

Toward Higher-Order Qualitative Representations

Thomas R. Hinrichs and Kenneth D. Forbus

Department of EECS, Northwestern University

2133 Sheridan Road, Evanston IL 60208
{t-hinrichs, forbus}@northwestern.edu

Abstract

Qualitative reasoning typically proceeds by instantiating
type-level constraints to produce a complete propositional
model of a scenario, and then reasoning over this
propositional representation. As we pursue the problem of
learning qualitative models and applying them to open-
ended construction domains, the limitations of this approach
have become increasingly acute. Consequently, we have
been developing representations and techniques for higher-
order qualitative reasoning, which supports qualitative
reasoning without needing to generate a full propositional
scenario model. We present our type-level vocabulary and
describe our experience with it in learning qualitative
influences in a strategy game domain.

Introduction

Qualitative models can be an effective way to reason with

partial information about a system. In the standard

approach, a domain theory consisting of logically

quantified descriptions is used to formulate one or more

models of a scenario, by instantiating concepts from the

domain theory to describe the system or situation to be

reasoned about. This scenario model is propositional,

since all variables have been removed during the

instantiation that occurs during model formulation. It has

the advantage of simplicity: Once the scenario model has

been formulated, all reasoning takes place in it. All

potential new entities have been generated in advance,

during model formulation, so the scenario model is

complete, up to the resolution and correctness of the

domain theory (and the assumptions used during model

formulation). This has worked well for small scenarios,

and even for large scenarios, like complex engineered

systems (e.g., Sgouros, 1993; Struss & Price, 2003).

Unfortunately, as we explore domains that are more open-

ended, involving construction of new artifacts, and

especially exploring how to learn domain theories, we are

finding that this process breaks down. In engineering

tasks, there is typically a schematic (or equivalent) that

constrains the number of entities to be considered. In

planning tasks, where the point is to generate a set of

entities related in effective ways (e.g. a city layout),

qualitative reasoning is still useful, but the process is

generating as its output what would normally be the

scenario model given as input. That is what we mean by

more open-ended construction domains and tasks. Using

qualitative reasoning to help guide and optimize

construction tasks requires a different perspective on the

modeling process.

Consider for example computer strategy games, such as

Freeciv1. Like other games in this genre, players build up

civilizations by exploring, creating cities, improving

terrain, building transportation networks, conducting

scientific research, and engaging in trade (and warfare and

diplomacy) with other civilizations as the game progresses.

Games like these have many tasks that can benefit from

qualitative reasoning, including optimizing city placement,

deciding what to build, deciding what to research, and how

to interact with other civilizations. These games are much

more complex than chess. In the standard game, there are

50 types of units, 17 city improvements, and which are

available at any time depends in interesting ways on the 92

technologies that can be researched. Building a

civilization involves building a dozen or more cities, on a

board size of 4,000 or more tiles. Growing a civilization

also involves improving terrain, building transportation

networks, and conducting military operations (offensive or

defensive) involving other civilizations. Thus the search

spaces involved are immense, so harnessing qualitative

reasoning to constrain the possibilities that are examined is

essential, but propositionalization would be extremely

expensive.

 The problem becomes more acute when the scope of

investigation is expanded to include learning the domain

theory, by experimentation and/or interaction with people.

For efficient learning, it is important to learn the most

1 http://www.freeciv.wikia.com

general facts that will have the broadest applicability.

Hypothesized facts should be easy to validate or disprove

with respect to prior experience with different instances.

The representation should also correspond closely to the

way we talk about qualitative relations in language. When

introducing a new concept or process, we tend to describe

it in general terms at the type level. Thus, we tend to say

“Water freezes at 32F” rather than “The water in the can

freezes at 32F.”

