Experts on the other hand, may want to ignore this, or take 
a different perspective on this principled starting point. 
Particularly, the idea of Reductio Ad Absurdum (RAA) 
(proof by contradiction or indirect proof) may be taken as 
an alternative. If in the example, it can be proven that 
∂X≥0 leads to contradiction, while ∂X<0 results in a valid 
transition, then the latter must be true. Because in 
qualitative reasoning the set of possible variations of this 
kind is relatively small (that is, value assignments and 
in/equality statements), RAA may also be a very effective 
instrument for generating behaviours in the context of 
unknown information [12]. Preferences #4 and #5 allow 
users to deliberately exploit the RAA idea. There are 

however additional options, allowing users to fine-tune a 
particular flavour. 
• A quantity X will only move if it has a known 

derivative, and it also holds that ∂X≠0. With preference 
#4 switched on, the reasoning engine will assume 
unequal derivatives for unknown derivatives 
(constrained by relations that are known) and fire 
terminations accordingly. 

• An inequality relation such as X>Y will only terminate 
when it is known that the involved derivatives are 
unequal (∂X≠∂Y). With preference #5 switched on, the 
mechanism triggered by preference #4 is also applied to 
quantities having in/equality relationships. 

• 2nd order derivatives can cause 1st order derivatives to 
terminate when preference #6 is turned on. This 
behaviour can be necessary to correctly capture the 
behaviour of a system. For example, an ambiguous 1st 
order derivative may become non-ambiguous and cause 
a dead-end (contradiction in successor states) in the 
simulation. E.g. a state where the quantity is increasing 
cannot change into a decreasing state without first 
becoming steady (due to continuity constraints) via a 
separate termination. Preference #6 introduces this 
flexibility by generating essential 1st order changes 
imposed by 2nd order derivatives. 

• Preference #7 causes terminations for ambiguous 
derivatives to be generated such that these can freely 
change. Note that this can be important for correct 
behaviour. Ambiguous derivatives are always branched 
and specified (states are generated for each possibility). 
And without free transitions between such states, when 
a derivative becomes unambiguously known in a 
successor state, this may lead to a contradiction and a 
dead-end state because of continuity constraints (a 
change from >0 directly to <0 and vice versa is not 
permitted). 

• By design weaker relations (notably ≤ & ≥) will not be 
terminated by the Find changes step. Preference #8 
causes terminations also to be generated for these 
relations. The relation ≥ will terminate to > in the case 
of the left hand side rising relative to the right hand 
side. Or it may terminate into = and < in the opposite 
case. 

Assuming information relevant for inequality 
reasoning (#9 – #11) 
Simulation preferences #9, #10 and #11 affect the 
Inequality reasoning step. Magnitudes remain unknown 
unless fully determined by the model. Unlike derivatives, 
which are branched and specified if they are ambiguous. 
Preference #9 activates an assumption mechanism that 
generates all magnitudes for ambiguous quantities. It acts 
in the following two situations: 



• When the user specifies this behaviour for a quantity in 
the scenario (referred to as exogenous quantity 
behaviour [5], and available when adding a quantity to 
a scenario by selecting the option ‘Generate all 
magnitudes’). 

• When a magnitude is determined by an addition or a 
subtraction that leaves an ambiguous result. E.g. if X–
Y=Z, X>0, Y>0, then Z cannot be uniquely computed. 
Instead of leaving Z=’unknown’, this preferences will 
try to impose all the possible solutions (Z<0, Z=0, Z>0) 
and states will be computed accordingly (of course 
contradictory states will be abandoned). 

 
This mechanism ensures that quantity magnitudes do not 
remain unknown in a sparsely specified model and that the 
full behaviour is generated. Note that having many extra 
assumable magnitudes is a computational burden. This 
preference is therefore turned off by default, both for 
Training (T) and Expert (E) (see implementation section). 
 Simulation preferences #10 and #11 make assumptions 
regarding the relationship between Quantity Spaces (QS). 
In Garp3 and DynaLearn QSs are ordered sets of values 
(alternating points and intervals) assigned to a quantity, 
specifying magnitudes that this quantity may take on4. For 
instance the Height of a container can be one of {0, Plus, 
Max} (referring to empty, partially filled, and fully filled, 
respectively). By definition QSs are unique, and 
magnitudes from different QSs (even with the same 
label/name) are not assumed to be equal without explicit 
specification. Thus, if a model includes two containers, 
each with a Height (HX and HY) and the QS {Zero, Plus, 
Max} assigned to them, it cannot be assumed that 
HX(Max)=HY(Max). The only exception to this rule is 0, 
which is universal in a model. 
 Although this approach is a deliberate choice, it is 
sometimes confusing for beginners. And for experts it may 
be cumbersome when having to specify many equality 
statements between QS point values. Preference #10 is in 
this respect straightforward: it makes the reasoning engine 
assume equality statements between all the points that have 
the same position in two QSs of equal type. This simplifies 
the expert’s modelling effort in some situations, and 
learners can be given a scaffold [13] by using this setting 
and make things initially easier to understand. 
 Preference #11 refines the concept discussed above. 
When switched on, the reasoning engine assumes all 
intervals within a quantity space to have equal length. This 
knowledge is expressed by adding the required addition 
and subtraction constraints. 

