
But where do we start? Qualitative initialization problem with quantitative models

Matthew Klenk and Johan de Kleer and Ion Matei and Daniel Bobrow
Palo Alto Research Center

3333 Coyote Hill Rd
Palo Alto, CA, 94304

klenk,dekleer,matei,bobrow@parc.com

Abstract

For impact in industrial settings, qualitative reasoning
techniques must work with existing modeling languages
and libraries. This paper presents an important subprob-
lem that must be solved to perform qualitative simula-
tion with industry models, the problem of initialization
of systems of hybrid discrete and algebraic equations.
We present a case study using five models illustrating
the scope of the problem, and then we present three ex-
amples of inconsistencies that may arise when guiding
the initialization approach with the results of quantita-
tive simulation. We discuss our approach to alleviate
these problems in an effort to initialize a very large sys-
tem model. We close with a discussion of related and
future work.

Introduction
As part of DARPA’s Adaptive Vehicle Make effort, we seek
to deliver qualitative reasoning (QR) tools into the hands of
designers. To accomplish this, we face two gaps: (1) the ma-
jority of existing QR tools do not operate on models written
in the languages used by designers, (2) the majority of QR
tools analyze models that are several orders-of-magnitude
smaller than those of practicing engineers. Therefore, we are
focused on qualitative simulation with models built by engi-
neers for numeric simulation. In previous work, we iden-
tified Modelica (Fritzson 2004) as a quantitative modeling
language suitable for qualitative reasoning, and we devel-
oped the qualitative reasoning module (QRM) as the first
automated tool to perform QR analyses of general Modelica
models (Klenk et al. 2014b).

Qualitative simulation is central to QRM’s analyses of
Cyber Physical Systems (e.g., qualitative verification, com-
parative analysis). To perform qualitative simulation of a
Modelica model, it is necessary to translate the hybrid dis-
crete and algebraic equations (DAE) into qualitative con-
straints, create an initial state, and envision possible out-
comes. This paper focuses on the challenge of finding a con-
sistent initial qualitative state. This seems like an extremely
easy problem: just set the initial values of variables to the
initial values given by the task, e.g., for a pendulum its ini-
tial position. Unfortunately, this is not the case — most sys-
tems have an enormous number of qualitative initial states.
Worse, hybrid DAE’s contain conditional equations which

are specified to be active only if a particular condition is
satisfied. Therefore both qualitative and quantitative hybrid
DAE solvers must search across both values and equations
to determine a consistent combined set. This paper describes
the sources of this ambiguity, the breadth of the problem and
our approach to its solution. Ambiguity in the initial situa-
tion originates from the following sources:

• It is well known that translating quantitative equations
directly into qualitative equations introduces ambiguity
(de Kleer and Brown 1984; Struss 1988). Although this
source of ambiguity is well understood during envision-
ing, in our case it leads to additional ambiguity in deter-
mining the initial qualitative values, and that in turn cas-
cades into ambiguity in which conditional equations ap-
ply initially.

• Most models of real physical systems are described using
hybrid DAE’s. Hybrid DAE’s may have multiple consis-
tent initial states. Determining the best initial quantitative
values for such systems remains an open research ques-
tion (Sielemann et al. 2011; Casella 2012). Part of the rea-
son for this is that state variables are not well defined for
DAE’s (as opposed to linear ODE’s).

• Many DAE systems are actually underdetermined. All
solvers introduce defaults for undetermined values.

We first illustrate the consequence of the source of ambi-
guity most familiar to the QR community: the incomplete-
ness of the familiar qualitative algebra (de Kleer and Brown
1984). Later in the paper, we develop the other two sources
of ambiguity in more detail. It is well known that the num-
ber of variables that need assigned values for all of the vari-
ables of a fully determined quantitative model is less than
the number of variables that are required to fully determine
a qualitative initial state. Consider the following example of
a inductor-capacitor oscillator attached to a battery:

diL
dt

=
vL
L

(1)

dvC
dt

=
iL
C

(2)

vL = vB − vC (3)

A quantitative model could determine the values of all
the variables with the following set of initial values (L =