Historically, domain theories for qualitative modeling

have been designed to facilitate model instantiation, rather

than be the subject of reasoning itself2. For example, in the

Compositional Modeling Language (Falkenhainer et al,

1996), a model fragment is instantiated from a complex s-

expression containing keywords and logic variables. It is

more a template than a piece of knowledge to be reasoned

about. To support reasoning and learning, the

representational format of this knowledge must be simple,

machine-understandable, constructable via learning

algorithms, and yet remain expressive. These are a tough

set of constraints to satisfy. Our solution is to develop a

type-level representational vocabulary for qualitative

reasoning. A type-level representation means that

statements have arguments that are themselves either

concepts or predicates. This has two advantages: 1) it

breaks the monolithic templates down into smaller-grained

individual statements that can be learned incrementally,

and 2) it eliminates the need for variable bindings to

coordinate different statements. A major benefit of this is

that instances of model fragments, influences, and even

quantities, need not be reified except on demand, thereby

reducing the burden on a truth-maintenance system and/or

a persistent knowledge base.

The next section provides some background on our

representational choices and the desirable properties of

higher-order qualitative representations. We then present

vocabularies and examples of quantities and type-level

influences. We briefly describe how our current system

learns and exploits qualitative influences and proceed to

outline some more provisional representations for process

types. We close by discussing open remaining problems

and future work.

Background

We use representational conventions from the Cyc

Knowledge base (Lenat, 1995). In Cyc, concepts are

divided into collections and individuals. The former are

organized into a specialization hierarchy (i.e., set-subset),

and the latter into a type hierarchy (i.e., membership).

2 There have been analyses of properties of domain theories themselves,
e.g. (Forbus 1984;1992), but that is different from using a domain theory
to reason through a situation without propositionalization.

Statements are further organized into logically consistent

contextual environments called microtheories.

Our use of type-level predicates in particular is inspired

by examples in Cyc, where they provide concise ways to

state properties of a collection without explicitly

enumerating its members. For example, the relationship

relationAllInstance takes a predicate, a collection,

and a value as arguments and asserts that for every member

of that collection, (<pred> <member> <value>) holds.

Of course, internally, this is equivalent to (and may expand

into) a rule that universally quantifies over the member.

Yet the fact that it can be expressed in a purely structural

way without logical variables makes it a simpler target

representation for learning than a quantified rule and lends

itself to a more efficient procedural implementation.

Desiderata for Higher-Order Representations

Ideally, higher-order representations for qualitative

reasoning should be:

 Concise and scalable

 Communicable

 Compositional

 Easily reasoned with

 Learnable

The first two tend to improve together, i.e., concise

statements tend to be easier to communicate.

Compositionality is crucial because QR concerns the

mechanisms by which things change, and being able to

combine them is essential for constructing solutions to

complex problems.

Reasoning is of course the point of representations. In

most QR work, the number of new entities that can appear

dynamically is tightly bounded as a function of the original

description of the scenario3. For instance, in reasoning

about contained fluids, the potential set of them can be

constructed in advance, and it is bounded by the number of

substances and phases being considered in particular

containers. This is not the case for constructive domains,

e.g. in Freeciv one can build cities, and improvements in

cities, and units, leading to a staggering number of

possibilities that would be extraordinarily expensive to

instantiate.

 Supporting learning also places a premium on

conciseness. When we learn a domain theory empirically,

we need to be able to determine quickly if the hypothesized

influences and processes are consistent with the new

observations, and when they are not, how best to revise the

theory. Moreover, human learners often compare alternate

hypotheses using analogy, as well as apply explanations

via analogy to new situations. Our structure mapping

3 QP theory allows domain theories that generate potentially unbounded
numbers of entities from a finite description (Forbus, 1992) but no
existing qualitative reasoner supports this possibility currently.

model of analogy (Falkenhainer et al, 1989) is better suited

to ground structural representations than to representations

where structure may be implicit in the unification of logic

variables.

Our solution to these requirements is to define higher-

order predicates that take collections and relations as

arguments, rather than instance-level quantities and

entities. As we have mentioned, such representations are

common in Cyc as a way to obviate the need for universal

quantifiers, variables and skolems. The application of this

approach to qualitative reasoning is novel.