                                                
4 Notice that this definition of quantity space is rather different 
from its use in QPT [10]. 

Preferences on tighter reasoning 
This section focuses on simulation preferences that alter 
the problem solving method by enforcing of relaxing 
certain constraints (Table 2). Tightening the reasoning 
typically leads to a better, but often more difficult to 
understand, simulation result. In addition, the computation 
time may significantly increase when certain constraints 
are enforced. It is within these dimensions that the 
following list of preferences has found its way into the 
reasoning engine. 

Importance of immediate terminations (#12 – #14) 
Simulation preferences #12, #13 and #14 address epsilon 
ordering [12]. This concept distinguishes immediate 
terminations (from a point, and from equality) and non-
immediate terminations (to a point, and to equality). The 
concept is based on the idea that a point in a QS occupies 
no space on the line of real numbers. Therefore if a 
quantity is on a point and it moves it will leave the point in 
an infinitely small amount of time. On the other hand, a 
quantity moving to a point will have always some ‘epsilon’ 
amount of space between itself and the point. Therefore the 
transition to the point is not immediate. Because of this, 
immediate transitions take precedence over non-immediate 
transitions. However, particularly in the NaturNet-Redime5 
project there was discussion about whether ‘mixed’ 
transitions were possible [14]. One question has been 
whether an interval and a point could be corresponding 
since this correspondence could demand a ‘mixed’ 
transition. Preference #12 makes the reasoning engine 
work according to epsilon ordering logic, but users can 
decide to put it off, supporting both viewpoints held. 
 Ordering possible terminations is a computational costly 
task. To improve efficiency the epsilon ordering can be 
applied first in the ordering step (Combine changes). That 
is, if there are immediate terminations, these will be 
ordered first. The resulting set is checked, and only if it is 
empty the set of non-immediate terminations will be 
ordered. This way, valid terminations will never be 
removed without reason. This procedure is illustrated in 
Fig. 2. Preference #13 groups all immediate terminations 
as much as possible (mutual exclusive terminations cannot 
be combined, e.g. random exogenous behaviours in 
opposite directions for the same quantity). An extra 
consequence of this approach is that mixed combinations 
(involving immediate and non-immediate terminations) are 
not possible anymore. This can be seen as a positive effect 
since a strict interpretation of the epsilon concept would 
not allow these combinations either. However, for 
backward compatibility reasons, the strict implementation 

                                                
5 http://hcs.science.uva.nl/projects/NNR/  



of the epsilon ordering can be put off using preferences 
#12 and #13. 

Figure 2. Epsilon ordering computational sequences 
 
The notion of immediate transitions also has an impact on 
derivatives, as these may also not change to 0 in an 
immediate transition. The rationale behind this rule is 
similar to the epsilon ordering. First, it is a non-immediate 
event since it is a transition towards a point. Second, it is a 
non-immediate event since it represents the event that the 
balance of influences on this quantity (whose derivative is 
going to zero) changes from unequal to equal. This type of 
inequality change is of course non-immediate. Preference 
#14 ensures that derivatives cannot become 0 (no halting) 
during instantaneous transitions. When this preference is 
switched on, quantities will not stabilise over an immediate 
transition, but first keep increasing or decreasing when 
entering an interval, and may only stabilise in a successor 
state. 