Figure 1: Modelica model of an inductor-capacitor system

3, C = 3, vB = 5, iL = 2, vC = 5). Where L and C re-
fer to the inductance and capacitance, v and i refer to volt-
age and current, and the subscripts refer to the component
over which the measurement is made withB, L, and C refer
to the battery, inductor and capacitor. Now, taking the sign
algebra qualitative abstractions for each of these initial val-
ues and then propagating their values through the qualitative
constraints equivalent to above equations results in unknown
qualitative values for (vL, diLdt). This is due to ambiguity in
qualitative arithmetic for equations 1 and 3. Searching for
all possible values (32) combinations) results in three initial
consistent qualitative states.

This is a significant problem for two reasons: (1) the
search for possible initial values is exponential in the num-
ber of free variables, and designers using QRM work with
simulation models with 100s to 10,000s of equations. (2)
The ambiguity may occur in conditional expressions in the
quantitative model, in which case the search for an initial
qualitative state must also examine the space of possible
qualitative constraints.

After providing the relevant background on the Model-
ica modeling language, qualitative simulation, and our QRM
System, we explore the scope of this initialization problem
using a set of models. Next, we describe an approach to this
problem that specializes the qualitative model by using the
results of quantitative simulation to determine a consistent
initial state. Unfortunately, this results in qualitative incon-
sistencies that we demonstrate through three examples. We
close with a discussion regarding the proper treatment of
quantitative simulation results for use in qualitative models.

Background
DAEs in the Modelica Language
Figure 2 illustrates the modeling and simulation process
when using Modelica tools. The process begins with the
user creating a hierarchical Modelica model from a library
of reusable components. Next, the tool compiles the com-
posed model into a set of possibly hybrid differential alge-
braic equations (DAE) and uses numerical integration meth-
ods, e.g., DASSL (Petzold 1982), to produce a sequence of

Modelica	
 Design	
 Tool	

System	
 Model	
 Compu6ng	
 Behavior	
 Display	
 Behavior	

Numeric	
 Trajectories	

Compiler	
 Solver	

Fla>ened	

Model	

(Hybrid	
 DAE)	

Figure 2: Modelica tools allow designers to compose models
from existing libraries of components and define new com-
ponents. The composed system can then be simulated nu-
merically over time.

numeric values for every model variable over time. In Mod-
elica, the continuous-time behavior is governed by differen-
tial (4) and algebraic (5) equations with ‘state’ variables, x,
algebraic variables, z, inputs, u, and output variables, y. The
algebraic variables may include discrete variables, such as
booleans or enumerated types.

ẋ = f(x, u, z) (4)
g(x, u, z) = 0 (5)
y = h(x, u, z) (6)

Most of qualitative reasoning is developed in the context of
differential equations where the equations that govern sys-
tem behavior can be written as:

ẋ = Ax+Bu

y = Cx+Du

where x are the system state variables, u are in the inputs,
y are the output variables and A, B, C and D are matrices
whose entries are functions of system parameters.

In DAE’s, the equations can include algebraic constraints
(i.e., Equation 4 includes z on the right hand side). A simple
example is the planar pendulum (Figure 3):

L

F

-mg

y

x

Figure 3: Planar pendulum.

mv̇x = − x
L
F

mv̇y = − y
L
F −mg

ẋ = vx

ẏ = vy

x2 + y2 = L2

This last equation introduces an algebraic constraint. These
equations can be turned into a simpler set by a change of
variable, but such change of variables rarely apply to real
DAE’s.

Discrete Events in Modelica
In addition, Modelica models include a set of conditions that
trigger discrete changes, or events, in the system. Events
are simulated as though they were instantaneous. They may
change the values of variables as well as the set of equations
governing the behavior of the system. Furthermore, events
may cause other events. While sequential, the entire event
sequence has no duration.1 Events may occur during initial-
ization as well as immediately after. Therefore the initial
values of the simulation may differ from the values of the
system at t = 0.

