
CHAOS, QUALITATIVE REASONING, AND

THE PREDICTABILITY PROBLE M

Bernardo A. Huberman

Xerox Palo Alto Research Center
Palo Alto, CA . 94304

Peter Strus s

Siemens Corp .
Corporate Research and Development

Munich, West Germany

Abstract

Qualitative Physics attempts to predict the behavior of physical systems based on qualitativ e

information . No one would consider using these methods to predict the dynamics of a tennis ball on th e
frictionless edge of a knife . The reason: a strong instability caused by the edge which makes tw o

arbitrarily small different initial conditions have very different outcomes .

And yet, research on chaos suggests that sharp edges are not so unique : most nonlinear

systems can be shown to be as unstable as the ball on the cutting edge. As a result, prediction is often
impossible regardless of how simple the deterministic system is . We analyze the predictabilit y

problem and its origins in some detail, show how it is generic, and discuss the impact of these result s
on commonsense reasoning and Qualitative Physics . This done by presenting an example from the
world of billiards and attempting to uncover the underlying assumptions that may lead physics ,

commonsense reasoning, and Qualitative Physics to generate different results .
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1 Introductio n

Qualitative Physics (QP) aims at describing, explaining, and predicting the
behavior of physical systems based only on qualitative information ([Bobrow 841 ,
[Hobbs-Moore 85]) . Predicting the future development of some part of the world give n
knowledge of its current situation is also a central problem when attempting t o
formalize the commonsense by some sort of non-monotonic logic (eg . [Shoham 88]) .
Obviously, envisioning the possible behavior of a system (a natural phenomenon o r
an artifact) is reasonable and feasible only if it exhibits stable behavior, i .e. the
system under consideration is predictable as opposed to chaotic . This appears to be a
tautological and useless consideration, for we often seem to successfully predict th e
development of our environment . As a result, setting aside the weather or th e
economy, the world seems to be mainly predictable . Recently, , in the physica l
sciences, many systems which were taken to be regular in their dynamics wer e
discovered to be chaotic and unpredictable in spite of their deterministic nature .
These systems are not just exotic or artificial situations but quite common, such a s
the motion of the pendulum, circuits like the phase-locked-loop, and devices based o n

the Josephson junction[D'Humieres 82, Huberman 83] .

Is this a shocking observation in the context of QP? In a way, commonsens e
knowledge also allows for unpredictable mechanisms and consciously relies on the m

when deciding to use a flipping coin to generate random decisions . People tend to
avoid predicting such events, and so do the various attempts to formaliz e

commonsense or causal reasoning. They do not deal with a ball on a knife's edge, bu t
rather with balls rolling or jumping on a smooth surface ([de Kleer 77], [Forbus 80] ,
[Kuipers 86], [Shoham 88] )

And yet, we will show that even the smooth, restricted world of billiards . used
for a discussion of the prediction problem by Shoham, provides a scenario in whic h
prediction is impossible and chaotic dynamics is the norm . Given these startling
discoveries, one may ask whether and in which respect they are relevant to QR . One
reason for their consideration is that research on chaos has uncovered that most
nonlinear systems can be chaotic, and that regular, integrable motion might actuall y
be the exception rather than the rule .

In this paper we analyze the implication of chaotic behavior for qualitativ e
physics . We do so by introducing the notion of sensitivity to initial conditions through
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a simple example . We next contrast this problem with notion of predictability as i t

enters QP, and discuss the issue of approximating reality . We conclude by showin g

the range of regimes for which QP can effectively predict phenomena b y

incorporating some of the principles that are captured by commonsense reasonin g

about the physical world .

2 . Chaos

2 .1 The initial condition syndrome .

A hallmark of chaotic behavior for non-linear dynamical systems is thei r

sensitive dependence on initial conditions . Stated briefly, this means that if one were

to observe the evolution of a dynamical system when started from two slightl y

different initial conditions, chaotic dynamics would imply that the outcomes ar e

vastly different from each other, whereas regular behavior implies that they are not .

In order to make this statement clear, let us take the example of the game of billiards .