Higher order derivatives information (#15 – #17) 
Simulation preferences #15, #16 and #17 allow for 
exploiting information on higher order derivates. To 
correctly capture the behaviour of a system, 2nd order 
derivatives are sometimes needed. With preference #15 
turned on, 2nd order derivatives are calculated by a 
procedure similar to the regular influence resolution. 2nd 
order derivatives can only be calculated if at least one 
direct influence is present in the causal chain to generate 
the first 2nd order derivative information using the 
derivative of the influencing quantity. Also, all of these 
influencing quantities must have a determined derivative. 
When preference #16 is switched on, 2nd order derivatives 
are also part of the continuity constraints for the 1st order 
derivatives. However, both these preferences are default 
off in the training set to ease understanding of the 
simulation output, and for reasons of efficiency. In larger 
models, especially models with long chains of direct causal 
relations (notably I+/I-), 3rd order derivatives may become 

informative to system behaviour. For efficiency reasons, 
3rd order derivatives are not calculated by default. 
Preference #17 turns this behaviour on. Note that in 
general, calculation and propagation of 2nd order 
derivatives is needed for this functionality to have an 
effect. 
 
Table 2. Preferences for reasoning tightening 
(T=training/E=expert) 

# Name T E 
12 Apply epsilon ordering On On 
13 Apply epsilon merging of immediate 

terminations 
On On 

14 Apply epsilon derivative continuity 
constraints 

On On 

15 Calculate 2nd order derivatives Off On 
16 Apply 2nd order derivative continuity 

constraints 
Off On 

17 Calculate 3rd order derivatives Off Off 
18 Use correspondence in ordering On On 
19 Use constants in ordering On On 
20 Allow reasoning assumptions on 

derivatives 
On On 

21 Apply continuity on derivative 
inequalities 

On On 

22 Constrain interaction between possible 
worlds (derive landmark relations) 

Off Off 

23 Extra thorough inequality reasoning On On 
24 Compare Derivatives (CD) for similar 

quantity pairs 
Off Off 

25 Extend CD: include proportionalities Off Off 
26 Refine CD: (26a) equal target quantity 

type / (26b) equal source quantity type 
/ (26c) equal target entity type / (26d) 
equal source entity type / (26e) equal 
causal dependency sign 

Off Off 

Ordering information (#18 – #19) 
Simulation preferences #18 and #19 affect the grouping of 
possible terminations. Correspondences (between 
magnitudes) are a good information source for ordering 
terminations (Combine changes) in the Find transition 
step. With preference #18 switched on, terminations that 
do not fit the known correspondences in a state are 
removed thereby saving computational resources. In 
general, correspondences are valid throughout a 
simulation, but in models with correspondences changing 
from state to state this preference should be turned off. 
Preference #19 causes the reasoning engine to use relations 
labelled as constant (defined as such using exogenous 
quantity behaviour in the scenario) and relations involving 
addition and subtraction (these are assumed constant by the 



problem solver) to order terminations in the transition 
process. Terminations not compatible with these constants 
are removed thereby gaining computational efficiency. 

Continuity information (#20 – #22) 
Simulation preferences #20, #21 and #22 affect the 
continuity enforced across successive states. When 
applying a transition (determining which model fragments 
apply to the Transition scenario), model fragments from 
the current state are reconsidered. Assumptions made in 
the previous state that are not contradictory at this point are 
kept. Assumptions about derivatives are not made at this 
point however, because these cannot be contradicted 
during the Select and apply model fragment step, since 
derivatives are set later in the Apply causal model step 
(using influence resolution). As such model fragments 
might be incorrectly retained after a transition. Still, with 
preference #20 switched on, the reasoning engine will 
make these assumptions on derivatives speeding up the 
reasoning process. 
 The continuity regime in the problem solver releases 
derivatives over state transitions under constraints to allow 
continuous change. With preference #21 switched on this 
regime is also applied to derivative inequalities. In the 
course of a simulation new inequality relations between 
landmarks may become derivable. When preference #22 is 
on, these relations are added to the state description to 
prevent simulation branches describing different possible 
worlds from interacting. For reasons of efficiency 
preference #22 is default set to off. 

Heuristic inequality reasoning  (#23) 
Simulation preference #23 affects the Inequality reasoning 
step. The reasoning engines can apply heuristics to reduce 
the size of the search space, and increase efficiency. A very 
strong heuristic is to not allow inferences to be made on all 
combinations of relations but only on a subset of the 
relations. When preference #23 is on this heuristic is not 
used. When off, the heuristic is applied, leading to less 
thorough in/equality reasoning, and possible incorrect 
output. 