The following demonstrates a Modelica model for a ball
bouncing on a flat surface. Notice that when the ball drops
below the surface (the test h<0) the velocity is reversed.
This is a very simple example of a Modelica model in which
normally continuous variables can vary discontinuously.

model BouncingBall "The ’classic’
bouncing ball model"

type Height=Real(unit="m");
type Velocity=Real(unit="m/s");
parameter Real e=0.8 "Coefficient of

restitution";
parameter Height h0=1.0 "Initial

height";
Height h;
Velocity v;

initial equation
h = h0;

equation
v = der(h);
der(v) = -9.81;
when h<0 then
reinit(v, -e*pre(v));

end when;
end BouncingBall;

These discontinuous changes may also result in changes
to the DAE itself. In the brake model below, the equa-
tion that governs the force applied by the brake f

is governed by five conditional expressions with five
discrete variables locked, free, startForward,
startBackward, mode.

f = if locked
then sa*unitForce
else if free
then 0
else cgeo*fn*

1It is worth noting that this approach is very similar to early QR
approaches that employed infinitesimals and inconsistent mythical
instants to account for discrete changes (Nishida and Doshita 1987)

(if startForward
then tempInterpol1(v, mue_pos,2)
else
if startBackward

then -tempInterpol1(-v,
mue_pos, 2)

else
if pre(mode) == Forward

then tempInterpol1(v,
mue_pos, 2)

else -tempInterpol1(-v,
mue_pos, 2));

Quantitative Model Initialization
Here we provide an overview of the Modelica model initial-
ization process for more detail see (Mattsson et al. 2002).
Given a set of possibly hybrid differential and algebraic
equations and a possibly incomplete set of initial values, the
solver must determine a consistent set of values for all vari-
ables, derivatives, and pre-variables (i.e., the values of dis-
crete variables before simulation begins). In object oriented
modeling, the modeler typically works with individual com-
ponents that are composed to create the system under test.
The modeler cannot envision every use of the component
model and, therefore, cannot specify all of the initial con-
ditions. Modelica compilers (e.g., OpenModelica2) search
for a solution to the initial equations using a combination
of numeric (Bachmann, Aronsson, and Fritzson 2007) and
symbolic methods (Ochel and Bachmann 2013).

Simulation Modeling
It should come as not surprise that, at an abstract level, DAE
solvers operate much like envisioners. A DAE solver will
identify every changing variable which is used in any con-
dition. It will create a variable for every condition such that
the event happens at zero-crossing of that variable. Then the
integrator will search forward to find the first zero crossing.
Most envisioners operate within the same framework except
they often cannot distinguish which of the changing vari-
ables changes first and therefore have to consider all possi-
ble ordering of changes, instead of finding the numerically
earliest zero crossing.

Qualitative Ambiguity in QRM
QRM performs qualitative analyses of Modelica models by
abstracting the hybrid-DAE into a set of constraints, finding
a set of initial qualitative states, and performing an envision-
ment that includes the continuous as well as discrete-time
behaviors defined by Modelica (Klenk et al. 2014b).

Figure 4 provides an overview of this process. QRM be-
gins by using OpenModelica to flatten the model and pro-
duce an XML representation of the hybrid DAE. Next, QRM
abstracts this set of equations into conditional constraints.
Then, QRM creates a partial state using qualitative abstrac-
tions of the quantitative initial conditions. Through con-
straint satisfaction, QRM creates set of consistent qualita-

2www.openmodelica.org

Hybrid DAE +
Initial Conditions

Modelica
Model

QRM	

Constraints +
Initial State(s)

s0	

Figure 4: Modelica to Qualitative Initialization

tive states. From these states, QRM generates an attainable
envisionment.

Qualitative Simulation Semantics

Abstract parameters to
intervals

Envisioning

Homomorphism
Every simulation
corresponds to a trajectory

θ

time

Qualita've	
 Model	
 	

	

	

Envisionment	

Modelica	
 Model	

Simulate any point in
the abstraction

Quan'ta've	
 Behaviors	

p1
p2 Abstrac'on	

Figure 5: Desired semantics for qualitative simulations with
Modelica models

The desired semantics of a qualitative simulation of a
Modelica model are that the results of every quantitative
simulation of consistent sets of numeric parameters within
the parameter intervals of the qualitative model correspond
to a trajectory in the envisionment. This relationships is
shown in Figure 5. Given a Modelica model (upper right),
we create an abstraction consisting of constraints and an ini-
tial qualitative state (upper left) from which we produce an
envisionment (lower left). Every assignment of parameters
that is consistent with respect to the Modelica model and
the abstraction will result in a quantitative simulation (lower
right), and each correct simulation will correspond to a tra-
jectory in the envisionment.

