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Abstract 

Qualitative reasoning typically proceeds by instantiating 
type-level constraints to produce a complete propositional 
model of a scenario, and then reasoning over this 
propositional representation.  As we pursue the problem of 
learning qualitative models and applying them to open-
ended construction domains, the limitations of this approach 
have become increasingly acute.  Consequently, we have 
been developing representations and techniques for higher-
order qualitative reasoning, which supports qualitative 
reasoning without needing to generate a full propositional 
scenario model.  We present our type-level vocabulary and 
describe our experience with it in learning qualitative 
influences in a strategy game domain. 

Introduction 

Qualitative models can be an effective way to reason with 

partial information about a system.  In the standard 

approach, a domain theory consisting of logically 

quantified descriptions is used to formulate one or more 

models of a scenario, by instantiating concepts from the 

domain theory to describe the system or situation to be 

reasoned about.  This scenario model is propositional, 

since all variables have been removed during the 

instantiation that occurs during model formulation.  It has 

the advantage of simplicity: Once the scenario model has 

been formulated, all reasoning takes place in it.  All 

potential new entities have been generated in advance, 

during model formulation, so the scenario model is 

complete, up to the resolution and correctness of the 

domain theory (and the assumptions used during model 

formulation).  This has worked well for small scenarios, 

and even for large scenarios, like complex engineered 

systems (e.g., Sgouros, 1993; Struss & Price, 2003).  

Unfortunately, as we explore domains that are more open-

ended, involving construction of new artifacts, and 

especially exploring how to learn domain theories, we are 

finding that this process breaks down.  In engineering 

tasks, there is typically a schematic (or equivalent) that 

constrains the number of entities to be considered.  In 

planning tasks, where the point is to generate a set of 

entities related in effective ways (e.g. a city layout), 

qualitative reasoning is still useful, but the process is 

generating as its output what would normally be the 

scenario model given as input.  That is what we mean by 

more open-ended construction domains and tasks.  Using 

qualitative reasoning to help guide and optimize 

construction tasks requires a different perspective on the 

modeling process. 

Consider for example computer strategy games, such as 

Freeciv1.  Like other games in this genre, players build up 

civilizations by exploring, creating cities, improving 

terrain, building transportation networks, conducting 

scientific research, and engaging in trade (and warfare and 

diplomacy) with other civilizations as the game progresses.  

Games like these have many tasks that can benefit from 

qualitative reasoning, including optimizing city placement, 

deciding what to build, deciding what to research, and how 

to interact with other civilizations. These games are much 

more complex than chess.  In the standard game, there are 

50 types of units, 17 city improvements, and which are 

available at any time depends in interesting ways on the 92 

technologies that can be researched.  Building a 

civilization involves building a dozen or more cities, on a 

board size of 4,000 or more tiles. Growing a civilization 

also involves improving terrain, building transportation 

networks, and conducting military operations (offensive or 

defensive) involving other civilizations.  Thus the search 

spaces involved are immense, so harnessing qualitative 

reasoning to constrain the possibilities that are examined is 

essential, but propositionalization would be extremely 

expensive. 

 The problem becomes more acute when the scope of 

investigation is expanded to include learning the domain 

theory, by experimentation and/or interaction with people. 

For efficient learning, it is important to learn the most 

                                                 
1 http://www.freeciv.wikia.com 



 

 

general facts that will have the broadest applicability.  

Hypothesized facts should be easy to validate or disprove 

with respect to prior experience with different instances.  

The representation should also correspond closely to the 

way we talk about qualitative relations in language.  When 

introducing a new concept or process, we tend to describe 

it in general terms at the type level.  Thus, we tend to say 

“Water freezes at 32F” rather than “The water in the can 

freezes at 32F.” 

Historically, domain theories for qualitative modeling 

have been designed to facilitate model instantiation, rather 

than be the subject of reasoning itself2.  For example, in the 

Compositional Modeling Language (Falkenhainer et al, 

1996), a model fragment is instantiated from a complex s-

expression containing keywords and logic variables.  It is 

more a template than a piece of knowledge to be reasoned 

about.  To support reasoning and learning, the 

representational format of this knowledge must be simple, 

machine-understandable, constructable via learning 

algorithms, and yet remain expressive.  These are a tough 

set of constraints to satisfy. Our solution is to develop a 

type-level representational vocabulary for qualitative 

reasoning.  A type-level representation means that 

statements have arguments that are themselves either 

concepts or predicates.  This has two advantages: 1) it 

breaks the monolithic templates down into smaller-grained 

individual statements that can be learned incrementally, 

and 2) it eliminates the need for variable bindings to 

coordinate different statements.  A major benefit of this is 

that instances of model fragments, influences, and even 

quantities, need not be reified except on demand, thereby 

reducing the burden on a truth-maintenance system and/or 

a persistent knowledge base. 