Quantity Representations

Before describing influence and process representations, it

is helpful to describe our representation of quantities. A

quantity is a scalar fluent property of an entity or process.

To distinguish fluents from constants, we employ a non-

atomic term: in this case, a second-order function applied

to a quantity type that in turn may be applied to an entity to

denote a time-varying property. For example,

((QPQuantityFn Pressure) canA) denotes the

pressure inside canA. We will sometimes use a variant of

this notation that takes a binary predicate as argument, for

example, ((MeasurableQuantityFn citySize) FC-

City-Boston). The predicate provides a way for our

reasoning engine to sample an instantaneous value in an

external system such as a game simulation. Such

measurements are necessary for learning or validating a

qualitative model.

Type-level Influence Representations

The idea behind a type-level influence statement is that it

should represent a correct relationship about all quantities

that hold in a certain relation. Previously, we have used

back-chaining rules to capture this notion. However, in a

system that learns influences, it is difficult to construct and

reason about such rules. Instead, we adopt more concise

2nd order relations that do away with the need for variables

and/or skolems.

The form of such relations is:

(i, qt1, qt2, c1, c2, r)

where:

i = a second-order influence predicate

qt1, qt2 = quantity types represented by denotational

functions as described above

c1, c2 = collections representing the types of entity

arguments to the quantity types

r = a binary relationship that must hold between the

allowed instances of c1 and c2.

The vocabulary of type-level influence predicates is shown

in Figure 1, and for the most part corresponds to the

conventional propositional-level influence types. For

example, in Freeciv, a statement that there is a direct

influence (i+) from the tax revenue rate of each city to the

treasure of that city’s civilization would look like:

(i+TypeType

(MeasurableQuantityFn currentGold)

(MeasurableQuantityFn currentTax)

Freeciv-Player Freeciv-City owner).

Clearly this is an implicit universal quantification, except

that a) there are no explicit variables, and b) the scope of

the statement is restricted to the query microtheory. That

is, the logical context provided by the microtheory

structure provides additional localization, which helps

reduce the number of arguments required in the

relationships, thereby improving conciseness.

The two predicates, positivelyDependsOn-TypeType

and negativelyDependsOn-TypeType are slightly different

in that they represent an under-specified influence caused

by a non-quantitative relationship. The predicates are

quaternary and take a single quantity type and collection,

whose members define the dependent quantities. The

remaining arguments are an instance or type of something

and a binary relation which must hold between the member

and the instance. So for example, the influence of

irrigation on food production on tiles in Freeciv might be

represented as:

(positivelyDependsOn-TypeType

(MeasurableQuantityFn tileFoodProduction)

FreecivLocation FC-Special-Irrigation

specialAt).

We have successfully used this representation in a

system that learns a qualitative influence model from

observation and applies it to improve performance in

Freeciv (Hinrichs and Forbus, 2012). In that system, a

human teacher plays the game while the learning agent

monitors actions and quantity changes, both within a turn

and across turns. Within-turn changes are considered to be

instantaneous events due to actions that change

relationships in the game. Changes across turns are

qprop+TypeType

qprop-TypeType

c+TypeType

c-TypeType

i+TypeType

i-TypeType

positivelyDependsOn-TypeType

negativelyDependsOn-TypeType

Figure 1: Type-level influence vocabulary

considered to be durative. The implication of this is that

instantaneous changes cannot result from direct influences.

The learner hypothesizes possible propositional

influences, and lifts them to the type level by identifying

explicit binary relations between entities of the quantities

and abstracting entity and quantity types. It verifies

consistency by continually testing observations against the

set of hypothesized influences with respect to the basic

constraints of Qualitative Process Theory (e.g., no mixed

influences and the sole mechanism assumption). It

identifies counter-examples of hypotheses by retrieving

instances of prior quantity changes from specialized

influence microtheories, organized by influence type. This

mechanism enables the system to learn a model (partially

shown in Figure 2) in one 75-turn game trial.