Thus, for initialization, the initial qualitative state(s)
should align with the results of quantitative simulation at
t = 0.

Qualitative Model Initialization
As shown in Figure 4, QRM uses the XML representation of
the hybrid DAE produced by OpenModelica to construct an
initial set of qualitative states. This representation includes
equations that are abstracted into qualitative constraints in
the same manner as QSIM (Kuipers 1994) with one sig-
nificant addition. Modelica equations may include condi-
tional expressions, which require conditional constraints as
described in (Klenk et al. 2014b). For the purposes of this
paper, the important aspect of initialization is that the XML

representation also includes the modeler defined quantitative
initial conditions. QRM defines the qualitative value for the
corresponding variable(s) and then propagates these values
through the constraint network. For the remaining unknown
variables, QRM searches for all possible values that are con-
sistent with the constraints.

Case Study
To demonstrate the scope of this problem, we present data
collected from a series of Modelica system models. These
models were used in the development and evaluation of
QRM. For this study, we include toy problems developed
internally and used for explanatory purposes and testing as
well as models developed by Modelon for the Adaptive Ve-
hicle Make DARPA program.

LC Battery Inductor capacitor model shown in Figure 1
HVAC Dry Model that converts humidity into total dry air

mass
Driveline Driveline model that includes an engine, clutch,

gear ratio, air resistance, and the road
Waterjet Model of the propulsion system of an amphibious

vehicle
FullDriveline Detailed driveline model containing multi-

physics for the DARPA Adaptive Vehicle Make program

For each model, we report the following metrics:
• Number of Modelica equations is the number of equations

in the flattened model after all OpenModelica simplifica-
tions

• Number of underspecified quantitative variables (as re-
ported by the OpenModelica compiler) is the number of
variables that the compiler must assume values to arrive
at an initial state

• Number of qualitative variables is the number of qualita-
tive variables after QRM imports and simplifies the model

• Number of unknown qualitative variables after initializa-
tion with quantitative initial conditions

Model
Modelica
Equations

Under-
specified
Variables

Qualitative
Variables

Qualitative
Unknown
Variables

LC Battery 3 0 11 2
HVAC Dry∗ 4 0 27 5
Driveline 50 4 102 35
Waterjet∗ 76 22 365 257
FullDriveline ∗ 1685 55 3512 782

Table 1: Initial quantitative and qualitative ambiguity. ∗ in-
dicates models developed by Modelon AB.

The results in Table 1 illustrate that this problem occurs
in large and small models as well as models authored by
engineers familiar with Qualitative Reasoning. In the worst
case, the number of possible initial qualitative states is ex-
ponential in the number of unknown qualitative variables.
For example, the Waterjet propulsion system consists of 76
Modelica equations has a space of 3257 possible initial qual-
itative states. In the following sections, we discuss how the

results from quantitative simulation can be used to reduce
this ambiguity along with additional issues that arise from
this combination.

Specializing the Qualitative Model with the
results of Quantitative Simulation

The ambiguity in the initial qualitative state arises from
qualitative arithmetic as well as the quantitatively underde-
termined system of equations with unknown states variables,
state derivatives, and algebraic variables. Because the Mod-
elica compiler does not suffer from the first source and must
overcome the second source of ambiguity, it is appealing to
determine the initial qualitative state by abstracting the re-
sults of the quantitative simulation at t = 0. Figure 6 illus-
trates the steps of this process.

Hybrid DAE

Modelica
Model

QRM	

Constraints

s0	

Quantitative
Simulation

 Time Series

QRM	

Initial
State

QRM	

QRM	

Envisionment

Figure 6: Our initialization process uses the OpenModelica
in two ways. The OpenModelica compiler produces an XML
representation of the hybrid DAE as well as time series for
each of the model variables stored in a CSV file.