Imagine starting a game with all the balls at rest and hitting the black one towards

any of the rest . After some time, the initial collision between the black ball and one o f

the others sets in motion a complicated pattern of movement which can be analyze d

in terms of the positions and velocities of all the balls . If after the initial impact on e

allowed the balls to move and collide with each other for a certain amount of time an d

then wrote down their positions and velocities, that listing would be very differen t

from the one generated by the same initial disposition of balls on the table but wit h

the black ball having started with a slightly different velocity .

Notice that since any dynamical experiment samples many different initia l

conditions over its course, a time record of its development would look erratic in spit e

of the deterministic nature of all the forces at play . The interesting fact from ou r

point of view is that systems with very few degrees of freedom can also display thi s

behavior . Thus even though one has a deterministic set of equations for a fe w

interacting particles, sensitivity to initial conditions implies the appearance o f

behavior which cannot be distinguished from random outcomes .

2 .2 An example

In order to make these ideas more concrete we analyze a example that both fit s

into the favorite domain of rolling billiard balls and has been analyzed in a

mathematical way [Bleher88 ] : a billiard with two pockets ( which we'll call exits), one
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ball, and a cylindrical obstacle in the middle (Fig . 1). Given an initial position an d
velocity for the ball, one can follow its perfectly deterministic trajectory and ascertai n
which ofthe exits it went though . The problem however, lies in the outcome of a sam e
experiment differing by an arbitrarily small amount from the previous initia l
condition. Short of flipping a coin, it is impossible to predict which pocket will the bal l

exit through. This is seen in Figures 2a and 2b, where we depict the set of initia l

conditions that map into either one of the exits .

Figure 2a shows the computation performed by Bleher et al . for a set of 512 by

512 initial conditions on the dashed line (displayed in Fig . 1) parametrized by the x

coordinate and the angle of initial velocity. The black lines correspond to points

exiting through exit A and the white regions those points exiting through B . Eve n

more interesting, if one were to magnify a piece of this region by a factor of 105, on e

obtains Figure 2b, which shows the same characteristics as Figure 2a . What these

results show is that the boundaries separating initial conditions mapping into eithe r
exit contain both fractal regions and smooth, non fractal ones, and that these tw o
types of boundary behavior are intertwined on arbitrary fine scales .

This example illustrates the fact that even systems with very simple dynamic s

may exhibit unpredictable behavior . There are, to be sure . initial conditions that lead

to an exit immediately or after one or two collisions. These regions can be easil y

identified and their respective behaviors are predictable in both senses :

- we can easily determine their exit in advance, an d

- the result is reproducable in experiments .

However, for most of the initial conditions it is impossible for a huma n

observer to foresee the eventual exit. They are likely to lie in a region that exclude s

predictability . Since such regions are very "dense", and we do not know their locatio n
(neither qualitatively nor quantitatively), the whole system becomes unpredictabl e

except for the obvious regions of immediate or early exit . Althought no one would tr y

to predict .the unstable behavior of a ball on a sharp edge, this example demonstrate s

that it is not always obvious whether or not we are in a situation with simila r

instability . In this case, reliable predictions are also impossible .

3 Qualitative Physics
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3.1 Different "Gold-Standards" for QP

The field of Qualitative Physics (QP) emerged out of two major roots : one bein g
the attempt to analyze and formalize commonsense reasoning ("naive physics" )
applied by humans in there everyday lifes' environment ([Hayes 78], [Forbus 841) .

The other important motivation is modeling more or less advanced techniques used i n

technical or scientific domains . (e.g. [Brown 76], [deKleer 791) . The latter has led to

systems that try to adopt elaborate mathematical techniques, such as higher orde r

derivatives ([de Kleer-Bobrow 84], [Kuipers-Chiu 871), algebra ([Rubin 881, [Strus s

88a], [Williams 881), or phase portrait analysis of ordinary differential equations

([Lee-Kuipers 881, [Sacks 88], [Struss 88b, c], [Yip 881) .

