

Simulation preferences – Means towards usable QR engines

Bert Bredeweg and Floris Linnebank
University of Amsterdam, Informatics institute, Science Park 904, 1098 XH Amsterdam, The Netherlands

B.Bredeweg@uva.nl

Abstract
When developing QR software there are choices to be made
regarding the exact reasoning of the software. Moreover,
what works well in one situation, may become a problem in
another, or experts may disagree on the preferred reasoning.
Instead of forcing a solution and potentially end-up with a
partially suboptimal tool for users or certain models, we
have developed and implemented the idea of Simulation
Preferences. In Garp3 and DynaLearn users can fine-tune
the working of the reasoning engine to their particular
insights and needs. These preferences are stored in the
model, and automatically activated when re-opening the
model. This paper reports on these Simulation Preferences.

 Introduction
Working with domain experts on building qualitative
models [6,7,8,9] inspired us to augment the problem solver
underlying Garp31 [1] and DynaLearn2 [2] with user
definable features controlling the reasoning behaviour of
the engine. These Simulation Preferences allow modellers
to build models taking a certain reasoning perspective.
 Over the years, three drivers have steered the
development of simulation preferences. First, the tension
between generating a fully correct simulation output, and
keeping those results simple and easy understand. For
instance, imposing reasoning with higher order derivatives
improves the quality of the output, yet the result may
become confusing for less knowledgeable users, e.g. in
learning situations. Second, maintaining upward
compatibility in the context of ongoing software
improvements. In many ‘knowledge capture’ projects the
development of tools happens in parallel with the
construction of knowledge, often as a deliberate choice to
have the reasoning actually accommodate the needs
emerging from the knowledge construction effort. But,
when new features become available they may
significantly change or even invalidate earlier results,

1 http://www.Garp3.org
2 http://www.DynaLearn.eu

leading to the knowledge engineers having to (partially)
redo their earlier work. However, such redoing may not be
possible or undesirable by those involved, and a better
solution may be to have the option to put those new
features off in order to retain the earlier established results.
Third, enabling step-wise development and feature
discovery in collaboration with users. Both, building
problem solvers and knowledge construction are iterative
processes for which the ‘real’ requirements are often
established while being submerged in the process. This
means that recently developed features need to be explored
and used in context to better understand their use and
required functioning. Following such a maturation process
some features become fully intertwined with the basic
reasoning, others get abandoned, and yet others remain as
choices that some users will select and others will not.
 This paper discusses the simulation preferences
available in both Garp3 and DynaLearn. The next section
highlights the elementary reasoning of the problem solver
for both these workbenches. The subsequent sections
discuss the simulation preferences.

Essentials of the problem solver used in Garp3
and DynaLearn

The qualitative reason engine underlying the Garp3 and
DynaLearn workbenches generates state-graphs using a
depth-first state-by-state approach, essentially following
the evolution of the predicted system behaviour over time.
The primary reason for taking this step-wise approach is to
allow users to be in control regarding the paths of
behaviours to explore. This is beneficial for experts when
creating a new model, but also for learners engaged in
learning by modelling, as it automatically provides an
intuitive guide through a complex web of possibilities
[3,4].
 Garp3 and DynaLearn are advanced workbenches for
conceptual knowledge capture, using a multitude of
problem solving functions to predict and explain system

behaviour. State and Transition are key notions in this
context (Fig. 1). States represent unique sets of constrains
on quantity values (pairs of <magnitude, derivative>) such
as: magnitude X=0, magnitude in/equality X=Y, derivative
∂X=0, and derivative in/equality ∂X=∂Y. Transitions from
a state to its successor(s) reflect changes in such sets, e.g.
X=0 → X>0, X=Y → X>Y, ∂X=0 → ∂X>0, and ∂X=∂Y
→ ∂X>∂Y (and also for 2nd and 3rd order derivatives).

Figure 1. Garp3 reasoning engine global architecture (from [1]).
The two main inferences are Find states and Find transitions. A
simulation takes as input a scenario and a library of model
fragments, and generates a state-graph (or behaviour-graph). A
state-graph may have multiple behaviour-paths (unique
successive state trajectories).

Computing states and transitions is performed by the
following two top-level inferences.