Unfortunately, OpenModelica will not report values ex-
actly at t = 0. Modelica allows events to occur with no dura-
tion. Hence, the first set of values we receive from Modelica
are at t = 0+ δ even though the CSV file reports it as t = 0.
One consequence of this is that QRM cannot rely on any ini-
tial value provided by the designer because the solver may
have already discontinuously changed any variable within
the set of events occurring at t = 0. When using the results
of quantitative initialization, QRM only relies on the initial
values provided by the solver at t = 0 + δ and ignores any
initial values provided by the designer.

Another larger challenge is that quantitative initialization
frequently includes errors due to floating point precision.
When using these values to determine the initial set of con-
straints, it is possible to arrive at an inconsistent initial sit-
uation. In the rest of this section, we illustrate this behavior
through a series of examples.

Example: Power Takeoff Module
Consider the Modelica equation in Figure 7 from a model of
a cross drive with power takeoff module.

This equation is used to calculate the temperature differ-
ence that will be used to compute the heat flow through the
component. noEvent() is a Modelica operator that tells
the simulation engine to not attempt to compute the exact
time at which the argument crosses zero. OpenModelica ini-
tialization computes the values shown in Table 2.

if noEvent((heatport.T-T_a)*(
heatport.T-T_b)<0.0) then

delta_t = heatport.T - t_{avg};
else
if noEvent(abs(heatport.T-T_a)>abs(

heatport.T-T_b))
then delta_t = heatport.T-T_b
else delta_t = heatport.T-T_a

end if;
end if;

Figure 7: Power takeoff module

Variable Value
delta_t 7.86E-11
heatport.t 353.15
T_a 353.15
T_b 353.15
T_avg 353.15

Table 2: Initial values from OpenModelica for the Cross
Drive Power Takeoff Module

The constraints resulting from abstracting the equation in
Figure 7 are inconsistent with the sign algebra abstraction of
the values in Table 2. The qualitative variable representing
the difference between 353.15 and 353.15 is Q0 and it must
be equal to the qualitative value of delta_T which is Q+.

Example: Quadratic Fluid Flow
The XML hybrid DAE of System Design Test, a detailed ve-
hicle driveline model, contains the following two equations:

dP = if hyd_a.p - pressure_Source1.p
>= 0.0

then hyd_a.p -
pressure_Source1.p

else pressure_Source1.p -
hyd_a.p

outflow = if hyp_a.p >
pressure_Source1.p

then pressure_source2.ports
[1].outfow

else 0.0

Rewriting these using single letters for each Modelica vari-
able name the form because clearer:

d = if h - p >= 0.0
then h - p
else p - h

o = if h > p then q else 0.0

Notice that both Modelica equations are comparing the same
h and p. We can see that the first equation computes the ab-
solute value of h − p. The values provided by OMC ini-
tializes h = p = 1d7, q = 41960. Substituting these into

the Modelica equations we see that the initial values for d
and o must be d = 0, o = 0. Modelica solvers are based
on numeric integration not symbolic algebra, therefore the
exact result depends on the details of the numerical integra-
tor used. Unfortunately, the OpenModelica, which we use,
obtains d = 0 and o = 41960.

These values are both numerically and qualitatively in-
consistent. This inconsistency is not the result of some round
off error, so a new approach must be used to handle this case.
It is easy to criticize OMC for this error, but that solver usu-
ally produces correct results and this type of inconsistency
happens regularly. Its simply the result of numerical integra-
tors updating the pseudo-state variables at slightly different
instants. The actual curves produced by OMC are correct,
they just has a wrong value at t = 0.