Almost the whole spectrum between the modeling of a child's knowledge abou t
liquids in [Hayes 851 and the phase space analysis for area-preserving mappings [Yi p

88] is covered by existing theories or systems . But we hardly find any approach tha t
systematically relates formal mathematical methods and commonsense reasoning .
[Struss 88a1 contains only first steps of an analysis as to whether the properties of th e
mathematical techniques underlying the majority of existing QP systems match ou r

intuitions (e .g . a non-associative addition) . One of the goals of this paper is to rais e

and discuss problems in the relation of mathematical models and QP models of th e

physical world from the following perspectiv :

1 . So far, this discussion was mainly performed by matching results of QP wit h

classical methods of mathematics and physics, as suggested by the framework of Fig .

3a, which was first used in [Kuipers 861, adopted by [de Kleer 871, and formalized by

[Struss 88a, b] . In this paper, we change the perspective by reintroducing tw o

"gold-standards" which are both important and admittedly vague to the same extent:

a) the real physical world, and b) human commonsense reasoning about this realit y

(Fig. 3b) . If we find that results of mathematical physics and QP do not coincide a s
desired or expected, this does not say too much about their appropriateness . After all ,

a certain paradigm may correctly formalize commonsense reasoning and als o

contradict evidence of the physical world, thus revealing deficiencies in th e

commonsense-based treatment of the world. Alternatively, the mathematical mode l

may contain idealizations that prevent it from capturing essential characteristics o f

the modelled system . The aim should be to discover implicit presumptions underlyin g

the various ways of modeling the physical world and, thus, identify potentia l

restrictions of their applicability .
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2. Rather than analyze properties of single solutions of either modeling (suc h
as spuriousness, branching, etc .) we will discuss intrinsic global characteristics of the
respective models focusing on such aspects as continuity or linearity .

3 .2 QP Assumes Predictability

In most QP approaches, systems are characterized in terms of parameters tha t
take on "qualitative values". Such qualitative values may be obtained from th e
respective quantitative (i .e. real-valued) description by considering significan t
thresholds which discriminate qualitatively between different states or modes o f
behavior (e .g. the freezing point and the boiling point of a fluid object, or the maxima l
opening of a valve) . Even if such landmarks are not precisely known, the assumptio n
underlying these approaches is that there exists a finite set of intervals that ca n
serve as a sufficient characterization of the various qualitatively different states of a
system or of its componentsJSufficient for the purposes of QP means in particula r
that this set of intervals captures the distinctions necessary for making correct
predictions about the possible behavior(s) of a system) This assumption, in turn, i s
grounded on the presupposition that the overall result or behavior is continuousl y
dependent on the initial conditions, or, stated differently, under perturbations smal l
enough the system will not change its behavior qualitatively . This property of
"structural stability" is essential for a system to be observable and predictable . We
stress the fact that "predictable" is not meant in a theoretical sense ("Knowing th e
initial conditions exactly, one is able to compute the further development"), but in a
pragmatic sense : "If we repeat an experiment carefully enough several times, it wil l
always yield the same result" .

Obviously, chaotic dynamics not only contradicts simple technical details o f
some QP systems, but some of their fundamental assumptions . In the billiards
example, assuming that the initial conditions may be characterized by som e
qualitative values (=intervals) which lead to the same qualitative behavior !i .e .
same exit) contradicts the analysis of section 2 .

Note that the problem raised by these considerations is even more
fundamental than the frame problem . The latter states that our predictions about th e
future may become invalid if something that has not been considered or expecte d
influences the subject of our predictions . For instance, a rolling billiard ball i s
prevented from following the expected straight line if a sudden strong wind enters
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the billiard room, or if another ball moves in the way and causes a collision . But in
our example, a prediction about the exit of the ball is not disturbed by some externa l
cause or unanticipated event. Even if we consider the scenario to be a closed worl d
and its description to be complete, the exit is unpredictable .

We may rephrase the problem and relate it to the extended prediction problem
studied in [Shoham 88] . Shoham uses the concept of a "potential history" whic h
"represents an arbitrary course of events which is 'the way things would happe n
naturally" (Do not get confused by the fact that "history" may refer to a developmen t
in the future) . Potential histories manifest themselves, "become real" as long as the y
do not interact with other histories .