Find states:
• Select and Apply MFs – Assembling the model-

fragments from the library that match the scenario.
• Apply causal model – Computing the net result of the

causal dependencies (typically Influences (I’s) and
Proportionalities (P’s) [10]) and if present exogenous
quantity behaviours [5].

• Compare states – For newly generated states check to
see if they match an already existing state, or that they
actually represent new unique behaviour.

Find transitions:
• Find changes – Find model ingredients in the current

state that may change and thereby cause the state to
terminate. These elements are called terminations and
they consist of the current and the changed ingredients.

• Combine changes – Analyse the terminations to
determine the order in which they may happen, and
determine all valid combinations.

• Apply continuity – Apply the continuity rules to each
combination to produce a complete transition scenario.

A transition is found if a transition scenario leads to a
valid state.

Notice that solving in/equality, or ordinal, relations is a
cornerstone within these reasoning steps. Compared to
structural and causal relations (which usually remain in
place during an entire simulation), inequality relations
typically change during the simulation, thereby
representing the dynamic aspects of the modelled system.
For each state a coherent mathematical model is
constructed and maintained using the in/equality reasoning
capabilities of the engine.

Preferences on handling unknown
information

The simulation preferences addressed in this paper, are
listed in 3 categories. The first category concerns different
kinds of missing information (Table 1). The second
category concerns choices that tighten the reasoning (Table
2). Note that restricting the reasoning may both enlarge and
reduce the output (number of states and transitions between
those). The third group refers to a set of miscellaneous
preferences (Table 3). In this section, the first category is
discussed.

Influence resolution and unknown information (#1
– #3)
The preferences #1, #2 and #3, on unknown information,
address the influence resolution. When evaluating the
effects of influences and proportionalities unknown
magnitudes (for the I’s) and derivatives (for the P’s) at the
start of causal chains can prohibit the evaluation of their
causal effects. Preference #1 (Assume unknown influence
to be zero)3 causes the reasoning engine to set influencing
unknown magnitudes and/or derivatives to 0 for all
quantities that are themselves not influenced, before
starting the influence resolution procedure. Users can thus
decide to leave unknown information unknown, or
explicitly assume it has no impact on the system behaviour.
 In some cases this setting may cause conflicts with later
results of the influence resolution, causing a contradiction
(due to in/equality for example). In this case, the
corresponding state is not generated. For example: quantity
A is proportional to quantity B and C. Furthermore ∂C>0
and ∂B=‘unknown’. With preference #1 on, ∂B=0 will then
be assumed. Now suppose that the following equality is
also present ∂A=∂B. The influence resolution will calculate
∂A>0, while the equality suggests ∂A=0, a contradiction.

3 In earlier work this was called ‘Apply closed world assumption
in influence resolution’ [11].

When evaluating higher order effects on influences and
proportionalities, preference #2 sets the 2nd order
derivatives of all unaffected quantities to 0, if these 2nd and
3rd order derivatives are unknown. Preference #3 does the
equivalent for 3rd order derivatives.

Table 1. Preferences for handling unknown information
(T=training/E=expert)

Name T E
1 Assume unknown influence to be zero Off Off
2 Assume unknown 2nd order influences

to be 0
Off Off

3 Assume unknown 3rd order influences
to be 0

Off Off

4 Assume value terminations Off On
5 Assume inequality terminations Off On
6 Generate derivative terminations

(based on 2nd order derivatives)
Off On

7 Terminate ambiguous derivatives Off On
8 Generate terminations for ≤ & ≥ Off Off
9 Generate all values for calculated

quantities
Off Off

10 Assume equal quantity spaces have
equal points

Off Off

11 Assume equal length intervals Off Off

Find terminations using indirect proof (#4 – #8)
Simulation preferences #4 through #8 affect the Find
changes step. Notice that as a principle, the reasoning
engine used in Garp3 and DynaLearn will only generate
possible terminations that actually ‘have a cause’. That is,
for which there is information available that necessarily
leads to the change. For instance, quantity X will want to
change magnitude when ∂X≠0, but not when
∂X=’unknown’. This is a strict interpretation, which is
particular relevant in the context of education, and for
providing explanations. Not having a clear cause for a
change hampers the software’s ability to present an
argument on why the system behaviour evolved as it did.
Experts on the other hand, may want to ignore this, or take
a different perspective on this principled starting point.
Particularly, the idea of Reductio Ad Absurdum (RAA)
(proof by contradiction or indirect proof) may be taken as
an alternative. If in the example, it can be proven that
∂X≥0 leads to contradiction, while ∂X<0 results in a valid
transition, then the latter must be true. Because in
qualitative reasoning the set of possible variations of this
kind is relatively small (that is, value assignments and
in/equality statements), RAA may also be a very effective
instrument for generating behaviours in the context of
unknown information [12]. Preferences #4 and #5 allow
users to deliberately exploit the RAA idea. There are

