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Abstract

Learning by building models and reflecting on them by
running simulations is an important paradigm in edu-
cation. New modeling tools are emerging that take this
approach, and focus on learning conceptual knowledge
explaining how systems behave and why they do so.
These tools are promising in the learning effect they
bring about, but progress gets hampered when learners
want, but are unable to adjust their model so that the
simulation results align with their expectations. In the
research reported here, automated support is being de-
veloped that helps learners identify the problem(s) in
their model. To this end, model-based techniques de-
veloped for diagnosing devices are adapted and used to
automate the conceptual modeling assistance. This pa-
per describes the solutions developed thus far.

1 Introduction

Computer-based modeling is a powerful means for humans
to develop their understanding of phenomena (Papert 1980;
Salles and Bredeweg 2006) by allowing them to express
and externalize their thinking. Conceptual modeling en-
vironments that allow theories to be visualized and tested
can make a significant contribution to improving scientific
education (Biswas et al. 2001; Forbus et al. 2001; 2004;
Bredeweg et al. 2009; Kinnebrew and Biswas 2011). These
tools employ a qualitative vocabulary (Kuipers 1994; Bre-
deweg and Struss 2003; Forbus 2008) for users to construct
their explanation of phenomena, notably about systems and
how they behave.

When working with conceptual modeling tools, learners
go through a construct-reflect cycle, typically by creating the
model and analyzing the simulation results. The simulation
becomes an instrument that helps learners reflect on their
knowledge and work towards improving it.

When using this approach in practice, learners continu-
ously run into situations in which the simulation results of
their model turn out to be different from what they expected
them to be. There are essentially two ways to align simula-
tion results with expectations thereof: learners can change
their model, or they can change their expectations. Both are
relevant for learning, and the two often interact. However,
a problem occurs when learners want to adjust their model
so as to make the simulation results align with their expect-

ations, but are unable to do so. They get stuck in a model
debug-loop without solving the problem.

The work in this paper addresses this problem by devel-
oping software that engages learners in a knowledge con-
struction dialogue, which coaches learners to reason in a co-
herent manner. This allows learners to debug their model so
that the simulation results align with their expectations. For
this we employ Model-Based Diagnosis (MBD) (de Kleer
and Williams 1987; Reiter 1987), which was originally de-
veloped for diagnosing electrical circuits, and the adjust-
ment of this technology for cognitive diagnosis (de Koning
et al. 2000; de Koning 1997; Self 1993).

This paper reports on ongoing research. We explain how
this approach can be applied to typical cases drawn from
educational practice, showing that consistency maintenance
using diagnostic techniques is a viable approach in learning
contexts.

2  Conceptual modeling with Dynal.earn

Using the Dynalearn Integrated Learning Environment
(ILE) (Bredeweg et al. 2010), learners construct knowledge
by manipulating icons and their interrelationships, using a
diagrammatic representation. The knowledge representation
is based on Garp3 (Bredeweg et al. 2009). The diagrams
represent models that can be simulated confronting learners
with the behavioral consequences of the knowledge they
represented.

In conceptual models, the quantities that describe the dy-
namic features of a system hold qualitative information con-
cerning the current value and direction of change, using an
interval scale consisting of an ordered set of labels. Land-
marks are specific point values that refer to situations in
which the behavior of the system changes significantly.

Theory on Qualitative Reasoning (QR) has resulted in
a set of dependencies that capture cause-effect relation-
ships between quantities. These dependencies are defined so
that on the one hand they represent conceptual notions that
closely match human reasoning (de Koning and Bredeweg
1998), while on the other hand they are grounded in math-
ematical formalisms allowing automated computation. Two
examples of such dependencies are influences (caused by
processes) and proportionalities (causal propagations) (For-
bus 1984).

Simulation results represent system behavior and how it
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Figure 1: The model fragment in figure la shows the rela-
tions between Momentum, Position, and Elasticity in the os-
cillation model. The state graph in figure 1b shows the sys-
tem’s cyclic behavior.

evolves over time. Time is represented as a graph of states
(including loops) that reflect qualitatively distinct behavior.
States have duration, but the exact length of the duration is
unknown. State transitions occur when values of quantities
change (increase or decrease). Ambiguity is represented by
a state having multiple transitions into future states.