In our example, although everything but the ball is static, "the rules tha t
govern the world" generously supply the ball with an infinite set of potentia l
histories, and our problem is the predictability problem, i .e . selecting one of this set ,
rather than the extended prediction problem i .e . determining how long a potentia l
history is allowed to manifest itself until it is affected by some other history .

4 Discussio n

4.1 Approximations to Reality

In order to discuss the issues raised in the previous sections and their impac t
on QP in particular, we will first describe the problem and our point of view more
carefully .

Obviously, there seems to exist a contradiction between some fundamenta l
assumptions of most QP approaches and the results presented in section 2 . Can one
conclude that QP contradicts the real billiard ball system? Not at all . First of all, th e
results about the exit as a function of the initial conditions were not obtained b y
experimenting with a real instance of the scenario . Those results are properties of a
specific model of this scenario, a model using mathematical concepts, such as points .
circles, angles, equations etc . in order to approximate things that would occur if on e
really carries out such an experiment . Hence, all we can tell at this point is that ther e
is a contradiction between this model and a QP approach . So far, one cannot make a
statement about how QP relates to the real world unless one finds or assumes tha t
mathematics and physics match exactly physical reality . We emphasize this point
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because the relationship of QP and mathematics and physics has been subject t o
many claims and analyses, and is without any doubt an interesting question .

At times however, there appears the misconception that qualitativ e
- descriptions are a weaker substitute for the world when lacking "exact information" .
Descriptions of physical systems, e .g. in terms of equations or differential equations ,
are exact in that they contain real-valued parameters or specific functions, but thos e
equations do not describe the real situation "exactly" . Real physical systems ar e
permanently influenced and changed by an arbitrarily large number of othe r
phenomena . If they, despite all the perturbations acting on them, remain in som e
identifiable state for a period long enough to observe them, we may be able to find a
mathematical description that agrees with the observed quality of the behavior . In
this case, we may use this quantitative description as a good approximation to th e
" qualitative reality " , to put it in a provocative way.

From this point of view, we can treat mathematics/physics, commonsens e
reasoning, and QP as three different ways of approximating processes and event s
occurring in the real world . Since at least some QP approaches aim at modeling
commonsense reasoning, whereas traditional physics do not, we have agai n
motivated the analytical framework in Fig . 3b .

These three ways to model the physical world claim and have different scope s
of applicability, but there is some overlap among them . If their results are different ,
it makes sense to analyze which (perhaps implicit) assumptions and idealizations
cause this discrepancy, and, if possible, to determine which are more appropriate fo r
certain types of physical systems. Based on the example, we will try to take a ste p
towards this goal .

4.2 Idealizations and Assumption s

4.2 .1 Geometry

The first idealization that probably comes to our minds concerns the
description of the geometrical shapes of the objects in the mathematical model . The
walls and the surface are treated as planes, the obstacle is a "perfect" cylinder, and
(probably the most unreasonable assumption from the commonsense viewpoint) th e
billiard ball is shrunk to a point . Mathematicians would give up, if the walls wer e
washboards, the ball an 1 pple, and the obstacle a cactus . However, so would
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0 example, make almost the same geometrical abstractions as the mathematica l
model, except, perhaps, for modeling the ball as a sphere rather than a point . Any QP
system adressing a problem of this kind would use similar idealizations potentially i n

a "compiled" form, e .g. hidden in the laws of reflection .

4.2 .2 Continuit y

If while playing minigolf one narrowly misses the hole in a given trial, on e
slightly changes the direction of the hit at the next trial . Commonsense tells us that
the result of such an action will only change by a small amount if the action itself i s
carefully modified . The outcome does not "jump" . We exploit the same fact whe n
choosing an an z1e between the first and the second trial if in the second case the bal l
bounced back slightly left of the hole . This leads commonsense to predict that, fo r
repeated experiments in our billiard example, a ball will always exit through th e

same hole. Ordinarily, the same continuity principle is used in QP systems . For,

instance, a variable, "temperature", is not allowed to skip the value "freezing point "

when progressing from "below freezing" to "above freezing" . As already stated, thi s

continuity principle is the ultimate grounding method for modeling qualitativ e

values by intervals. However, rather than being explicitly represented as a property

of parameters, it is hardwired and implicit in the algorithms of most QP systems .