Example: Step Function

Modelers frequently modify their models of the physical
world to aid the solvers they expect to be analyzing their
models. Consider the following step input function:

y=if(x>0) then y1 else y2;

Figure 8: Step input function

In large models, modelers may choose to approximate
this relationship to ensure continuity using the Modelica
smooth operator.

y = smooth(1,
if x > x_small

then y1
else if x < -x_small

then y2
else f(y1, y2));

Figure 9: Use of Modelica smooth operator

In the region -x_small < x < x_small a 2nd or-
der polynomial, f , is used for a smooth transition from y1
to y2. Directly translating Equation 9 introduces three addi-
tional modes into the model that are only important for the
quantitative solver. Meanwhile, the equation in Figure 8 is
more appropriate for qualitative reasoning. Therefore, Open-
Modelica includes rewrite rules that automatically translate
equation in Figure 9 into the equation in Figure 8 when writ-
ing the XML representation of the DAE. While the qualita-
tive constraints resulting from equation in Figure 8 indicate
that y can only have one of two values y1 or y2, if we use the
initial values from the OpenModelica simulation, y could be
any value in the interval [y1, y2] resulting in an inconsis-
tency. To make matters worse, the modeler may choose a
value for w_small that is not small and use the smooth
operator as an interpolation function, as occurs many times
in the Fluid package of the Modelica Standard Library.

Current Approach
In this section, we describe the approach we are currently
using and its limitations. Due to the possibility of discrete
events occurring during initialization, QRM starts with the
solver provided values for all variables at t = 0+ and ignores
all initial assignments provided by the designer in the XML
representation of the DAE.

input : constraints, C, and real values for variables, R
output: a consistent initial qualitative state, S
repeat

S ← relaxedAbstraction(R);
S ← runConstraints(C,S);
foreach c ∈ clusters(S) do

if ¬ solution(c) then
R← retractInitialConditions(S,C,R);

end
end

until solution(S);
Algorithm 1: Initialization procedure of qualitative state
from quantitative simulation results

Algorithm 1 provides an overview of this process. The
first step is to create a relaxed abstraction in which each real
valued variable that is not close to a threshold is assigned its
respective qualitative value. This results in a partial state, as
many variables will have unknown qualitative values. Next,
we separate the set of unknown variables into the maximal
number of clusters satisfying the following criteria. Within
each cluster, the constraints of all of the unknowns reference
only known variables or variables within the cluster. Next,
we attempt to find a solution to the constraints for each clus-
ter. If we find one, the values for these variables are added
to the partial situation, if not, then we resolve the inconsis-
tencies by performing model-based diagnosis to determine
the minimum number of initial qualitative values to retract.
Once a solution to each cluster has been found, the partial
state is now a complete consistent initial qualitative state.

Relaxed Abstraction
Many of the qualitative inconsistencies arise from the ab-
straction of near-zero quantitative values. Ideally we would
like to find an ε such that:

x < −ε→ [x] = Q−
x > ε→ [x] = Q+

|x| ≤ ε→ [x] = Q0

Unfortunately, we found no value for ε < 1 that is suffi-
cient to remove qualitative inconsistencies across our model
suite (e.g., the contradiction in quadratic fluid flow example
above cannot be resolved in this way). Therefore, we make
values below the threshold ambiguous (i.e., |x| ≤ ε→ [x] =
Q?). Choosing ε = 10−4 ensures there are relatively few in-
consistencies.

It is important to note that we have to apply the same rule
to system parameters (e.g., resistances, forces and masses)

and floating point constants in equations as well. The funda-
mental reason for this is that Modelica preprocesses equa-
tions involving parameters and this too introduces errors.
For instance, Modelica may have simplified the equation
10.0− 10.0 to 0.0. If these two constants resulted from sub-
tracting the masses of two blocks then we cannot guaran-
tee that their weight difference is exactly 0 (Q0). If these
two constants resulted from subtracting the mass of a block
from itself, then the result should be exactly 0. Since Model-
ica does not inform QRM the source of any constant in any
equation, QRM needs to assume small constants are Q? as
well.

Of the 3512 qualitative variables in System Design Test,
relaxed abstraction assigns values to all but 782.

Cluster unknown variables
After performing constraint propagation over the initial val-
ues from the previous step, there will still be unknown vari-
ables. To find a consistent assignment of values for these un-
knowns, we take a divide and conquer approach. We divide
the unknowns into mutually constrained clusters. That is, for
each constraint that mentions more than one unknown, all of
the mentioned unknowns are in the same cluster.