3 Common conceptual modeling errors

Learning by conceptual modeling is a strong paradigm for
learning. But in classroom situations learners often come
across discrepancies between how the model behaves in sim-
ulation and how they want the model to behave. This section
discusses three often occurring problem types learners ex-
perience during conceptual model construction (Bredeweg
et al. 2006; Mioduser et al. 2011). The applicability of our
approach to these problem types is evaluated in the expert
review in section 8.

Causal differentiation

A common modeling problem for learners is the causal dif-
ferentiation between a direct influence (I) and an indirect
influence or proportionality (P). To illustrate the problem,
we use a model of an oscillating weight that is attached to a
string. The weight has momentum and position (relative to
the normal extension to the spring). The momentum directly
influences the position (I* in figure 1a). The position negat-
ively propagates that change to elasticity (P~ in figure 1a).
If we ignore the damping of the spring, then the simulation
results show a behavioral cycle as in figure 1b.
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Figure 2: Figure 2a shows the simulated and figure 2b shows
the expected values for the oscillation model. (The state
numbers in figure 2b correspond to those in figure 1b.)

When a learner does not differentiate between the two
types of causation correctly s/he may model a (positive) pro-
portionality instead of an influence from Momentum to Posi-
tion. Under this alteration, the actual simulation results (fig-
ure 2a) look very different from the expected results (fig-
ure 2b). As occurs often, small changes in structure result in
big changes in behavior. The learner can express a dissatis-
faction with the results as shown in figure 2a, for instance
by stating that s/he was expecting to see the Position and
Elasticity oscillate. Even when a learner is able to express
such an expectation, tracking the discrepancy down to the
proportionality relation in one of the model fragments is not
straightforward. In practice, an intervention by a teacher is
often required.

Feedback

A second common problem concerns feedback. Learners of-
ten ignore feedback, not seeing the why it is needed. An ex-
ample is shown in figure 3 with a feedback relation (P*)
from Pressure back to Flow. Learners often fail to properly
represent the dynamics of a feedback and instead simply add
a value-correspondence (the V-relation in figure 3) between
the Zero values without representing how the Flow can ever
change to Zero. For this the proportionality between Pres-
sure and Flow is necessary.

In case of leaving out a feedback loop, learners often ex-
press a dissatisfaction with the simulation results, such as
“Why does the container never get empty?”, but they typic-
ally fail to resolve the problem by themselves.
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Figure 3: Model fragment representing a container with
water flowing out through a hole in the bottom. The
Flow makes the liquid’s Amount decrease. The decrease in
Amount is then propagated to Height and to Pressure. The
V-relation states that the Zero values of Flow and Amount
must coincide (a value-correspondence).

Consistency between (semi)symmetrical sides

A third recurring problem is that of maintaining consist-
ency between two identical sides in a (partially) symmet-
rical model. Instantiating the same set of model ingredients
twice and connecting both parts using multiple dependencies
while maintaining a consistent interpretation among those
newly added ingredients, turns out to be difficult for learners.
Particularly when one of those ingredients is a subtraction or
addition.

Figure 4 shows an example of this problem for osmosis 4.
Both sides of the osmosis model are connected to the Flow
quantity via proportionalities and influences. The signs of
the causal relationships depend on how we model the flow
through the membrane (a convention). In this model we rep-
resent fluid moving from the left to the right as a posit-
ive flow. The signs of the causal relations are chosen ac-
cordingly. The same is true of the calculus, which must be
Flow = Concentration Left — Concentration Right under the
convention we chose. Learners often make a mistake in one
or more of the signs or order of the arguments in the calcula-
tion. The discrepancies between the expected outcome and
the simulation results under such a mistake are not easy to
localize to the causal relations or to the calculus.
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Figure 4: Model fragment representing the process of os-
mosis between two containers, via a permeable membrane.
Both containers have Concentration and Solvent quantities.

4 Model-based diagnosis

The goal of technical diagnosis is to single out the faulty
components that cause a device to behave inappropriately.
Once found, the device is repaired by replacing these com-
ponents by ones that behave correctly. The General Dia-
gnostic Engine (GDE) (de Kleer and Williams 1987) is an
implementation of this approach that has been studied to a
great extent and with successful applications, see (Struss and
Price 2003).

Technical diagnosis was adjusted for cognitive diagnosis
(Self 1993; de Koning 1997; de Koning et al. 2000) (figure
5), the process of inferring a person’s cognitive state from his
or her performance (Ohlsson 1986). In particular, cognitive
diagnosis can be used to find the faulty inference steps in
a learner’s reasoning. In technical diagnosis a norm model
drives the diagnostic algorithm. Similarly, in cognitive dia-
gnosis learners interact with an existing model (created by
experts or teachers) and faulty answers are diagnosed us-
ing this model as the norm. While developing the approach
measures are taken to ensure didactic plausibility (de Kon-
ing and Bredeweg 1998).