In mathematics, this property is captured by the notion of continuou s

functions . One way to define a real-valued function, f(x), is to state that given a

quantity S>0, there exists an c>0, so that the amount ( x0 - x) < e implies ( f( xo) - fix )

< S, a fact which is close to our intuition .

Consider the type of functions involved in the computational treatment of th e

billiard example. They can be mainly reduced to the computation of the location an d

incidence angle of one collision from the previous one . In the example situation show n

in Fig. 4, the functions

O i+t = f0 (xi ,9 . )

xi+1 = fx ( x i 0 i )



are continous (in the ranges considered) . However, the analysis reported in section 2
states that the resulting function which maps the initial conditions to the exit
exhibits discontinuities .

The concept of discontinuity is also present in commonsense reasoning . If a
ball is rolling towards the (concave) edge of an obstacle, a small deviation causes a
significantly different result (Fig . 5) . However, billiards seem smooth and
continuous. What is causing the discontinuity ?

4.2 .3 Infinity

Commonsense may construct the following argument by repeatedly exploitin g
the continuous dependency of a collision on the previous one : Consider an orbit, 0 1 ,

that after several collisions with the obstacle and the walls exits through hole A . By
continuity, other orbits with initial point and angle of the last collision sufficientl y
close to those of 0 1 will stay close to 0 1 and, hence, also exit through hole A. This

condition can be guaranteed if the collisions preceding the last one are sufficientl y
close . Finally, we can find a neighborhood of the initial conditions of 0 1 such that al l

other orbits starting in this environment also exit through hole A . This argument can
also be turned into a rigorous mathematical proof, and the restriction for the initia l
conditions could even be computed exactly . So, what remains of the unpredictabilit y
problem?

One point is that the neighborhood of the initial conditions gets very small i f
the number of collisions increases, and it will shrink to a point if this number get s
arbitrarily large. At this point, we find one of the most important distinctions in th e
basic assumptions . What does "arbitrarily large" mean? Commonsense tells us that ,
in each experiment, the ball will stop after a certain number of collisions having los t
its energy due to friction and elastic collisions . In our physical experience, the
observation time is limited, and so is the period of activity for many processes or
systems . On the contrary, the mathematical model implies an unbounded progressio n
of time unless it is modified appropriately. Chaos is defined by divergent behavior a s
time goes to infinity .

If we add a restriction to the mathematical treatment of the billiard exampl e
(either by limiting the time of motion through friction, the number of collisions, or
the distance), then in addition to the previously discussed scenarios the ball can now
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stop somewhere on the table . The corresponding mathematical model would show
nice isolated regions for initial conditions leading to either hole and the space
between them corresponding to the stopping ball . There is no chaos in this system, i t
is predictable, at least in the mathematical sense . There is a certain limited precisio n
required to guarantee that the experiment can be repeated with the same outcome .
The question remains, however, whether this precision is really achievable in reality .
The boundaries for the initial conditions depend on the strength of the impose d
temporal restriction . They may become too narrow and infeasible if the period is to o
long, for example . Additionally, the experiment might become predictable if made up
of wooden parts but unpredictable if constructed of glass .

Clearly, the mere existence of a temporal limit as is implied by commonsens e
reasoning (and physical reality), is not sufficient to exclude chaotic behavior . The
question is whether the "natural" time of activity or observation is so short that th e
observed system does not exhibit its intrinsic chaos .

4.2.4 Linearity

In our billiards example we do not find an edge like the one shown in Fig . 5
that would make a discontinuous behavior plausible for commonsense reasoning . We
find instead something like a "very smooth edge" : the surface of the cylinder . A bal l
hitting the cylinder orthogonally will return on the same path, whereas any small
displacement of the starting point to one side or the other will cause the ball to escap e
in the reflected direction (Fig . 6) . This is basically the same behavior as for the edge
case, only in milder form . However, the whole surface of the cylinder is a continuu m
of such "mild edges", and such that as the ball hits this surface several times, eac h
collision amplifies the divergence of the orbits . Fig. 7 illustrates this phenomenon b )

and contrasts it with the case where the cylindrical surface is replaced by a plan e
surface (a) .