however additional options, allowing users to fine-tune a
particular flavour.
• A quantity X will only move if it has a known

derivative, and it also holds that ∂X≠0. With preference
#4 switched on, the reasoning engine will assume
unequal derivatives for unknown derivatives
(constrained by relations that are known) and fire
terminations accordingly.

• An inequality relation such as X>Y will only terminate
when it is known that the involved derivatives are
unequal (∂X≠∂Y). With preference #5 switched on, the
mechanism triggered by preference #4 is also applied to
quantities having in/equality relationships.

• 2nd order derivatives can cause 1st order derivatives to
terminate when preference #6 is turned on. This
behaviour can be necessary to correctly capture the
behaviour of a system. For example, an ambiguous 1st
order derivative may become non-ambiguous and cause
a dead-end (contradiction in successor states) in the
simulation. E.g. a state where the quantity is increasing
cannot change into a decreasing state without first
becoming steady (due to continuity constraints) via a
separate termination. Preference #6 introduces this
flexibility by generating essential 1st order changes
imposed by 2nd order derivatives.

• Preference #7 causes terminations for ambiguous
derivatives to be generated such that these can freely
change. Note that this can be important for correct
behaviour. Ambiguous derivatives are always branched
and specified (states are generated for each possibility).
And without free transitions between such states, when
a derivative becomes unambiguously known in a
successor state, this may lead to a contradiction and a
dead-end state because of continuity constraints (a
change from >0 directly to <0 and vice versa is not
permitted).

• By design weaker relations (notably ≤ & ≥) will not be
terminated by the Find changes step. Preference #8
causes terminations also to be generated for these
relations. The relation ≥ will terminate to > in the case
of the left hand side rising relative to the right hand
side. Or it may terminate into = and < in the opposite
case.

Assuming information relevant for inequality
reasoning (#9 – #11)
Simulation preferences #9, #10 and #11 affect the
Inequality reasoning step. Magnitudes remain unknown
unless fully determined by the model. Unlike derivatives,
which are branched and specified if they are ambiguous.
Preference #9 activates an assumption mechanism that
generates all magnitudes for ambiguous quantities. It acts
in the following two situations:

• When the user specifies this behaviour for a quantity in
the scenario (referred to as exogenous quantity
behaviour [5], and available when adding a quantity to
a scenario by selecting the option ‘Generate all
magnitudes’).

• When a magnitude is determined by an addition or a
subtraction that leaves an ambiguous result. E.g. if X–
Y=Z, X>0, Y>0, then Z cannot be uniquely computed.
Instead of leaving Z=’unknown’, this preferences will
try to impose all the possible solutions (Z<0, Z=0, Z>0)
and states will be computed accordingly (of course
contradictory states will be abandoned).

This mechanism ensures that quantity magnitudes do not
remain unknown in a sparsely specified model and that the
full behaviour is generated. Note that having many extra
assumable magnitudes is a computational burden. This
preference is therefore turned off by default, both for
Training (T) and Expert (E) (see implementation section).
 Simulation preferences #10 and #11 make assumptions
regarding the relationship between Quantity Spaces (QS).
In Garp3 and DynaLearn QSs are ordered sets of values
(alternating points and intervals) assigned to a quantity,
specifying magnitudes that this quantity may take on4. For
instance the Height of a container can be one of {0, Plus,
Max} (referring to empty, partially filled, and fully filled,
respectively). By definition QSs are unique, and
magnitudes from different QSs (even with the same
label/name) are not assumed to be equal without explicit
specification. Thus, if a model includes two containers,
each with a Height (HX and HY) and the QS {Zero, Plus,
Max} assigned to them, it cannot be assumed that
HX(Max)=HY(Max). The only exception to this rule is 0,
which is universal in a model.
 Although this approach is a deliberate choice, it is
sometimes confusing for beginners. And for experts it may
be cumbersome when having to specify many equality
statements between QS point values. Preference #10 is in
this respect straightforward: it makes the reasoning engine
assume equality statements between all the points that have
the same position in two QSs of equal type. This simplifies
the expert’s modelling effort in some situations, and
learners can be given a scaffold [13] by using this setting
and make things initially easier to understand.
 Preference #11 refines the concept discussed above.
When switched on, the reasoning engine assumes all
intervals within a quantity space to have equal length. This
knowledge is expressed by adding the required addition
and subtraction constraints.