Consider two equations x+ y+ z = 0 and z+ r+ v = 0.
These two constraints share a variable z, so solving them
requires searching 35 space of variable assignments if all
are initialized to Q?. However, if z has a known qualitative
value, then those two equations are independent. Each is a 2
variable system which can be solved faster 23 + 23.

For System Design Test, the 782 unknown variables are
divided into 84 disconnected clusters. After removing the
inconsistencies, QRM finds 80 clusters with 819 unknown
variables. The increase in unknown variables is due to the
fact that removing inconsistencies removes constraints from
the model.

Retract inconsistent initial conditions
Within a cluster, we iterate between assigning a qualitative
value to an unknown variable and propagating the results
to find a solution. If there is no consistent qualitative value
for a variable, we use model-based diagnosis (de Kleer and
Kurien 2003) to determine the minimal initial conditions
that must be retracted.

QRM takes the following steps to detect the inconsistency
of the Quadratic Fluid Flow model. The following summa-
rizes the result: (1) From the second equation QRM deduces
that [h− p] must be Q0 or Q-. (2) From the first equation if
[h− p] = Q0 then [d] = Q0, (3) Again from the first equa-
tion if [h− p] = Q− then [d] = Q0. Therefore [d] = Q0 in
all cases.

Once a consistent assignment of qualitative values to all
unknowns in the cluster have been found, the cluster is
solved. Once all of the clusters have been solved, then their
union with the results of relaxed abstraction provides a con-
sistent initial qualitative state.

Given enough time and space, this approach will always
find an initial qualitative state if the initial constraint set is
consistent.

OMC v. Dymola
Another complication is that different Modelica compilers
will result in different solutions to the initialization prob-
lem. Consider again the quadratic fluid flow example. Un-
like OpenModelica, Dymola obtains the values we expect:
d = 0, o = 0. We can only speculate why Dymola and
OMC obtain different answers here. Some reasons might be
that one of them computes the floating point operations in
different order than the other. There is a very large disconti-
nuity in o (it is has only two legal values 41960 and 0 here).
Another reason might originate from the fact that h > p
and h − p > 0.0 are not equivalent in floating operations
(the computation of h− p may produce an underflow which
would be interpreted as 0 by the software, while a floating
point comparison of h and p shows h is greater than p).

Related Work
Aside from a few notable exceptions (e.g., (Struss and Price
2004)), QR has not been applied to models created by en-
gineers and designers in industrial settings. Qualitative de-
viation models can be abstracted from Modelica differential
equation models (Struss et al. 2014). Their work succeeds by
placing strong constraints on how models are represented in
Modelica. Deviation models are primarily useful for diagno-
sis, while our work focuses on qualitative analyses based on
simulation.

Conclusions
Our experience here illustrates the difficulties in qualitative
model initialization when working with real world models
built by industrial designers. We were able to initialize and
envision Modelica models with hundreds of variables. For
example, the driveline model above results in an envision-
ment with depth 53, > 5 million states, and > 17 million
edges.

Our work with Modelica has found number of features
that support numeric simulation, but complicate formal
methods (Klenk et al. 2014a), and the qualitative abstraction
described here requires a more rigorous analysis to prove the
relationship between the qualitative and quantitative models.

One theme we see in this work is the need to understand
the assumptions of use in which models are constructed.
One approach to this involves meta-modeling (Sangiovanni-
Vincentelli et al. 2009) which seeks to capture shared con-
cepts at a meta-level allowing different design tools to per-
form their analyses and providing a unified view of the re-
sults.

Acknowledgments
Material within this technical publication is based upon the
work supported by the Defense Advanced Research Projects
Agency (DARPA) as part of a subcontract under Vanderbilt
University Prime Contract HR0011-13-C-0041. The views,
opinions, and/or findings, contained in this article are those
of the authors and should not be interpreted as representing
the official views or policies of the Department of Defense

or the U.S. Government.3

References
[Bachmann, Aronsson, and Fritzson 2007] Bachmann, B.;
Aronsson, P.; and Fritzson, P. 2007. Robust initialization of
differential algebraic equations. In EOOLT, 151–163.