In other words, only a small number of collisions with the cylinder suffices t o
add up (or rather, multiply) to , almost the effect of a knife's edge . We are forced to us e
the precision of the real numbers if we aim at reliable predictions . i This replicates th e
results of the analysis in [Struss 88a1 which state that a space of "qualitative values "
closed w.r.t. multiplication and division can only be represented by the rea l

numbers .)
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The non-linearity of the obstacle's shape is correctly captured by the
mathematical model . On the other side, there is strong evidence, supported by th e
example, that commonsense is very bad at estimating non-linear effects . We
hypothesize that commonsense reasoning is mainly based on an implicit linearit y
assumption . Thus, the domain of its applicability is limited to systems which can b e
sufficiently approximated by linear descriptions, or to ranges of parameter value s
where this is the case. For instance, we have a good estimate of the distance we need
to come to a stop when walking, running, or driving a car slowly . Exceeding this
speed by an order of magnitude, e .g. when driving on a freeway, makes our
commonsense fail predicting this distance . With a constant negative accelaration
applied by the brakes, this distance grows quadratically, whereas our commonsens e
tends to prefer a linear extrapolation .

Having hypothesized the linearity assumption as one of the major distinction s
between commonsense reasoning and the mathematical physics modeling of the
world, we now ask how QP methods reflect this problem . The answer seems to be that
this is done a) only implicitly and b) not in a coherent way . On the one hand, as w e
already pointed out, predictability and the absence of knife's edges, i .e .
discontinuities, are deeply involved in the major approaches, e .g. hidden in the
fundamental hypothesis that qualitative values with a finite granularity or even of a
finite number suffice . Our example shows that knife's edges may be hidden in th e
description and become effective only in the course of time .

On the other hand, QP uses rather weak expressions for the functiona l
dependencies . For instance, "qualitative proportionality" which is used in differen t
incarnations (e .g. in Envision [de Kleer 84], QPT [Forbus 841, and QSIM [Kuipers
86]) subsumes linear as well as non-linear dependencies . Since qualitativ e
envisionments are complete, they accordingly include the whole spectrum o f
awkward phenomena potentially exhibited by non-linear systems . We might
therefore get not only an explanation for the occurance of intractable branching o f
qualitative behaviors, but also the idea that the effect of additional "immanent "
filters can only be very limited . In implicitly assuming linearity, QP methods seem t o
approximate commonsense reasoning, including its defects . Where the wea k
descriptions cover also non-linear systems, qualitative simulation may mirror thei r
possible chaotic behavior in a mess of envisionments .
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If the world is really massively non-linear, how can commonsense succeed an d
survive at all? We have already provided two answers to this question :

- there are ranges of parameters where linearity is a sufficient approximatio n

- the period of activity or observation can be too short for the chaotic behavio r

to develop or to become obvious .

There is another aspect, that of granularity, which we now consider .

4.2 .5 Granularity

An existing chaotic behavior may be hidden below a certain threshold impose d

by our interest or by perceptional capabilities . Drinking a beer, we are not bothere d

by the chaotic behavior of the molecules in the liquid . If we shake our piggy bank, we
do not have to predict or to know the movements and collisions of coins inside i n

detail in order to be able to exploit them and achieve the desired and likely effect o f

some coins falling out. Or, modifying the billiard example, the specific exit may

become totally irrelevant, depending on our goal . For instance, if we sieve pebbles . we

can still reliably predict the overall result, namely that pebbles smaller than th e

holes of the sieve will fall through . For this, it does not matter through which hole a n

individual pebble exits . In such cases, the chaotic structure vanishes behind a certai n

granularity or level of observation and reasoning .

5 Conclusions

Throughout this paper, we tried to reveal some of the idealizations an d

assumptions underlying different attempts to model the physical world and to make

predictions about it: commonsense reasoning, physics, and Qualitative Physics . This

was done by confronting them with something both common and "extreme" : chaotic

behavior .