4 Notice that this definition of quantity space is rather different
from its use in QPT [10].

Preferences on tighter reasoning
This section focuses on simulation preferences that alter
the problem solving method by enforcing of relaxing
certain constraints (Table 2). Tightening the reasoning
typically leads to a better, but often more difficult to
understand, simulation result. In addition, the computation
time may significantly increase when certain constraints
are enforced. It is within these dimensions that the
following list of preferences has found its way into the
reasoning engine.

Importance of immediate terminations (#12 – #14)
Simulation preferences #12, #13 and #14 address epsilon
ordering [12]. This concept distinguishes immediate
terminations (from a point, and from equality) and non-
immediate terminations (to a point, and to equality). The
concept is based on the idea that a point in a QS occupies
no space on the line of real numbers. Therefore if a
quantity is on a point and it moves it will leave the point in
an infinitely small amount of time. On the other hand, a
quantity moving to a point will have always some ‘epsilon’
amount of space between itself and the point. Therefore the
transition to the point is not immediate. Because of this,
immediate transitions take precedence over non-immediate
transitions. However, particularly in the NaturNet-Redime5
project there was discussion about whether ‘mixed’
transitions were possible [14]. One question has been
whether an interval and a point could be corresponding
since this correspondence could demand a ‘mixed’
transition. Preference #12 makes the reasoning engine
work according to epsilon ordering logic, but users can
decide to put it off, supporting both viewpoints held.
 Ordering possible terminations is a computational costly
task. To improve efficiency the epsilon ordering can be
applied first in the ordering step (Combine changes). That
is, if there are immediate terminations, these will be
ordered first. The resulting set is checked, and only if it is
empty the set of non-immediate terminations will be
ordered. This way, valid terminations will never be
removed without reason. This procedure is illustrated in
Fig. 2. Preference #13 groups all immediate terminations
as much as possible (mutual exclusive terminations cannot
be combined, e.g. random exogenous behaviours in
opposite directions for the same quantity). An extra
consequence of this approach is that mixed combinations
(involving immediate and non-immediate terminations) are
not possible anymore. This can be seen as a positive effect
since a strict interpretation of the epsilon concept would
not allow these combinations either. However, for
backward compatibility reasons, the strict implementation

5 http://hcs.science.uva.nl/projects/NNR/

of the epsilon ordering can be put off using preferences
#12 and #13.

Figure 2. Epsilon ordering computational sequences

The notion of immediate transitions also has an impact on
derivatives, as these may also not change to 0 in an
immediate transition. The rationale behind this rule is
similar to the epsilon ordering. First, it is a non-immediate
event since it is a transition towards a point. Second, it is a
non-immediate event since it represents the event that the
balance of influences on this quantity (whose derivative is
going to zero) changes from unequal to equal. This type of
inequality change is of course non-immediate. Preference
#14 ensures that derivatives cannot become 0 (no halting)
during instantaneous transitions. When this preference is
switched on, quantities will not stabilise over an immediate
transition, but first keep increasing or decreasing when
entering an interval, and may only stabilise in a successor
state.