Interacting with an existing (norm) model does not line up
well with contemporary theories on ‘active learning’ origin-
ating from constructivist perspectives on learning, see (Bru-
ner 1966; Vygotsky 1978; Bruner 1996; Otero, Johnson, and
Goldberg 1999)). With the arrival of knowledge construction
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Figure 5: Mapping Model-Based Diagnosis as used for
Technical Diagnosis onto Conceptual Diagnosis (from (de
Koning et al. 2000)).

tools, active learning is facilitated. The question now is how
to automatically generate modeling support for a model and
its simulation results without having a norm?

Our approach takes the discrepancies between the actual
and the learner-expected simulation results of a model and
identifies those aspects of the learner-build model that are
accountable for these differences. The goal is to support the
learner’s knowledge construction endeavor by maintaining
consistency between the expression created by the learner
and the expectations s/he holds regarding the inferences that
can be made on behalf of that expression.

Expectation-based aggregation

Conceptual models present extra complexity for MBD, since
they use weak constraints (qualitative instead of quantita-
tive) hampering reasoning with component behavior rules
(de Koning et al. 2000). Hierarchies can be used to reduce
complexity and warrant tractability. Technical diagnosis typ-
ically uses a function-driven approach grouping sets of com-
ponents into clusters that implement a particular function
(Genesereth 1984; Hamscher, Console, and de Kleer 1992).
For cognitive diagnosis this approach can not be used be-
cause the functions are unknown (the functional units that
constitute human problem solving have not been identified).
Instead, we have created an algorithm based on the charac-
teristics of the representation used for conceptual models,
but tuned to the expectations the learner expresses.

Aggregations made by experts in a norm model put the
focus on a particular subset of all possible system behaviors
(de Koning et al. 2000), which most likely does not include
the modeler’s expected behavior. An aggregation algorithm
is therefore developed that takes the modeler’s expected be-
havior as the main driver. Since a learner may express any
expectation, this tuning of the representation must occur ‘on-
line’ and be able to work for an extensive number of cases.

5 Component Connection Model

The output from simulations run inside the Dynal.earn ILE
(Bredeweg et al. 2009) is transformed into a representation
that is useful for diagnosis. This representation is called the
Component Connection Model (CCM) (Beek and Bredeweg
2011). A partial example of a CCM is given in figure 6. We
next discuss the four key ingredients that constitute the rep-
resentation.

Expressions

Expressions are propositions that encode conceptual know-
ledge drawn from the simulation results. There are cal-
culi, inequality, causal, correspondence, quantity space, and
quantity value expressions. The expressions are added based
on an extendable library of expression definitions. In order to
overcome intra-state complexity (the number of behavioral
states) most reasoning is performed in a-temporal or generic
terms and the results are converted to specific spaces.

Points & spaces

Points are expressions that hold within a specific space. A
space is a logical context in which certain points and com-
ponents can occur. We distinguish between the following
spaces:

e Global: containing the generic information regarding the
simulation results.

e [nput: containing the information that is provided by the
simulated scenario.

e States: spaces that encode unique configurations of be-
havior, representing how the modeled system behaves at
specific moments in time.

e Transitions: spaces that represent the transition from one
state into another as well as those from the input space to
start states.

A single expression can have multiple points. This means
that propositions can hold in multiple spaces. (In figure 6,
expression 6(A) = + is asserted in points 0, 2 and 5.)

Point clouds

For diagnosis it is necessary to represent conflicting inform-
ation. Point clouds (the ovals in figure 6) allow this to be
expressed.

We first introduce the concept of alternative expressions.
These are expressions that differ only in a single subsenten-
tial part. For each type of expression the subsentential part
that is allowed to differ is defined apriori. For value as-
signments, this is the value component. (“The tap’s flow is
steady” and “The tap’s flow is increasing” are examples of
alternative expressions.) For inequality statements, the in-
equality relation type is the part that is allowed to differ. (For
example: “The pressure in the left container is larger/smaller
than the pressure in the right container.”)