The next section provides some background on our 

representational choices and the desirable properties of 

higher-order qualitative representations.  We then present 

vocabularies and examples of quantities and type-level 

influences.  We briefly describe how our current system 

learns and exploits qualitative influences and proceed to 

outline some more provisional representations for process 

types.  We close by discussing open remaining problems 

and future work. 

Background 

We use representational conventions from the Cyc 

Knowledge base (Lenat, 1995).  In Cyc, concepts are 

divided into collections and individuals.  The former are 

organized into a specialization hierarchy (i.e., set-subset), 

and the latter into a type hierarchy (i.e., membership).  

                                                 
2 There have been analyses of properties of domain theories themselves, 
e.g. (Forbus 1984;1992), but that is different from using a domain theory 
to reason through a situation without propositionalization.  

Statements are further organized into logically consistent 

contextual environments called microtheories. 

Our use of type-level predicates in particular is inspired 

by examples in Cyc, where they provide concise ways to 

state properties of a collection without explicitly 

enumerating its members.  For example, the relationship 

relationAllInstance takes a predicate, a collection, 

and a value as arguments and asserts that for every member 

of that collection, (<pred> <member> <value>) holds.  

Of course, internally, this is equivalent to (and may expand 

into) a rule that universally quantifies over the member.   

Yet the fact that it can be expressed in a purely structural 

way without logical variables makes it a simpler target 

representation for learning than a quantified rule and lends 

itself to a more efficient procedural implementation. 

Desiderata for Higher-Order Representations 

Ideally, higher-order representations for qualitative 

reasoning should be: 

 Concise and scalable 

 Communicable 

 Compositional 

 Easily reasoned with 

 Learnable 

The first two tend to improve together, i.e., concise 

statements tend to be easier to communicate.  

Compositionality is crucial because QR concerns the 

mechanisms by which things change, and being able to 

combine them is essential for constructing solutions to 

complex problems.   

Reasoning is of course the point of representations.  In 

most QR work, the number of new entities that can appear 

dynamically is tightly bounded as a function of the original 

description of the scenario3.  For instance, in reasoning 

about contained fluids, the potential set of them can be 

constructed in advance, and it is bounded by the number of 

substances and phases being considered in particular 

containers.  This is not the case for constructive domains, 

e.g. in Freeciv one can build cities, and improvements in 

cities, and units, leading to a staggering number of 

possibilities that would be extraordinarily expensive to 

instantiate.   

 Supporting learning also places a premium on 

conciseness.  When we learn a domain theory empirically, 

we need to be able to determine quickly if the hypothesized 

influences and processes are consistent with the new 

observations, and when they are not, how best to revise the 

theory.  Moreover, human learners often compare alternate 

hypotheses using analogy, as well as apply explanations 

via analogy to new situations.  Our structure mapping 

                                                 
3 QP theory allows domain theories that generate potentially unbounded 
numbers of entities from a finite description (Forbus, 1992) but no 
existing qualitative reasoner supports this possibility currently. 



 

 

model of analogy (Falkenhainer et al, 1989) is better suited 

to ground structural representations than to representations 

where structure may be implicit in the unification of logic 

variables. 

Our solution to these requirements is to define higher-

order predicates that take collections and relations as 

arguments, rather than instance-level quantities and 

entities.  As we have mentioned, such representations are 

common in Cyc as a way to obviate the need for universal 

quantifiers, variables and skolems.  The application of this 

approach to qualitative reasoning is novel. 

Quantity Representations 

Before describing influence and process representations, it 

is helpful to describe our representation of quantities.  A 

quantity is a scalar fluent property of an entity or process.  

To distinguish fluents from constants, we employ a non-

atomic term: in this case, a second-order function applied 

to a quantity type that in turn may be applied to an entity to 

denote a time-varying property.  For example, 

((QPQuantityFn Pressure) canA) denotes the 

pressure inside canA.  We will sometimes use a variant of 

this notation that takes a binary predicate as argument, for 

example,  ((MeasurableQuantityFn citySize) FC-

City-Boston).  The predicate provides a way for our 

reasoning engine to sample an instantaneous value in an 

external system such as a game simulation.  Such 

measurements are necessary for learning or validating a 

qualitative model. 