Higher order derivatives information (#15 – #17)
Simulation preferences #15, #16 and #17 allow for
exploiting information on higher order derivates. To
correctly capture the behaviour of a system, 2nd order
derivatives are sometimes needed. With preference #15
turned on, 2nd order derivatives are calculated by a
procedure similar to the regular influence resolution. 2nd
order derivatives can only be calculated if at least one
direct influence is present in the causal chain to generate
the first 2nd order derivative information using the
derivative of the influencing quantity. Also, all of these
influencing quantities must have a determined derivative.
When preference #16 is switched on, 2nd order derivatives
are also part of the continuity constraints for the 1st order
derivatives. However, both these preferences are default
off in the training set to ease understanding of the
simulation output, and for reasons of efficiency. In larger
models, especially models with long chains of direct causal
relations (notably I+/I-), 3rd order derivatives may become

informative to system behaviour. For efficiency reasons,
3rd order derivatives are not calculated by default.
Preference #17 turns this behaviour on. Note that in
general, calculation and propagation of 2nd order
derivatives is needed for this functionality to have an
effect.

Table 2. Preferences for reasoning tightening
(T=training/E=expert)

Name T E
12 Apply epsilon ordering On On
13 Apply epsilon merging of immediate

terminations
On On

14 Apply epsilon derivative continuity
constraints

On On

15 Calculate 2nd order derivatives Off On
16 Apply 2nd order derivative continuity

constraints
Off On

17 Calculate 3rd order derivatives Off Off
18 Use correspondence in ordering On On
19 Use constants in ordering On On
20 Allow reasoning assumptions on

derivatives
On On

21 Apply continuity on derivative
inequalities

On On

22 Constrain interaction between possible
worlds (derive landmark relations)

Off Off

23 Extra thorough inequality reasoning On On
24 Compare Derivatives (CD) for similar

quantity pairs
Off Off

25 Extend CD: include proportionalities Off Off
26 Refine CD: (26a) equal target quantity

type / (26b) equal source quantity type
/ (26c) equal target entity type / (26d)
equal source entity type / (26e) equal
causal dependency sign

Off Off

Ordering information (#18 – #19)
Simulation preferences #18 and #19 affect the grouping of
possible terminations. Correspondences (between
magnitudes) are a good information source for ordering
terminations (Combine changes) in the Find transition
step. With preference #18 switched on, terminations that
do not fit the known correspondences in a state are
removed thereby saving computational resources. In
general, correspondences are valid throughout a
simulation, but in models with correspondences changing
from state to state this preference should be turned off.
Preference #19 causes the reasoning engine to use relations
labelled as constant (defined as such using exogenous
quantity behaviour in the scenario) and relations involving
addition and subtraction (these are assumed constant by the

problem solver) to order terminations in the transition
process. Terminations not compatible with these constants
are removed thereby gaining computational efficiency.

Continuity information (#20 – #22)
Simulation preferences #20, #21 and #22 affect the
continuity enforced across successive states. When
applying a transition (determining which model fragments
apply to the Transition scenario), model fragments from
the current state are reconsidered. Assumptions made in
the previous state that are not contradictory at this point are
kept. Assumptions about derivatives are not made at this
point however, because these cannot be contradicted
during the Select and apply model fragment step, since
derivatives are set later in the Apply causal model step
(using influence resolution). As such model fragments
might be incorrectly retained after a transition. Still, with
preference #20 switched on, the reasoning engine will
make these assumptions on derivatives speeding up the
reasoning process.
 The continuity regime in the problem solver releases
derivatives over state transitions under constraints to allow
continuous change. With preference #21 switched on this
regime is also applied to derivative inequalities. In the
course of a simulation new inequality relations between
landmarks may become derivable. When preference #22 is
on, these relations are added to the state description to
prevent simulation branches describing different possible
worlds from interacting. For reasons of efficiency
preference #22 is default set to off.

Heuristic inequality reasoning (#23)
Simulation preference #23 affects the Inequality reasoning
step. The reasoning engines can apply heuristics to reduce
the size of the search space, and increase efficiency. A very
strong heuristic is to not allow inferences to be made on all
combinations of relations but only on a subset of the
relations. When preference #23 is on this heuristic is not
used. When off, the heuristic is applied, leading to less
thorough in/equality reasoning, and possible incorrect
output.