Conflicting information is represented by alternative
points. These are points that belong to the same space and
assert alternative expressions. Alternative points are collec-
ted within a single point cloud (see figure 7). Point clouds
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Figure 6: The CCM for a quantity whose magnitude in-
creases. The ovals represent point clouds. The small rect-
angles represent deduction components. The large rect-
angles, containing point clouds and components, represent
spaces.

therefore indicate the common locale between components
in which alternative statements can be asserted. The sub-
sentential parts that are allowed to differ between alternat-
ive expressions are precisely chosen so as to ascertain that
alternative points take the same place with respect to all the
components that can be added to the CCM.

Components

Components are explicit representations of instances of de-
ductions steps the learner must grasp in order to understand
the simulation results. A component describes a deduction
step that is applied to the expressions that are asserted in
the point clouds that connect to its ports (the propositions).
The components are added to the CCM based on an extend-
able library of component definitions. Component defini-
tions specify the number of ports, the port types (which ex-
pressions are allowed to occur in connecting point clouds),
and the behavioral description of the modeled deduction
step.

We distinguish between input (premises), support (de-

scribing the deduction step), and output (conclusion) ports.
The distinction between in- and output ports refers to the for-
ward propagation of the simulation reasoner and the back-
ward propagation of the causal explanation component (for
more information, see (Beek and Bredeweg 2012)). This dis-
tinction is irrelevant for the diagnosis reasoner, since in dia-
gnosis each port is allowed to be inferred provided that all
the other ports are known.

The behavioral descriptions of components are partial
functions for those cases in which a port’s outcome is un-
derspecified. For instance the input (stating the magnitude,
e.g., flow=+) port of the direct influence component can-
not be derived from the support (stating the causal relation-
ship, e.g., I" (flow, amount)) and output (stating the derivat-
ive, e.g., d(amount) = — ports in case the quantity that occurs
the input port’s expression has a quantity space with more
than one positive/negative quantity value label (and no fur-
ther constraints are present).

The distinction between in- and output ports on the one
hand and support ports on the other, refers to the distinction
between declarative and procedural knowledge. In terms of
the components in the CCM, we can distinguish between
two types of discrepancies between the simulation results
and a learner’s expectations. One discrepancy is caused by a
learner having different declarative knowledge. For instance
the simulation may use the proposition I*(Flow, Amount)
(“Flow positively influences amount”) but the learner may
be of the opinion that I~ (Flow, Amount) (“Flow negatively
influences amount”) is the case. Another discrepancy is
caused by a learner not understanding how a deduction rule
is performed (i.e., how behavior is calculated). For instance
a learner may not be able to infer that Amount is increasing
in case Flow is positive and It (Flow, Amount) (e.g., mak-
ing a different deduction based on the same propositional
content). The distinction between declarative and proced-
ural knowledge is represented in the CCM by connecting
retrieval components to the support ports of components.

The discrepancies between simulation and expectation
can also be due to having wrong input values and/or un-
realistic expectations. Components are therefore added for
values and inequalities that are set in the scenario or in one
of the model fragments as well as for expectations.

6 Expectation-Centric Diagnosis

This section describes the seven main modules that perform
expectation-centric diagnosis, from receiving the expecta-
tions of the learner to the communication of the diagnostic
results.

Expressing expectations

Based on the generated CCM, the diagnosis dialog (figure
8) is populated and displayed to the learner. Expectations
can be formulated by selecting items from the lists that are
displayed in the dialog. Upon selecting, the expectation la-
bel updates a natural language rendition of the current ex-
pectation. For example: “I expect that elasticity is increas-
ing in state 3.” Incomplete selections result in incomplete
sentences, showing what remains to be added. Any expect-



ation can be formed regarding the simulation results. Mul-
tiple expectations can be staged, allowing (the equivalent of)
compound expectations.

Based on whether a conflict exists between the generated
CCM and the formulated expectations, one of the following
three approaches is chosen.

1. If the expectations are already met by the simulation, then
there is no need to run a diagnosis. The expectation points
do not make a change to the CCM. This is communicated
to the learner.

2. If expectations add an alternative point to an existing point
cloud, then diagnosis is run, since a point cloud with more
than one point represents a discrepancy.

3. If expectations are neither identical to nor alternatives of
existing points, then new point clouds are created. If the
newly created point clouds can be meaningfully related to
point clouds that were already in the CCM, a list of one-
component extensions that would allow the expectations
to be deduced is given. This repair task uses the same be-
havior rules as the diagnosis as well as the same aggreg-
ate components (section 6) in order to suggest ‘high-level’
fixes.