The learned model is used to guide behavior of the game

player in autonomous play by helping to decompose high-

level quantitative goals into sub-goals. For example, it

takes a goal to maximize the civilization population and

regresses through the learned model until it finds

executable actions that influence quantities in the

appropriate direction to, e.g. increase the rate of growth in

a city or increase the number of cities. There is, of course,

much more scaffolding required to make this work, which

is beyond the scope of this paper, but see (Hinrichs and

Forbus, 2012) for more detail.

The learned model enabled the Freeciv player to

significantly improve its performance over random play on

the task of growing a civilization population over 75 turns,

where the average improvement was well over a factor of

two. As we can see, this type-level influence

representation is learnable and relatively easy to reason

with, at least for the task of decomposing goals. To show

that it is concise and scalable, we ran a Freeciv game for

75 turns using the learned influences and at that point we

generated propositional statements for all the possible

entity bindings (See Table 1). In total, there were 21

learned type-level influences. When instantiated, these

expanded into 425 propositional influences. Because the

number of propositional influences grows with the number

of entities in the scenario, whereas the number of type-

level influences is constant, an order of magnitude

reduction is easily achieved.

If the domain under consideration were completely

static, with no phase changes, this would suffice entirely.

In fact, in modeling cities in Freeciv, this gets us

surprisingly far toward a useful model for reasoning about

how to improve growth rates. Yet a major purpose of QP

theory is to translate a continuous system into qualitatively

distinct states. For this, we need processes.

Type-level Process Representations

Qualitative process theory has traditionally used logically

quantified representations to define types of processes and

views. The modeling languages used by specific

implementations tend to include syntactic transformations

to simplify the work of human modelers, which get

translated into logically quantified statements that are then

used in model formulation to produce propositional

representations. The instances in the propositional

scenario are what is used for qualitative reasoning in

existing implementations. The problem is that explicit

logical quantifiers are more complex to reason about

directly and to learn. Hence we propose here a set of type-

level predicates that we believe suffice to define

continuous processes, in the usual manner of QP theory.

These representations are more preliminary than the

influence predicates defined above, as we are still in the

process of experimenting with and evaluating them.

Any process representation must somehow associate

influences with conditions for activation. Although we

might like to simply incorporate and extend the type-level

influences presented in the previous section, this turns out

to be infeasible. Our first attempt assumed that we could

query for influences as before, and dynamically infer

active process conditions to filter those influences. This

would be a backwards inference from possible influences

to conditions, rather than the more typical forwards

cityFoodReserves

cityFoodSurplus

cityGrowthRate

citySize

currentGold

civTaxTotal

currentBulbsResearched

civBulbsPerTurn

civPopulation

cityPopulation

cityFoodProduction

tileFoodProduction

terrain type tile resource

I+

Σ

αQ+

α Q+

f()f()

…etc…

…etc…

αQ+

αQ+

I+

I+

α Q+

Figure 2: Learned Freeciv model

Type-level influences Propositional Influences

i+TypeType 4 i+ 36

i-TypeType 0 i- 0

qprop+TypeType 10 qprop 210

qprop-TypeType 7 qprop- 179

total 21 total 425

Table 1: Type level vs. propositional influences in Freeciv

after 75 turns

inference that operates by first instantiating processes and

querying conditions before applying influences.

The backwards approach appeared to work in the

domain of Freeciv, but as it turns out, real physical

domains often have significantly more contextual role

bindings that must be coordinated between influences and

conditions. For example, in order to model something like

fluid flow at the type level, constraints on the path, the

substance, the source and destination all must be satisfied.

Since any given influence only references two quantities,

the query interpreter would have to bind and carry around

the additional quantities and participants in order to

properly constrain activation conditions. That’s what a

reified process instance normally provides.

Instead, we've adopted a more traditional forward

inference model that first associates role relations with

entities, computes activation for that particular set of role-

entity substitutions, and then gathers active influences.