Comparative analysis (#24 – #26)
Simulation preferences #24, #25 and #26 implement a kind
of comparative analysis. Different from [15] the impact is
computed within a single simulation (state-graph), and the
analysis typically imposes order on the sequence of
terminations happening. Comparative derivatives can
become computational costly. However, it is only needed
for particular models. Hence, preferences have been
introduced. The analysis is default put off. Preference #24
can be used to activate the basic set up, which computes
order between all quantities and their changes imposed by

direct influences. Preference #25 broadens the scope, also
including changes caused by proportionalities (see
preferences #31 and #32 for implications). Preference #26
refines the scope of reasoning activated by #24 and #25 in
5 ways (each option is in fact a preference by itself), by
putting constraints on the pairs that will actually be
compared.

Miscellaneous preferences
Miscellaneous features are group in Table 3 and discussed
in this section.

Constraints on extreme point values (#27 – #28)
Preferences #27 and #28 determine whether certain
constraints will be enforced upon extreme magnitudes
(values at the end of a QS). To assure that a quantity
remains within the bounds of its QS some constraints are
automatically added [1]. For derivatives, specific
constraints are added for the highest and lowest points in
the QS. This is because a quantity cannot be increasing in
the top point of a QS or decreasing in the bottom point. For
example, in the case of QS={0, Plus, Max} (see also text
on preference #10 and #11) the following conditional
relation is added: if HX=Max then ∂HX≤0. If the top of the
QS is an interval, no constraint is needed, since this
interval is infinitely extended. However, these derivative
constraints have been made optional providing users a
flexible approach to modelling. A model may be a partial
description of a larger phenomenon where the QS is also
part of a larger domain. E.g. overflow in a container may
be modelled as an increasing amount in the top landmark.
Preference #27 restricts the quantity behaviour such that
increasing in the uppermost point of a QS is not possible,
and decreasing in the lowermost point of a QS is not
possible.
 Note that preference #27 does not affect behaviour at 0,
as this is a special point. Preference #28 handles 0. This
option prevents derivatives from increasing or decreasing
in the highest or lowest point of a QS if this point is 0.
Preference #27 and #28 have also turned out to be handy
instruments for model debugging.

Fastest path heuristic (#29)
Preference #29 allows for switching on the fastest path
heuristic. Simulations often have multiple paths to end
states. In many cases, these paths are practically very
similar in the behaviour they represent: the same set of
changes will occur. This option gives precedence to those
transition scenarios that apply as many as possible of these
terminations at once. If these transition scenarios produce a
valid state then the transition scenarios that are ‘subsets’
are discarded. It is a heuristic because some end-states may

not be found. The added value is largely on
communication. When a model is fully developed,
applying the fastest path heuristic may significantly
simplify the state-graph, making the results easier to share
and discuss.

Table 3. Miscellaneous preferences for reasoning adjustment
(T=training/E=expert)

Name T E
27 Apply quantity space constraints on

extreme values
Off On

28 Apply quantity space constraints on
zero as extreme value

On On

29 Apply fastest path heuristic Off Off
30 Remove inactive quantities after

transition
Off Off

31 Propagate 2nd order derivatives over
proportionalities

Off Off

32 Propagate 3rd order derivatives over
proportionalities

Off Off

33 Maximum inequality reasoning depth 0 0
34 Allow reasoning assumptions On On
35 Remove terminations to unequal for

full corresponding quantities
Off Off

Remove inactive quantities (#30)
Preference #30 is rather special purpose. When on, it
removes quantities that are no longer mentioned in the set
of active model fragments. Typically this may be a
quantity associated with a process, where the process stops
and disappears. The added value is again communication.

Propagate derivative information over
proportionalities (#31 – #32)
Preferences #31 and #32 impose an assumption on the
shape of the functions represented by proportionalities, and
because of that allow the problem solver to propagate
derivative information over proportionalities. Note that this
extends the assumptions made about the underlying
function modelled by the proportionality beyond the
normal definition of proportionalities. In general, changes
of 1st order derivatives of the related quantities can be
unequal. Similarly, changes of the 2nd order derivatives of
the related quantities can be unequal. Therefore these
preferences are off, even for the default expert settings.
However, when put on (#31 for 2nd and #32 for 3rd),
simulation results tend to become more specific because
more information can be applied. Using these preferences,
users can thus decide whether the assumption applies to
their domain and model, and act accordingly.