Aggregation

After expectations have been added to the CCM, the com-
ponents are aggregated relative to these. Aggregate compon-
ents are created based on an extendable library of aggregate
component definitions. There are two main aggregate com-
ponent types: competitive and hierarchical.

Competitive components subsume components that need
to be taken into account together in order to explain their
behavior. Even though the behavior of these subsumed com-
ponents cannot be determined individually, their combina-
tion into a subsuming competitive component, together with
an extra input port, can be determined. Competitive compon-
ents cannot be unpacked by diagnosis (since they model the
lowest level at which behavior can be calculated), but they
can be unpacked for other uses such as causal explanation.

Hierarchical components subsume components for whom
behavior can also be calculated independently. Hierarchical
components can thus be unpacked by diagnosis, thereby ful-
filling two purposes. Firstly, they reduce within-state com-
plexity in terms of the number of component assumptions
in diagnosis (which is convenient for an exponential al-
gorithm). Secondly, they allow for higher-level / more ab-
stract communication of diagnosis results and causal explan-
ations.

It is not know beforehand which expectations a learner
will express. Hierarchical aggregation components can ab-
stract away point clouds. For this reason hierarchical aggreg-
ation is performed after expectations have been added, and
aggregations are generated so that they do not hide expecta-
tion points.

Scoping

After aggregation there are often too many components to
have a feasible diagnostic procedure. Scoping is used to re-
move components that cannot be part of conflict sets given

the expectation points expressed. This is done by excluding
paths that are not related to an expectation point. A path is
unrelated if it is not connected, via components and point
clouds, to an expectation. Connections that run via observa-
tions are not allowed.

If the number of components is still too big a more drastic
scoping procedure is used to exclude components that are
farthest removed from all the expectations that have been
expressed. The scoping and aggregation algorithms ensure
that the number of components is kept approximately stable
throughout iterations of the diagnosis.

The remaining components form paths connecting ex-
pectations to other observations. These are the considered
components on which the diagnosis algorithm is run.

Diagnosis

After scoping, the set of relevant components and the set of
observations are identified. Observations are points that are
registered as premises in the TMS. (These include inputs to
retrieval components, inputs to scenario value components,
outputs from expectation components, observations due to
scoping, and learner-given expectations.) Figure 7 gives an
example of a CCM at this stage.

The diagnosis algorithm consists of a hypothesis gener-
ator and a problem solver (Struss 2008). The hypotheses in
MBD are environments or sets of components that are as-
sumed to be working properly. The environment lattice is
generated starting with the empty environment and moving
upwards, ending in the maximum environment. In practice
the entire environment lattice is rarely generated since only
minimal conflicting environments have to be considered.

The problem solver calculates the expressions that are
derived based on the observations and a given environ-
ment hypothesis. Calculation uses the behavior rules that
are specified by the component definitions of the compon-
ents that are assumed to be working in the given envir-
onment. Whenever a new value is calculated based on an
environment, the result is registered as a justification in
an Assumption-Based TMS (Forbus and de Kleer 1993).
Implementation-wise, the ATMS and the CCM are one rep-
resentation for efficiency reasons, CCM components and
points being subtypes of TMS nodes.

Since expectations will generally not agree with the sim-
ulation outcomes, alternative expressions will be derived for
the same point clouds (calculated under different hypotheses
or component assumption sets). If one of the alternative
expressions is an observation, then the environment under
which that expression is derived is called a conflict. A con-
flict is a set of components not all of which can be working
correctly without giving up consistency. The diagnosis al-
gorithm returns only minimal conflicts.

A set covering procedure is use to extract the minimal
candidates based on the minimal conflicts. Candidates are
hypotheses for how the CCM of a model that adheres to the
expectations differs from the CCM of the actually simulated
model.
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Figure 7: A fragment of a CCM after expectations have
been expressed and aggregation and scoping have been per-
formed. Component 105 is a competitive aggregate com-
ponent. Purple lines connect aggregate components to their
subsumed components (17,23) Grey indicates inactivity.
Four point clouds contain alternative points (35,36,37,39).
A green identifier at the start of a line indicates an obser-
vations. A red identifier at the start of a line indicates a
point derived by the diagnosis algorithm. The ellipse with a
double border indicates an expectation. Abbreviations: R re-
trieval; QP quantity proportionality; QI quantity influence;
cQI competitive quantity influence.