Rather than rely on a self-contained type-level predicate

that can be implemented in terms of backchaining rules, we

must assume the existence of a more sophisticated

interpreter that may need to maintain some local state, in

the form of role bindings.

This can be achieved with four new type-level

predicates, listed in Figure 3. Each of these predicates

takes a process type as its first argument and associates

with it an individual role-type, conjunct of an activation

condition, or influence. The idea is to break the definition

of the process type into the smallest, incrementally

learnable pieces.

The first predicate, participantType, associates a

role-relation name and an entity type that constrains its

possible bindings. A role relation is a named accessor of a

reified concept, not unlike a slot in a frame. Possible

bindings are limited to instances in the microtheory

containing the scenario.

ParticipantConstraints allow further filtering of

bindings. The arguments to the constraints are themselves

names of role relations, which the interpreter must

substitute at query time with their bindings.

ConditionOf-TypeType specifies a condition that

must be true for a process instance to be active. These may

be quantity conditions, in which case they are individual

binary inequalities, or they may be more arbitrary Boolean

conditions on activation. The arguments to Boolean

conditions are also role relation names. The arguments to

inequalities must be quantity fluents (or constants).

Syntactically, that means a quantity type applied to a role

relation which designates an entity.

ConsequenceOf-TypeType specifies the influences

that hold when all the role bindings satisfy the process type

conditions. As with quantity conditions, the arguments are

quantity types applied to role relations. In some cases, an

argument may need to be a function applied to a role

relation, to indicate, e.g., the volume of the liquid contents

of a container. Unlike the type-level influences, the

influence predicates are the standard propositional-level

predicates, since the arguments denote particular entities,

rather than collections.

Figure 4 shows what a process type description might

look like for the LiquidFlowProcessType. We can see that

this is a type-level description, since the predicates are all

ground and take a process type and other predicates (role

relations) as arguments.

(participantType LiquidFlowProcessType fromLocation LiquidContainer)

(participantType LiquidFlowProcessType toLocation LiquidContainer)

(participantType LiquidFlowProcessType substanceOf ChemicalSubstanceType)

(participantType LiquidFlowProcessType pathOf FlowPath)

(participantConstraint LiquidFlowProcessType

 (fluidPathBetween fromLocation toLocation pathOf))

(conditionOf-TypeType LiquidFlowProcessType

 (qGreaterThan ((QPQuantityFn FluidPressure) fromLocation)

 ((QPQuantityFn FluidPressure) toLocation)))

(conditionOf-TypeType LiquidFlowProcessType

 (qGreaterThan ((QPQuantityFn AmountFn) (LiquidContentsFn fromLocation)) 0))

(conditionOf-TypeType LiquidFlowProcessType (aligned pathOf))

(consequenceOf-TypeType LiquidFlowProcessType

 (i+ ((QPQuantityFn AmountFn) (LiquidContentsFn toLocation))

 ((QPQuantityFn Rate) processInstanceOf))

(consequenceOf-TypeType LiquidFlowProcessType

 (i- ((QPQuantityFn AmountFn) (LiquidContentsFn fromLocation))

 ((QPQuantityFn Rate) processInstanceOf))

Figure 4: Liquid Flow process type

participantType

participantConstraint

conditionOf-TypeType

consequenceOf-TypeType

Figure 3: Type-level process vocabulary

Related Work

A number of efforts have explored learning qualitative

representations, albeit with very different task constraints.

For example, Padé (Zabkar et al, 2011) learns qualitative

models given complete data sets, whereas our learning

operates incrementally and via demonstration. Suc &

Bratko (1999) used qualitative reasoning to generate

strategies by cloning traces of experts solving continuous

control problems. Our domain involves more discrete

actions, and multiple qualitative states. QLAP (Mugan &

Kuipers, 2012) uses dynamic Bayesian networks to learn

qualitative representations via incrementally introducing

landmarks. The representations it is constructing are still

state-based, unlike our type-level representations.