Setting maximum search depth (#33) and
Miscellaneous (#34 – #35)
Preference #33 restricts the maximum search depth for
in/equality reasoning. Restricting the search depth can
improve efficiency on complex models that take too long
to compute. In in/equality reasoning two parent relations
are combined to derive a new relation. This new relation
can in turn become a parent of a new relation, etc. This
preference controls the amount of parent relations a
derived relation can have. Of course, this carries the risk of
not finding derivable relations, and consequently
generating invalid states. Search depth restrictions in the
range of 10 to 20 have been successfully used in the past,
but for new models it is recommended to be conservative
and apply an experimental approach. In order to not limit
the search depth, the preference should be turned off (by
setting its value to 0).
 When computing a state from a transition or scenario,
model fragments are considered. Model fragments with
conditions that are explicitly known are applied first. When
preference #34 is switched on, the problem solver makes
assumptions on conditions to include non-contradictory
model fragments with conditions that are not explicitly
known.
 Turn preference #35 on to remove terminations from
equal to unequal from the transitions for quantities that
have a full correspondence.

Implementation and Appearance
The problem solver has two default settings for the
simulation preferences: Training (T) and Expert (E)
(referred to as Modelling in Fig. 3).

Figure 3. Interactive screen for Simulation Preference selection

Figure 3 shows the default training set (details are also
shown in Table 1, 2 and 3). This set takes the position that

models will remain simple and that advanced reasoning
may be confusing for a beginner. Hence, the preferences
are chosen to accommodate these constraints. As such,
spontaneously generating terminations (e.g. by using
‘Terminate ambiguous derivatives’ (#7)) is not included in
this set. The default expert set on the other hand,
emphasizes the correctness of the reasoning. Hence, it
includes preferences such as ‘Calculate 2nd order
derivatives’ (#15). In both cases however, not all possible
constraints are applied. The idea being that full application
on average will hamper even expert level modelling, rather
than supporting it. However, users can adjust the
preferences to their liking and needs.
 The selected preferences are stored as part of the model,
and automatically imposed upon the reasoning when the
model is re-opened and simulated. Taking this approach,
the simulation preferences are thus a feature of the model,
rather then of the problem solver. They assure that the
same results are obtained when the model shared.
 There are three groups of preferences that are each
strongly associated with a common theoretical concept.
These are the preferences concerning epsilon ordering, 2nd
order derivatives, and comparative analysis. Preferences in
these groups have been placed together to invite the user to
consider them all at once. Furthermore a message such as
the one in Fig. 4 will be displayed if a user simultaneously
selects and deselects preferences in a particular group. This
informs the user that these preferences are related to the
same theoretical concept and should be turned on or off
simultaneously in most cases.

Figure 4. Conceptual relationship between simulation
preferences warning

Related work
The work on filters, particularly global filters, developed
for the QSIM algorithm [16] seems related to the idea of
simulation preferences. However, the development of
global filters largely focussed on identifying and removing
spurious behaviours, not on the creation of a knowledge
engineering instrument. Second, despite their need for
ensuring correct simulation results, having the simulation
preferences allows users to disable certain key reasoning

features, if they think they have reasons to do so. An
example is the calculation of 2nd order derivatives (#15).
Third, this paper discusses many preference controlled
reasoning functions that have no counterpart in QSIM due
to fundamental differences in the underlying architecture.
E.g. the notion of model fragments does not exist in QSIM,
and hence preference #30 (Remove inactive quantities after
transition) has no resemblance in that context. Similar
arguments apply to #5 (Assume inequality terminations),
#18 (Use correspondence in ordering), and many of the
other preferences discussed in this paper.

Concluding remarks
This paper gives a review of the simulation preferences
that have been developed and implemented as part of the
reasoning engine underlying the Garp3 and DynaLearn
conceptual knowledge construction workbenches. Drivers
for establishing these preferences have been (i) ease of
understanding versus correct simulation output, (ii)
maintaining upward compatibility in the context of
software development, and (iii) knowledge capture and
reasoning features developed as such. The main goal of
having the simulation preferences available as an
interactive feature is to support knowledge workers in
building models taking a certain reasoning perspective.
Instead of deciding upon which features to actually
implement, and potentially end-up with a partially
suboptimal tool for users or certain models, we
acknowledge that the creation of conceptual models is
inherently a heuristic process, and empower the user with
the ability to select and fine-tune features as needed. As
such, this work is part of our ongoing endeavour to create
usable QR workbenches.