Component unpack

Hierarchical component aggregation reduces the complex-
ity of diagnosis (section 6), but also hides point clouds.
Sometimes these point clouds can provide additional know-
ledge for the diagnosis algorithm. In such cases, the aggreg-
ate components must be unpacked before additional probes
can be performed. Once unpacked, the previously subsumed
components can be part of the generated environments, con-
flicts, and candidates of the next iteration of the diagnosis
algorithm.

Hierarchical components are unpacked if they occur in all
candidates of the previous diagnosis iteration. Hierarchical

components can be unpacked individually, only increasing
the number of components if this is strictly necessary.

Probe points

At the end of each diagnosis iteration the possibilities for
gaining additional knowledge are determined. Probe points
are point clouds in the CCM that are not yet known and
whose knowledge could allow the diagnosis algorithm to
exclude certain candidate hypotheses. Probe points are sor-
ted according to relevance. The most relevant probe point
is turned into a natural language question sentence that is
posed in the dialog for the learner to answer. A learner can
give answers in the same way as s/he is able to formulate ex-
pectations (section 6). Questions and answers can be formu-
lated for each expression that is included through the expres-
sion definition library (this also included declarative support
knowledge requests).

Since probing means asking a learner questions, we want
to perform as little probes as possible to keep the interac-
tion smooth. This is achieved by the weight assignment pro-
cedure that ranks the possible point clouds. Firstly, the can-
didates are given the combined apriori weights of the com-
ponents they contain. Secondly, the (aposteriori) weights
for components are determined by the weights of the can-
didates in which these components take part. Thirdly, the
point clouds are assigned weights depending on the compon-
ents they connect to (using geometric decay favoring nearby
components).

A special case occurs when a point cloud is able to split
the graph of considered non-observation point clouds. If
such a graph split occurs, then the point cloud involved re-
ceives an additional weight gain that is inversely propor-
tional to the size of the largest remaining split (preferring
centric splits).

Communicate results

The diagnosis ends when there are no more probe points
available. At this point the candidates are the best possible
guess of what causes the discrepancy between expectation
and simulation results. A second end criterion is reached
when there is only one candidate left, so that asking addi-
tional questions would not improve the result any further.

In both cases the candidates are communicated via the
diagnosis dialog (figure 8). When the learner selects a can-
didate the corresponding elements in the build model are dis-
played in the ILE.

It is not always necessary to run a diagnosis until it
ends. As soon as all candidates share a component, this can
already be communicated as a potential causes of inconsist-
ency. The learner can inspect intermediary outcomes. If s/he
does not find intermediate suggestions satisfactory, a probe
question can be answered in order to attain better results.
The learner is therefore in control as to how long diagnosis
takes and whether certain knowledge requests are met.

7 Diagnosis results

The implementation of the diagnosis was run on models of
the problem types identified in section 3 (see table 1). The
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Figure 8: A unified dialog is used for expressing expectations, asking and answering questions, and inspecting the diagnosis

and repair suggestions.

diagnosis identifies the culprits that explain the inconsist-
ency between expectation and simulation results. It was able
to do so by asking three or less additional questions.

Figure 8 shows the diagnosis dialog after cognitive dia-
gnosis has been performed on the oscillation model (sec-
tion 3). In this case we started by giving two expectations:
“I expect that elasticity is increasing in state 3” and “T ex-
pect that position is decreasing in state 3,” formed by select-
ing items from the state, from quantity, and from derivat-
ive lists. Based on these expectations no (intermediary) can-
didates were found and a probe question was posed in the
probe label field: “What do you expect as the derivative of
the weight’s momentum in state 37" The answer the learner
gave is shown as the third option in the observation history:
“T expect that the momentum is steady in state 3”. After this
answer the diagnosis gives its first intermediary result: “Mo-
mentum is proportional to position”, in the culprit history. A
second probe question is then formulated in the probe label:
“Which inequality relation do you expect between elasticity
and gravity in state 3?” The partial answer to this question is

shown in the expression label: “In state 3 I expect that there
is a ... relation between some spring’s elasticity and earth’s
gravity.” The missing relation has to be chosen from the in-
equality relation list (which is colored in green to indicate
pending input).

8 Expert review

We conducted an expert review with teachers who have
taught courses on conceptual modeling at an academic level.
We investigated whether the common inconsistencies iden-
tified in section 3 and the interactions with the diagnosis are
feasible for learners. We recorded five full diagnostic inter-
actions of commonly occurring models and had seven teach-
ers judge the diagnosis process.