Type-level Influence Representations 

The idea behind a type-level influence statement is that it 

should represent a correct relationship about all quantities 

that hold in a certain relation.  Previously, we have used 

back-chaining rules to capture this notion.  However, in a 

system that learns influences, it is difficult to construct and 

reason about such rules.  Instead, we adopt more concise 

2nd order relations that do away with the need for variables 

and/or skolems. 

 

The form of such relations is: 

(i, qt1, qt2, c1, c2, r) 

where: 

i =  a second-order influence predicate 

qt1, qt2 =  quantity types represented by denotational 

functions as described above 

c1, c2 = collections representing the types of entity 

arguments to the quantity types 

r = a binary relationship that must hold between the 

allowed instances of c1 and c2. 

The vocabulary of type-level influence predicates is shown 

in Figure 1, and for the most part corresponds to the 

conventional propositional-level influence types.  For 

example, in Freeciv, a statement that there is a direct 

influence (i+) from the tax revenue rate of each city to the 

treasure of that city’s civilization would look like: 

(i+TypeType  

(MeasurableQuantityFn currentGold)  

(MeasurableQuantityFn currentTax) 

Freeciv-Player Freeciv-City owner). 

Clearly this is an implicit universal quantification, except 

that a) there are no explicit variables, and b) the scope of 

the statement is restricted to the query microtheory. That 

is, the logical context provided by the microtheory 

structure provides additional localization, which helps 

reduce the number of arguments required in the 

relationships, thereby improving conciseness. 

The two predicates, positivelyDependsOn-TypeType 

and negativelyDependsOn-TypeType are slightly different 

in that they represent an under-specified influence caused 

by a non-quantitative relationship.  The predicates are 

quaternary and take a single quantity type and collection, 

whose members define the dependent quantities.  The 

remaining arguments are an instance or type of something 

and a binary relation which must hold between the member 

and the instance.  So for example, the influence of 

irrigation on food production on tiles in Freeciv might be 

represented as: 

(positivelyDependsOn-TypeType 

(MeasurableQuantityFn tileFoodProduction) 

FreecivLocation FC-Special-Irrigation 

specialAt).  

We have successfully used this representation in a 

system that learns a qualitative influence model from 

observation and applies it to improve performance in 

Freeciv (Hinrichs and Forbus, 2012).  In that system, a 

human teacher plays the game while the learning agent 

monitors actions and quantity changes, both within a turn 

and across turns.  Within-turn changes are considered to be 

instantaneous events due to actions that change 

relationships in the game.  Changes across turns are 

qprop+TypeType 

qprop-TypeType 

c+TypeType 

c-TypeType 

i+TypeType 

i-TypeType 

positivelyDependsOn-TypeType 

negativelyDependsOn-TypeType 

Figure 1: Type-level influence vocabulary 



 

 

considered to be durative.  The implication of this is that 

instantaneous changes cannot result from direct influences. 

The learner hypothesizes possible propositional 

influences, and lifts them to the type level by identifying 

explicit binary relations between entities of the quantities 

and abstracting entity and quantity types.  It verifies 

consistency by continually testing observations against the 

set of hypothesized influences with respect to the basic 

constraints of Qualitative Process Theory (e.g., no mixed 

influences and the sole mechanism assumption).  It 

identifies counter-examples of hypotheses by retrieving 

instances of prior quantity changes from specialized 

influence microtheories, organized by influence type.  This 

mechanism enables the system to learn a model (partially 

shown in Figure 2) in one 75-turn game trial. 

The learned model is used to guide behavior of the game 

player in autonomous play by helping to decompose high-

level quantitative goals into sub-goals.  For example, it 

takes a goal to maximize the civilization population and 

regresses through the learned model until it finds 

executable actions that influence quantities in the 

appropriate direction to, e.g. increase the rate of growth in 

a city or increase the number of cities.  There is, of course, 

much more scaffolding required to make this work, which 

is beyond the scope of this paper, but see (Hinrichs and 

Forbus, 2012) for more detail. 

The learned model enabled the Freeciv player to 

significantly improve its performance over random play on 

the task of growing a civilization population over 75 turns, 

where the average improvement was well over a factor of 

two.  As we can see, this type-level influence 

representation is learnable and relatively easy to reason 

with, at least for the task of decomposing goals.  To show 

that it is concise and scalable, we ran a Freeciv game for 

75 turns using the learned influences and at that point we 

generated propositional statements for all the possible 

entity bindings (See Table 1).   In total, there were 21 

learned type-level influences.  When instantiated, these 

expanded into 425 propositional influences.  Because the 

number of propositional influences grows with the number 

of entities in the scenario, whereas the number of type-

level influences is constant, an order of magnitude 

reduction is easily achieved.  