Acknowledgement
The work presented in this paper is co-funded by the EC
within the 7th FP, Project no. 231526, and Website:
http://www.DynaLearn.eu.

References
[1] Bredeweg, B., Linnebank, F., Bouwer, A. and Liem, J.

(2009). Garp3 – Workbench for Qualitative Modelling and
Simulation. Ecological Informatics 4(5-6), 263-281.

[2] Bredeweg, B., Liem, J., Beek, W., Salles, P. and
Linnebank, F. (2010). Learning Spaces as Representational
Scaffolds for Learning Conceptual Knowledge of System
Behaviour. In Wolpers, M., Kirschner, P.A., Scheffel, M.,
Lindstaedt, S. and Dimitrova, V. (eds.), Sustaining TEL:
From Innovation to Learning and Practice (EC-TEL 2010),
p47-61, LNCS 6383, Barcelona, Spain.

[3] Bredeweg, B. and Schut, C. (1991). Cognitive plausibility
of a conceptual framework for modeling problem solving

expertise. Proceedings of the 13th Conference of Cognitive
Science Society, K.J. Hammond and D. Gentner (eds.),
August, Lawrence Erlbaum, Hillsdale, New Jersey, pp. 473-
479.

[4] De Koning, K., Bredeweg, B., Breuker, J. and Wielinga, B.
(2000). Model-Based Reasoning about Learner Behaviour.
Artificial Intelligence, 117(2), pp.173-229.

[5] Bredeweg, B., Salles, P., Nuttle, T. (2007). Using
exogenous quantities in qualitative models about
environmental sustainability. AI Communications, 20(1),
pp. 49-58.

[6] B. Bredeweg, P. Salles, J. Bertels, D. Rafalowicz, A.
Bouwer, J. Liem, G. M. Feltrini, A. L. R. Caldas, M. M. P.
Resende, A. Zitek, and T. Nuttle. (2007). Training report on
using QR for learning about sustainable development.
Naturnet-Redime, EC FP6 STREP project 004074,
Deliverable D7.2.

[7] Noble, R., Salles, P., Zitek, A., Mioduser, D., Zuzovsky, R.
and Borisova, P. (2011). DynaLearn curriculum reflection
and advancement. DynaLearn, EC FP7 STREP project
231526, Deliverable D6.3.

[8] P. Salles and B. Bredeweg. (2007). Library of reusable QR
model fragments. Naturnet-Redime, EC FP6 STREP project
004074, Deliverable D6.7.1.

[9] Salles, P., Assumpção Costa e Silva, P., Gontijo de Sá, I.,
Noble, R., Zitek, A., Uzunov, Y. and Mioduser, D. (2009).
DynaLearn environmental science curriculum requirements.
DynaLearn, EC FP7 STREP project 231526, Deliverable
D6.1.

[10] Forbus, K.D. (1984). Qualitative process theory. Artificial
Intelligence, 24, pp. 85-168.

[11] Bredeweg, B., Bouwer, A., Jellema, J., Bertels, D.,
Linnebank, F. and Liem. J. (2006). Garp3 - a new
workbench for qualitative reasoning and modelling. In C.
Bailey-Kellogg and B. Kuipers (eds), 20th International
Workshop on Qualitative Reasoning (QR-06), pp 21–28,
Hanover, New Hampshire, USA.

[12] Kleer, de J. and Brown, J.S. (1984). A qualitative physics
based on confluences. Artificial Intelligence, 24, pp. 7–83.

[13] Soloway, E., Guzdial, M. and Hay, K. E. (1994). Learner-
centered design: The challenge for HCI in the 21st century.
Interactions, 1, pp. 36–48.

[14] Bouwer, A., Liem, J., Linnebank, F. and Bredeweg, B.
(2007). Analysis of frequently asked questions and
improvements of the Garp3 workbench Naturnet-Redime,
EC FP6 STREP project 004074, Deliverable D4.2.3.

[15] Weld, D. (1988). Comparative Analysis. Artificial
Intelligence, 36, pp. 333-374.

[16] Kuipers, B. (1994). Qualitative Reasoning: Modeling and
Simulation with Incomplete Knowledge, 452 pages, MIT
Press.