We noticed that commonsense reasoning about the physical world ca n

successfully guide our behavior in a certain- omain . It is not a new issue that this

domain is limited . Indeed, commonsense leads the realizaton that certain events

cannot be predicted, like the case of a ball on a knife . We hypothesize a limited

capability of commonsense in dealing with non-linear phenomena, the reason bein g

that non-linear systems bear the potential for chaotic behavior whereas
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commonsense (almost by definition) can only develop with regard to stable o r
repetitive process. Thus, it is confined to systems that

- may (at least in a certain range) be . sufficiently approximated by linea r
descriptions, o r

- are strongly damped, bounded in time and, thus prevented from unfolding

their intrinsic chaotic dynamics, o r

- are observed only for periods too small to reveal their chaotic behavior ( for us ,

the chaotic cosmos appears to be a most reliable system) .

Assumptions about such boundaries for the development of chaos seem to b e

built into commonsense reasoning, but it is hard for it to determine when they are
exceeded .

The mathematical methods of physics provide means for analyzing non-linea r

systems beyond their "almost linear regions" and beyond time threshold.

Mathematical models (or, rather, those who apply them) tend to assume infinite

domains and are not always able to determine their own boundaries of applicability .

They are suitable for revealing types behaviors for certain abstractions of mode l

systems . Determining whether a real physical instance of an abstraction will exhibi t

the predicted behavior requires experiments, experience, or commonsense guidance .

For QP, this means that it should not be reduced to form a "coarse version" o f

the traditional mathematical methods (replacing real numbers by intervals an d

particular functions by huge classes of functional dependencies) . Such an approac h

can only mirror the unbounded space of non-linear behaviors, including chaos . Since

mathematical methods do not contain a gold-standard by themselves, they are not

very appropriate to serve as a gold-standard for QP . The best result QP could achiev e

on this basis, is finding all and only possible behaviors including those of very od d

chaotic non-linear systems . This would not tell much about physically manifeste d
behaviors. QP has to incorporate at least some of the principles that are captured b y

commonsense reasoning about the physical world as, for instance, boundaries o f

domains and, in particular, of time. Some approaches do so only implicitly ,

somewhere in their algorithms, if at all, rather than being able to represent thes e

assumptions and reason about them . Still, in succeeding to do so, QP systems may
correctly model commonsense reasoning together with its capabilities and its faults .
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In the attempt to deal with systems beyond the domain of commonsense, e .g. with

O
complex artifacts, they have to be able to reason about the appropriateness of specifi c
models and of commonsense assumptions . In particular, there appears to be a need fo r
some sort of meta-level reasoning about global features of systems, such as linearit y
and its implications . At least part of the required skills should be present in th e
theories, or perhaps in the practice, of scientific and engineering domains . Though
being partially set in contrast to commonsense reasoning, they ought to be grounde d
on our basic concepts of the physical world . Analyzing the relation betwee n
commonsense reasoning and the grounding of advanced scientific and engineering
methods, is a challenging task which is crucial for progress in QP . We intend thi s
paper to be a step in this direction .

Acknowledgement s

We thank Dr. Celso Grebogi for making figures 1 and 2 available to us .



1 5

References

[Aubin, J . P . 88 1
Aubin, J .P. .
Qualitative Equations : The Confluence Case .

ni`tersite de Paris-Dauphine, February 1988 .

[Bleher 88 1
Bleher, S ., Grebogi, C ., Ott, E. and Brown, R . .
Fractal boundaries for exit in Hamiltonian dynamics .
Physical Review A38, 930-938 (1988) .

[Brown 76 1
Brown, A .
Qualitative Knowledge, Causal Reasoning, and the Localization of Failure s
M .I .T . AI-TR-362, 197 6

[D'Humieres82 I
. D'Humieres, D. Beasley, M . R., Huberman, B . A. and Libchaber, A .
Chaotic States and routes to chaos in the forced pendulu m
Physical Review A26, 3483-3496, 1982 .