If the domain under consideration were completely 

static, with no phase changes, this would suffice entirely.  

In fact, in modeling cities in Freeciv, this gets us 

surprisingly far toward a useful model for reasoning about 

how to improve growth rates.  Yet a major purpose of QP 

theory is to translate a continuous system into qualitatively 

distinct states.  For this, we need processes. 

Type-level Process Representations 

Qualitative process theory has traditionally used logically 

quantified representations to define types of processes and 

views.  The modeling languages used by specific 

implementations tend to include syntactic transformations 

to simplify the work of human modelers, which get 

translated into logically quantified statements that are then 

used in model formulation to produce propositional 

representations.  The instances in the propositional 

scenario are what is used for qualitative reasoning in 

existing implementations.  The problem is that explicit 

logical quantifiers are more complex to reason about 

directly and to learn.  Hence we propose here a set of type-

level predicates that we believe suffice to define 

continuous processes, in the usual manner of QP theory.  

These representations are more preliminary than the 

influence predicates defined above, as we are still in the 

process of experimenting with and evaluating them. 

Any process representation must somehow associate 

influences with conditions for activation.  Although we 

might like to simply incorporate and extend the type-level 

influences presented in the previous section, this turns out 

to be infeasible.  Our first attempt assumed that we could 

query for influences as before, and dynamically infer 

active process conditions to filter those influences.  This 

would be a backwards inference from possible influences 

to conditions, rather than the more typical forwards 

cityFoodReserves

cityFoodSurplus

cityGrowthRate

citySize

currentGold

civTaxTotal

currentBulbsResearched

civBulbsPerTurn

civPopulation

cityPopulation

cityFoodProduction

tileFoodProduction

terrain type tile resource

I+

Σ

αQ+

α Q+

f()f()

…etc…

…etc…

αQ+

αQ+

I+

I+

α Q+

Figure 2: Learned Freeciv model 

Type-level influences Propositional Influences 

i+TypeType 4 i+ 36 

i-TypeType 0 i- 0 

qprop+TypeType 10 qprop 210 

qprop-TypeType 7 qprop- 179 

total 21 total 425 

Table 1: Type level vs. propositional influences in Freeciv 

after 75 turns 



 

 

inference that operates by first instantiating processes and 

querying conditions before applying influences. 

The backwards approach appeared to work in the 

domain of Freeciv, but as it turns out, real physical 

domains often have significantly more contextual role 

bindings that must be coordinated between influences and 

conditions.  For example, in order to model something like 

fluid flow at the type level, constraints on the path, the 

substance, the source and destination all must be satisfied.  

Since any given influence only references two quantities, 

the query interpreter would have to bind and carry around 

the additional quantities and participants in order to 

properly constrain activation conditions.  That’s what a 

reified process instance normally provides. 

Instead, we've adopted a more traditional forward 

inference model that first associates role relations with 

entities, computes activation for that particular set of role-

entity substitutions, and then gathers active influences.  

Rather than rely on a self-contained type-level predicate 

that can be implemented in terms of backchaining rules, we 

must assume the existence of a more sophisticated 

interpreter that may need to maintain some local state, in 

the form of role bindings. 

This can be achieved with four new type-level 

predicates, listed in Figure 3.  Each of these predicates 

takes a process type as its first argument and associates 

with it an individual role-type, conjunct of an activation 

condition, or influence.  The idea is to break the definition 

of the process type into the smallest, incrementally 

learnable pieces. 

The first predicate, participantType, associates a 

role-relation name and an entity type that constrains its 

possible bindings.  A role relation is a named accessor of a 

reified concept, not unlike a slot in a frame.  Possible 

bindings are limited to instances in the microtheory 

containing the scenario. 

ParticipantConstraints allow further filtering of 

bindings.  The arguments to the constraints are themselves 

names of role relations, which the interpreter must 

substitute at query time with their bindings. 

ConditionOf-TypeType specifies a condition that 

must be true for a process instance to be active.  These may 

be quantity conditions, in which case they are individual 

binary inequalities, or they may be more arbitrary Boolean 

conditions on activation.  The arguments to Boolean 

conditions are also role relation names.  The arguments to 

inequalities must be quantity fluents (or constants).  

Syntactically, that means a quantity type applied to a role 

relation which designates an entity. 