Comparative analysis (#24 – #26) 
Simulation preferences #24, #25 and #26 implement a kind 
of comparative analysis. Different from [15] the impact is 
computed within a single simulation (state-graph), and the 
analysis typically imposes order on the sequence of 
terminations happening. Comparative derivatives can 
become computational costly. However, it is only needed 
for particular models. Hence, preferences have been 
introduced. The analysis is default put off. Preference #24 
can be used to activate the basic set up, which computes 
order between all quantities and their changes imposed by 

direct influences. Preference #25 broadens the scope, also 
including changes caused by proportionalities (see 
preferences #31 and #32 for implications). Preference #26 
refines the scope of reasoning activated by #24 and #25 in 
5 ways (each option is in fact a preference by itself), by 
putting constraints on the pairs that will actually be 
compared. 

Miscellaneous preferences 
Miscellaneous features are group in Table 3 and discussed 
in this section. 

Constraints on extreme point values (#27 – #28) 
Preferences #27 and #28 determine whether certain 
constraints will be enforced upon extreme magnitudes 
(values at the end of a QS). To assure that a quantity 
remains within the bounds of its QS some constraints are 
automatically added [1]. For derivatives, specific 
constraints are added for the highest and lowest points in 
the QS. This is because a quantity cannot be increasing in 
the top point of a QS or decreasing in the bottom point. For 
example, in the case of QS={0, Plus, Max} (see also text 
on preference #10 and #11) the following conditional 
relation is added: if HX=Max then ∂HX≤0. If the top of the 
QS is an interval, no constraint is needed, since this 
interval is infinitely extended. However, these derivative 
constraints have been made optional providing users a 
flexible approach to modelling. A model may be a partial 
description of a larger phenomenon where the QS is also 
part of a larger domain. E.g. overflow in a container may 
be modelled as an increasing amount in the top landmark. 
Preference #27 restricts the quantity behaviour such that 
increasing in the uppermost point of a QS is not possible, 
and decreasing in the lowermost point of a QS is not 
possible. 
 Note that preference #27 does not affect behaviour at 0, 
as this is a special point. Preference #28 handles 0. This 
option prevents derivatives from increasing or decreasing 
in the highest or lowest point of a QS if this point is 0. 
Preference #27 and #28 have also turned out to be handy 
instruments for model debugging. 

Fastest path heuristic (#29) 
Preference #29 allows for switching on the fastest path 
heuristic. Simulations often have multiple paths to end 
states. In many cases, these paths are practically very 
similar in the behaviour they represent: the same set of 
changes will occur. This option gives precedence to those 
transition scenarios that apply as many as possible of these 
terminations at once. If these transition scenarios produce a 
valid state then the transition scenarios that are ‘subsets’ 
are discarded. It is a heuristic because some end-states may 



not be found. The added value is largely on 
communication. When a model is fully developed, 
applying the fastest path heuristic may significantly 
simplify the state-graph, making the results easier to share 
and discuss. 
 
Table 3. Miscellaneous preferences for reasoning adjustment 
(T=training/E=expert) 

# Name T E 
27 Apply quantity space constraints on 

extreme values 
Off On 

28 Apply quantity space constraints on 
zero as extreme value 

On On 

29 Apply fastest path heuristic Off Off 
30 Remove inactive quantities after 

transition 
Off Off 

31 Propagate 2nd order derivatives over 
proportionalities 

Off Off 

32 Propagate 3rd order derivatives over 
proportionalities 

Off Off 

33 Maximum inequality reasoning depth 0 0 
34 Allow reasoning assumptions On On 
35 Remove terminations to unequal for 

full corresponding quantities 
Off Off 

Remove inactive quantities (#30) 
Preference #30 is rather special purpose. When on, it 
removes quantities that are no longer mentioned in the set 
of active model fragments. Typically this may be a 
quantity associated with a process, where the process stops 
and disappears. The added value is again communication. 

Propagate derivative information over 
proportionalities (#31 – #32) 
Preferences #31 and #32 impose an assumption on the 
shape of the functions represented by proportionalities, and 
because of that allow the problem solver to propagate 
derivative information over proportionalities. Note that this 
extends the assumptions made about the underlying 
function modelled by the proportionality beyond the 
normal definition of proportionalities. In general, changes 
of 1st order derivatives of the related quantities can be 
unequal. Similarly, changes of the 2nd order derivatives of 
the related quantities can be unequal. Therefore these 
preferences are off, even for the default expert settings. 
However, when put on (#31 for 2nd and #32 for 3rd), 
simulation results tend to become more specific because 
more information can be applied. Using these preferences, 
users can thus decide whether the assumption applies to 
their domain and model, and act accordingly. 