[Casella 2012] Casella, F. 2012. On the formulation of
steady-state initialization problems in object-oriented mod-
els of closed thermo-hydraulic systems. In Proceedings of
the 9th International Modelica Conference, Munich, Ger-
many, September 3, volume 5.

[de Kleer and Brown 1984] de Kleer, J., and Brown, J. S.
1984. A qualitative physics based on confluences. Artifi-
cial Intelligence 24(1):7–84.

[de Kleer and Kurien 2003] de Kleer, J., and Kurien, J. 2003.
Fundamentals of model-based diagnosis. In Proceedings of
the 5th IFAC Symposium SAFEPROCESS, 25–36.

[Fritzson 2004] Fritzson, P. 2004. Principles of Object-
Oriented Modeling and Simulation with Modelica 2.1. Pis-
cataway, NJ: Wiley-IEEE Press.

[Klenk et al. 2014a] Klenk, M.; Bobrow, D.; de Kleer, J.; and
Janssen, B. 2014a. Making modelica applicable for formal
methods. In Proceedings of the 10th International Modelica
Conference.

[Klenk et al. 2014b] Klenk, M.; de Kleer, J.; Bobrow, D.; and
Janssen, B. 2014b. Qualitative reasoning with modelica
models. In Proceedings of the Twenty-Eighth AAAI Confer-
ence on Artificial Intelligence.

[Kuipers 1994] Kuipers, B. 1994. Qualitative reasoning:
modeling and simulation with incomplete knowledge. Cam-
bridge, MA, USA: MIT Press.

[Mattsson et al. 2002] Mattsson, S. E.; Elmqvist, H.; Ot-
ter, M.; and Olsson, H. 2002. Initialization of hybrid
differential-algebraic equations in modelica 2.0. In 2nd In-
ter. Modelica Conference 2002, 9–15.

[Nishida and Doshita 1987] Nishida, T., and Doshita, S.
1987. Reasoning about discontinuous change. In Proc.
AAAI, volume 87, 643–648.

[Ochel and Bachmann 2013] Ochel, L., and Bachmann, B.
2013. Initialization of equation-based hybrid models within
open-modelica.

[Petzold 1982] Petzold, L. R. 1982. Description of dassl: A
differential/algebraic system solver. Technical report, San-
dia National Labs., Livermore, CA (USA).

[Sangiovanni-Vincentelli et al. 2009] Sangiovanni-
Vincentelli, A.; Yang, G.; Shukla, S. K.; Mathaikutty,
D. A.; and Sztipanovits, J. 2009. Metamodeling: An
emerging representation paradigm for system-level design.
Design & Test of Computers, IEEE 26(3):54–69.

[Sielemann et al. 2011] Sielemann, M.; Casella, F.; Otter,
M.; Clauß, C.; Eborn, J.; Mattsson, S. E.; and Olsson, H.

3DISTRIBUTION STATEMENT A. Approved for public re-
lease; distribution is unlimited.

2011. Robust initialization of differential-algebraic equa-
tions using homotopy. In Proceedings of the 8th Modelica
Conference, 21–22.

[Struss and Price 2004] Struss, P., and Price, C. 2004.
Model-based systems in the automotive industry. AI Maga-
zine 24(4):17–34.

[Struss et al. 2014] Struss, P.; Sterling, R.; Febres, J.; Sabir,
U.; and Keane, M. M. 2014. Combining engineering and
qualitative models to fault diagnosis in air handling units.

[Struss 1988] Struss, P. 1988. Mathematical aspects of qual-
itative reasoning. International Journal of Artificial Intelli-
gence in Engineering 3(3).

	Introduction
	Background
	DAEs in the Modelica Language
	Discrete Events in Modelica
	Quantitative Model Initialization
	Simulation Modeling

	Qualitative Ambiguity in QRM
	Qualitative Simulation Semantics
	Qualitative Model Initialization
	Case Study

	Specializing the Qualitative Model with the results of Quantitative Simulation
	Example: Power Takeoff Module
	Example: Quadratic Fluid Flow
	Example: Step Function

	Current Approach
	Relaxed Abstraction
	Cluster unknown variables
	Retract inconsistent initial conditions

	OMC v. Dymola
	Related Work
	Conclusions