ConsequenceOf-TypeType specifies the influences 

that hold when all the role bindings satisfy the process type 

conditions.  As with quantity conditions, the arguments are 

quantity types applied to role relations.  In some cases, an 

argument may need to be a function applied to a role 

relation, to indicate, e.g., the volume of the liquid contents 

of a container.  Unlike the type-level influences, the 

influence predicates are the standard propositional-level 

predicates, since the arguments denote particular entities, 

rather than collections. 

Figure 4 shows what a process type description might 

look like for the LiquidFlowProcessType.  We can see that 

this is a type-level description, since the predicates are all 

ground and take a process type and other predicates (role 

relations) as arguments.   

(participantType LiquidFlowProcessType fromLocation LiquidContainer) 

(participantType LiquidFlowProcessType toLocation LiquidContainer)  

(participantType LiquidFlowProcessType substanceOf ChemicalSubstanceType) 

(participantType LiquidFlowProcessType pathOf FlowPath) 

(participantConstraint LiquidFlowProcessType 

    (fluidPathBetween fromLocation toLocation pathOf)) 

(conditionOf-TypeType LiquidFlowProcessType 

  (qGreaterThan ((QPQuantityFn FluidPressure) fromLocation) 

                ((QPQuantityFn FluidPressure) toLocation))) 

(conditionOf-TypeType LiquidFlowProcessType 

  (qGreaterThan ((QPQuantityFn AmountFn) (LiquidContentsFn fromLocation)) 0)) 

(conditionOf-TypeType LiquidFlowProcessType (aligned pathOf)) 

(consequenceOf-TypeType LiquidFlowProcessType 

  (i+ ((QPQuantityFn AmountFn) (LiquidContentsFn toLocation)) 

      ((QPQuantityFn Rate) processInstanceOf)) 

(consequenceOf-TypeType LiquidFlowProcessType 

  (i- ((QPQuantityFn AmountFn) (LiquidContentsFn fromLocation)) 

      ((QPQuantityFn Rate) processInstanceOf)) 

Figure 4: Liquid Flow process type 

participantType 

participantConstraint 

conditionOf-TypeType 

consequenceOf-TypeType 

Figure 3: Type-level process vocabulary 



 

 

Related Work 

A number of efforts have explored learning qualitative 

representations, albeit with very different task constraints. 

For example, Padé (Zabkar et al, 2011) learns qualitative 

models given complete data sets, whereas our learning 

operates incrementally and via demonstration.  Suc & 

Bratko (1999) used qualitative reasoning to generate 

strategies by cloning traces of experts solving continuous 

control problems.  Our domain involves more discrete 

actions, and multiple qualitative states.  QLAP (Mugan & 

Kuipers, 2012) uses dynamic Bayesian networks to learn 

qualitative representations via incrementally introducing 

landmarks.  The representations it is constructing are still 

state-based, unlike our type-level representations. 

There has been prior work on learning higher-order horn 

clauses in Inductive Logic Programming (Pahlavi and 

Muggleton, 2009).  There, the goal was to learn new 

higher-order predicates given a set of training instances 

and background knowledge.  Here, we are designing a 

particular higher-order representation for qualitative 

models and using that as background knowledge to learn 

and reason from instances of models.  Our goal is to 

investigate the role of qualitative representations as an 

inductive bias to allow learning to be more incremental and 

interactive. 

Conclusions 

The representations we have presented here are a step 

toward more general higher-order qualitative reasoning.  

Type-level influences have proven to be very effective for 

learning and scalable reasoning.  The type-level process 

representation remains somewhat preliminary as 

algorithms are still under development and there is not yet 

empirical evidence to support claims of scalability or 

learnability for it.  Yet, our experience with type-level 

influences leads us to believe this will ultimately bear fruit. 

One expected benefit of a type-level process 

representation is that it provides a better “impedance 

match” to everyday language. Prior work integrating 

qualitative reasoning with language understanding 

(Kuehne & Forbus, 2004) focused on learning instance-

level models. As we work toward learning-by-reading and 

advice-taking systems, we find this often avoids the need 

for obscure skolems or quantifiers in the target 

representation, simplifying both reasoning and analogical 

matching. 

There is still much work to be done, especially on 

learning new process types.  There are a number of open 

questions, such as: If we must hypothesize new role 

relations, where do their names come from?  Can there be a 

shared vocabulary of roles?  How can we efficiently test 

whether a learned model is satisfied by given observations?  

Is it necessary to first learn a type-level influence model 

and then translate into process types when limit points are 

discovered?  We will be addressing these questions as we 

continue to refine and extend our learning system. 
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