Setting maximum search depth (#33) and 
Miscellaneous (#34 – #35) 
Preference #33 restricts the maximum search depth for 
in/equality reasoning. Restricting the search depth can 
improve efficiency on complex models that take too long 
to compute. In in/equality reasoning two parent relations 
are combined to derive a new relation. This new relation 
can in turn become a parent of a new relation, etc. This 
preference controls the amount of parent relations a 
derived relation can have. Of course, this carries the risk of 
not finding derivable relations, and consequently 
generating invalid states. Search depth restrictions in the 
range of 10 to 20 have been successfully used in the past, 
but for new models it is recommended to be conservative 
and apply an experimental approach. In order to not limit 
the search depth, the preference should be turned off (by 
setting its value to 0). 
 When computing a state from a transition or scenario, 
model fragments are considered. Model fragments with 
conditions that are explicitly known are applied first. When 
preference #34 is switched on, the problem solver makes 
assumptions on conditions to include non-contradictory 
model fragments with conditions that are not explicitly 
known. 
 Turn preference #35 on to remove terminations from 
equal to unequal from the transitions for quantities that 
have a full correspondence. 

Implementation and Appearance 
The problem solver has two default settings for the 
simulation preferences: Training (T) and Expert (E) 
(referred to as Modelling in Fig. 3). 

Figure 3. Interactive screen for Simulation Preference selection 
 
Figure 3 shows the default training set (details are also 
shown in Table 1, 2 and 3). This set takes the position that 



models will remain simple and that advanced reasoning 
may be confusing for a beginner. Hence, the preferences 
are chosen to accommodate these constraints. As such, 
spontaneously generating terminations (e.g. by using 
‘Terminate ambiguous derivatives’ (#7)) is not included in 
this set. The default expert set on the other hand, 
emphasizes the correctness of the reasoning. Hence, it 
includes preferences such as ‘Calculate 2nd order 
derivatives’ (#15). In both cases however, not all possible 
constraints are applied. The idea being that full application 
on average will hamper even expert level modelling, rather 
than supporting it. However, users can adjust the 
preferences to their liking and needs. 
 The selected preferences are stored as part of the model, 
and automatically imposed upon the reasoning when the 
model is re-opened and simulated. Taking this approach, 
the simulation preferences are thus a feature of the model, 
rather then of the problem solver. They assure that the 
same results are obtained when the model shared. 
 There are three groups of preferences that are each 
strongly associated with a common theoretical concept. 
These are the preferences concerning epsilon ordering, 2nd 
order derivatives, and comparative analysis. Preferences in 
these groups have been placed together to invite the user to 
consider them all at once. Furthermore a message such as 
the one in Fig. 4 will be displayed if a user simultaneously 
selects and deselects preferences in a particular group. This 
informs the user that these preferences are related to the 
same theoretical concept and should be turned on or off 
simultaneously in most cases. 

Figure 4. Conceptual relationship between simulation 
preferences warning 

Related work 
The work on filters, particularly global filters, developed 
for the QSIM algorithm  [16] seems related to the idea of 
simulation preferences. However, the development of 
global filters largely focussed on identifying and removing 
spurious behaviours, not on the creation of a knowledge 
engineering instrument. Second, despite their need for 
ensuring correct simulation results, having the simulation 
preferences allows users to disable certain key reasoning 

features, if they think they have reasons to do so. An 
example is the calculation of 2nd order derivatives (#15). 
Third, this paper discusses many preference controlled 
reasoning functions that have no counterpart in QSIM due 
to fundamental differences in the underlying architecture. 
E.g. the notion of model fragments does not exist in QSIM, 
and hence preference #30 (Remove inactive quantities after 
transition) has no resemblance in that context. Similar 
arguments apply to #5 (Assume inequality terminations), 
#18 (Use correspondence in ordering), and many of the 
other preferences discussed in this paper. 

Concluding remarks 
This paper gives a review of the simulation preferences 
that have been developed and implemented as part of the 
reasoning engine underlying the Garp3 and DynaLearn 
conceptual knowledge construction workbenches. Drivers 
for establishing these preferences have been (i) ease of 
understanding versus correct simulation output, (ii) 
maintaining upward compatibility in the context of 
software development, and (iii) knowledge capture and 
reasoning features developed as such. The main goal of 
having the simulation preferences available as an 
interactive feature is to support knowledge workers in 
building models taking a certain reasoning perspective. 
Instead of deciding upon which features to actually 
implement, and potentially end-up with a partially 
suboptimal tool for users or certain models, we 
acknowledge that the creation of conceptual models is 
inherently a heuristic process, and empower the user with 
the ability to select and fine-tune features as needed. As 
such, this work is part of our ongoing endeavour to create 
usable QR workbenches. 
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