[de Kleer 77 1
de Kleer, J .
Multiple Representations of Knowledge in a Mechanics Problem-Solve r
IJCAI 1977

[de Kleer 79 1
de Kleer, J .
Causal and Teleological Reasoning in Circuit Recognitio n
M.I .T. AI-TR-529, 197 9

[de Kleer 87 1
de Kleer, J .
Qualitative Physics
In: Shapiro, Eckroth ( eds), Encyclopedia of Artificial Intelligence ,
New York 1987

1deKleer-Bobrow 84 1
de Kleer, J . and D . Bobrow
Qualitative Reasoning with Higher-Order Derivative s
AAAI 1984

[de Kleer-Brown 84 J
de Kleer, J . and Brown, J .S .
A Qualitative Physics Based on Confluence s
Artificial Intelligence 24 (1-3), 198 4

[Forbus 80 1
Forbus, K . D .
Spatial and qualitative aspects of reasoning about motion .
AAAI-1980 .

I Forbus 84 1
Forbus, K . D .
Qualitative Process Theory
Artificial Intelligence 24 ( 1-3), 1984



1 7

I Hayes 78 1

O

	

Hayes, P .
The Naive Physics Manifesto
in: Michie, D . (ed .), Expert Systems in the Micro-Electronic Age, Edinburgh, 197 8

[Hayes 85 1
Hayes, P .
Naive Physics 1 : Ontology for Liquids
in : Hobbs, J. and Moore, K . (eds .), Formal Theories of the Commonsense World, Norwood, 198 5

[Hobbs-Moore 85 I
Hobbs, J . and R. Moore (eds . )
Formal Theories of the Commonsense World
Norwood, 1985

[Huberman 83 1
Huberman, B . A .
Mostly Chao s
in: Hanley, H . J . M. Nonlinear Fluid Behavior, North-Holland, 198 3

[Kuipers 86 1
Kuipers, B . .
Qualitative Simulatio n
Artificial Intelligence 29 (3), 198 6

[Kuipers-Chiu 87 1
Kuipers, B . and Chiu, C .
Taming intractable Branching in Qualitative Simulation
IJCAI 198 7

[Lee-Kuipers 88 1
Lee, W .W and Kuirers, B .
Non-Intersection of Trajectories in Qualitative Phase Space : A Global Constraint for Qualitative
Simulation
AAAI 1988

[Sacks 88 1
Sacks, E .
Qualitative Analysis by Piecewise Linear Approximatio n
International Journal for Artificial Intelligence in Engineering 3 (3), 1988

[Shoham 88 1
Shoham, Y .
Chronological Ignorance : Experiments in Nonmonotonic Temporal Reasonin g
Artificial Intelligence 36 (3), 198 8

[Struss 88a 1
Struss, P .
Mathematical Aspects of Qualitative Reasonin g
in: International Journal for Artificial Intelligence in Engineering 3 ( 3) 198 8

[Struss 88b l
.Struss, P .
Mathematical Aspects of Qualitative Reasoning - Part Two : Differential Equation s
Siemens Technical Report INF 2 ARM-7-88 . Munich . 1988

[Struss 88c 1
.Struss, P .
Global Filters for Qualitative Behavior s
AAAI 1988

IYip88 1
Yip, K .M .



I. 3

Generating Global Behaviors Using Deep Knowledge of Local Dynamics .AAAI 1988 .



1 9

Figure Caption s

Fig . 1. :

	

Billiard example: hard disk in box with two holes (after Bleher et al . )

Fig . 2 :

	

a)Plot of 512 by 512 uniformly distributed initial conditions (x0, q0) . b) Enlargement by a

facgtor of 105 of a subregion of Fig . 2a) .

Fig. 3: a) The matching of results from QP with those of mathematics, and physics . b' A change o f

perspective brought about by introducing two "gold-standards" : 1) the real physical world ,

and 2) commonsense reasoning about this reality .

Fig. 4 :

	

Sequence of collisions between a ball and two obstacles .

Fig. 5: Possible dynamical sequences for a ball hitting a wedge-like obstacle . Notice that beside s

the, improbable collision with the point edge of the obstacle, slightly different initia l

conditions lead to vastly different outcomes .

Fig. 6 :

	

Sensitivity to initial conditions in the dynamics of collisions between a ball and an obstacl e

with a curved surface .

Fig. 7 :

	

Sequence of iterates for a ball bouncing off perflectly reflecting walls .
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