The experts had to assess statements on a likert scale of
five. The outcomes are displayed in table 2. For each state-
ment there was also a free text form in which the teachers
gave comments and explained their scores. The following
likert statements were included:

1. The models that diagnosis is run on are instances of dis-



Table 1: Examples of diagnoses of model error types.

[ Error type | Model name | Expectation | Probe questions | Diagnosis suggestion ]
Causal Oscillation I expect that elasticity is What do you expect as the | Possible fault: momentum is proportional to
differtentiation increasing and position is | derivative of the weight’s position.

decreasing in state 3. momentum in state 3?
Feedback Bucket I expect that flow is No questions Possible fix: Add a positive proportionality
increasing in state 2. between pressure and flow.
Population I expect that biomass is No questions Possible fix: add a proportionality between
death and number-of.
Consistency Osmosis I expect that flow is zero | What do you expect as the | Possible fault: Flow is equal to left minus
and steady in state 1. derivative of solvent right? | right concentration.

Table 2: The results of the answers in the expert review on a
likert scale of five.
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crepancies that often occur in classroom situations.

2. The discrepancies would be challenging for a learner to
resolve by him/herself.

3. The outputs of the diagnosis pinpoint aspects of the model
that are responsible for the discrepancy.

4. The correct diagnosis results can realistically be obtained
by a learner who is using the software.

The biggest problem identified by the experts is that it
may be difficult for a learner to express expectations and
answer probe questions. This requires a primordial under-
standing of what the model is about and what the learner
wants to achieve with the model. The experts indicate that
learners often express expectations on a more abstract level
(e.g., expecting ‘an oscillation’ or ‘a loop’ in behavior) and
using vague statements (e.g. “I was expecting more states”).
Another problem is that the learner has to decide for himself
when he has received sufficient feedback from the diagnosis,
since the diagnosis provides no explicit end conditions.

9 Discussion

Diagnosis runs successfully on the problem types for which
consistency is maintained by either changing the support
knowledge or by changing the component type (or a com-
bination of the two). Amongst these models are those that
exhibit one (or more) of the three identified common model-
ing problem types (section 3). In terms of the modeling lan-
guage, discrepancies due to the directionality of relations,
the inversion of relations, the signs of causal relations, the
signs of calculi, the argument order in calculi, and the in-
equality signs between quantities and their values can be

found by the diagnosis. It is also possible to find multiple
discrepancies at once (de Kleer and Williams 1987).

Other discrepancies diagnosis handles are a learner hav-
ing second thoughts about values set in the scenario or in
a model fragment, as well as regarding the expectations
made. Discrepancies in the changes of values and inequal-
ities over states can also be found (terminations and con-
tinuities). Discrepancies that are caused by unintended in-
teractions between model ingredients are found due to the
inclusion of competitive components.

Another set of discrepancies are due to missing model in-
gredients, reflected by reasoning components that are not in-
side the CCM. This presents a special challenge for future
research, because the diagnostic algorithm needs to identify
non-existing components in the CCM as being the fault.
The diagnostic algorithm needs to be adapted such that, in-
stead of identifying a faulty component, it is able to identify
the structural context(s) (input and output terminals of other
components) in which a component (or a set of components)
is required in order for the model to deliver the expected be-
havior. Currently only singular missing components (includ-
ing aggregate components) are found.

Future research is also needed to assist the learner in as-
serting expectations and answering questions. This can be
improved by allowing more generic expectations to be for-
mulated using (modal) quantifiers, such as ‘for all’, ‘al-
ways’; by allowing vague formulations, for instance ‘almost
always’, ‘at some point’; and by allowing expectations to in-
volve concepts like loops, feedback, and oscillation. Another
angle would be to see this as part of the more generic prob-
lem that learners do not always have a clear goal in mind
when modeling. Future research should investigate how ex-
pressing modeling goals beforehand could replace or extend
the expression of expectations in diagnosis.

10 Conclusion

Expectation-based diagnosis is able to solve inconsistencies
in conceptual models for often occurring problem categor-
ies. The current implementation is able to give useful feed-
back on difficult modeling problems for which no alternative
form of automated feedback is given in comparable qualit-
ative learning environments (Leelawong and Biswas 2008;
Forbus et al. 2005). The current approach seems fruitful for
considering other types of conceptual modeling inconsisten-
cies in the future.
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