There has been prior work on learning higher-order horn

clauses in Inductive Logic Programming (Pahlavi and

Muggleton, 2009). There, the goal was to learn new

higher-order predicates given a set of training instances

and background knowledge. Here, we are designing a

particular higher-order representation for qualitative

models and using that as background knowledge to learn

and reason from instances of models. Our goal is to

investigate the role of qualitative representations as an

inductive bias to allow learning to be more incremental and

interactive.

Conclusions

The representations we have presented here are a step

toward more general higher-order qualitative reasoning.

Type-level influences have proven to be very effective for

learning and scalable reasoning. The type-level process

representation remains somewhat preliminary as

algorithms are still under development and there is not yet

empirical evidence to support claims of scalability or

learnability for it. Yet, our experience with type-level

influences leads us to believe this will ultimately bear fruit.

One expected benefit of a type-level process

representation is that it provides a better “impedance

match” to everyday language. Prior work integrating

qualitative reasoning with language understanding

(Kuehne & Forbus, 2004) focused on learning instance-

level models. As we work toward learning-by-reading and

advice-taking systems, we find this often avoids the need

for obscure skolems or quantifiers in the target

representation, simplifying both reasoning and analogical

matching.

There is still much work to be done, especially on

learning new process types. There are a number of open

questions, such as: If we must hypothesize new role

relations, where do their names come from? Can there be a

shared vocabulary of roles? How can we efficiently test

whether a learned model is satisfied by given observations?

Is it necessary to first learn a type-level influence model

and then translate into process types when limit points are

discovered? We will be addressing these questions as we

continue to refine and extend our learning system.

Acknowledgements

This material is based upon work supported by the Air

Force Office of Scientific Research under Award No.

FA2386-10-1-4128.

References

Falkenhainer, B., Farquhar, A., Bobrow, D., Fikes, R., Forbus, K.,
Gruber, T., Iwasaki, Y., and Kuipers, B., 1996. CML: A
Compositional Modeling Language. Working Notes of The Tenth
International Workshop on Qualitative Reasoning, Iwasaki &
Farquhar (eds). AAAI Technical Report WS-96-01. AAAI Press.

Falkenhainer, B., Forbus, K. and Gentner, D. 1989. The Structure
Mapping Engine: Algorithm and examples. Artificial Intelligence,
41, 1-63.

Forbus, K.D., 1984. Qualitative Process Theory. Artificial
Intelligence 24:85-168.

Forbus, K., 1992. Pushing the edge of the (QP) envelope. In
Recent Progress in Qualitative Physics, Faltings, B. and Struss, P.
(eds). MIT Press.

Hinrichs, T.R., and Forbus, K.D., 2012. Learning Qualitative
Models by Demonstration. To appear: Proceedings of AAAI 12.

Kuehne, S. and Forbus, K., 2004. Capturing QP-relevant
information from natural language text. In Proceedings of the
18th International Qualitative Reasoning Workshop.

Lenat, D.B., 1995. CYC: A large-scale investment in knowledge
infrastructure. Communications of the ACM 38(11):33–38.

Mugan, J. and Kuipers, B., 2012. Autonomous learning of high-
level states and actions in continuous environments. IEEE
Transactions on Autonomous Mental Development 4(1): 70-86,
2012.

Pahlavi, N. and Muggleton, S., 2009. Higher-order Logic
Learning. In Proceedings of the 19th International Conference on
Inductive Logic Programming (ILP ’09).

Sgouros, N. 1993. Representing physical and design knowledge
in innovative design. Ph.D. diss., Department of Computer
Science, Northwestern University, Evanston, IL.

Struss, P., & Price, C. 2003. Model-based systems in the
automotive industry. AI Magazine, 24(4).

Suc, D. and Bratko, I. 1999. Modeling of control skill by
qualitative constraints. In Proceedings of the 13th International
Workshop on Qualitative Reasoning, Loch Awe, Scotland.

Žabkar, J., Možina, M., Bratko, I., and Demšar, J. 2011. Learning
qualitative models from numerical data. Artificial Intelligence
175:1604-1619.

