
The Qualitative Difference Resolution Rule

Abstract
Consolidation is inferring the behavioral description of
a device by composing the behavioral descriptions of
its components, e.g ., deriving the qualitative differen-
tial equations (QDEs) of adevice from those of its com-
ponents . In previous work, Dormoy and Raiman de-
scribed the qualitative resolution rule, which is a gen-
eral rule for deriving QDEs of combinations of com-
ponents . However, the qualitative resolution rule is
intractable in general . As a step toward understand-
ing tractable qualitative reasoning, I present a new
QDE resolution rule, the qualitative difference resolu-
tion rule, that supports the tractable consolidation of
components in which direction of flow is dependent on
the signs of pressure differences . Pipes and containers
are general types of components that match this rule .
The pressure regulator example also matches this rule .

Introduction
The task of consolidation is to infer the behavioral de-
scription of a device from the behavioral descriptions of
its components [Bylander and Chandrasekaran, 1985 ;
Bylander, 1991] . For example, if the components of
a device are described by qualitative differential equa-
tions (QDEs), then the output of consolidation are the
QDEs for the device . Consolidation differs from quali-
tative simulation and envisioning [de Kleer and Brown,
1984 ; Forbus, 1984 ; Kuipers, 1986] in that consolida-
tion results in the global laws of the device rather than
sequences of device states . These global laws corre-
spond to a kind of device understanding and have the
potential for making qualitative simulation more effi-
cient [Dormoy and Raiman, 1988] .

In previous work, I proposed and implemented a con-
ceptual representation and reasoning method for per-
forming consolidation [Bylander and Chandrasekaran,
1985 ; Bylander, 1991]. This approach is primarily
based on predicating paths within the components
with their conceptual behavior (e.g ., allow, expel,
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pump, move) and inferring the conceptual behavior of
path combinations . The method is tractable if few
components have behavioral modes; however, the rela-
tionship between conceptual behaviors and QDEs was
not specified.

In work on QDEs, Dormoy and Raiman [1988] dis-
covered the qualitative resolution rule (QR rule), which
can be used to derive the QDEs that follow from a
given set of QDEs. Dormoy [1988] showed how the QR
rule can be used to perform consolidation, and he pro-
vided a heuristic method for using the QR rule . Also,
de Kleer [1991] has developed a general method for de-
riving prime implicates from a set of QDEs . However,
these approaches are intractable in general; thus, they
leave open the question of when tractable consolidation
of QDEs can be performed.

As a step toward answering this question, I present
the qualitative difference resolution rule (QDR rule).
In terms of my previous work on consolidation, this
rule corresponds to the inferences of allow, pump, and
move behaviors from allow and expel behaviors. A
more precise characterization is that the QDR rule
supports the tractable consolidation of components in
which direction of flow is dependent on the signs of
pressure differences . In particular, this rule "resolves"
variables corresponding to connections between com-
ponents. The remaining variables in the final set of
QDEs correspond to the external ports of a device and
the internal parameters of the components .

I also show how the QDR rule applies to general
QDE descriptions for pipes and containers so that any
configuration of pipes and containers can be tractably
consolidated . Finally, the QDR rule is applied to the
pressure regulator example.

Before these results are described, I briefly review
Q1 [Williams, 1988], the qualitative algebra used to
describe the QDR rule and the other results. Q1 per-
mits the mixture of qualitative (sign) expressions with
quantitative (real) expressions, e.g ., the signs of pres-
sure differences .

Q1 provides an operator [ ] to convert quantitative
expressions to qualitative ones . If e is a quantitative
expression, then [e] can be [+], [0], or [-], i.e ., positive,
zero, or negative .



Pl P4

Q3 ~~

Figure 1 : TwoThree-Ended Pipes Connected Together

Q1 also provides the sign operators ®, e, ®, and
m with the traditional definitions . For example, [+]
[0] = [+], [+]®[-] = [?] ([?] denotes an unknown sign),
[+] ® [0] = [0], [+] ® [-] = [-], and so on .

I vary from the notation of Ql as follows. P:: denotes
"qualitative equality" ; given two signs sl and s2, sl
s2 iff sl = s2 or sl = [?] or s2 = [?] . Another variation
is that 8x is used instead of d/dt(x) . Finally, to express
conditional behaviors, conditions such as x > 0 are
permitted. If c is a condition then:

[+]

	

if c is true
[c] = {

	

[0]

	

if c is false

A nice property of conditions is that ([cl]®[e])e([c2](9
[e]) = [cl V c2] ® [e] .

Pressure Differences
To understand the QDR rule, it is important to un-
derstand the need for using pressure differences (e .g .,
[Pi - P2]) instead of sign subtraction of pressures (e.g .,
[PI] e [P2]). This also applies to pressure derivatives
as well (e .g ., [8P1 - 8P2] instead of [8P1]e [8P2]) . Us-
ing pressure differences is not a new idea ; however, I
show that this modeling technique has special proper-
ties that can be exploited.
The reason for using signs of pressure differences is

that using the signs of pressures makes it difficult to
infer direction of flow. With [Q] -- [Pi] e [P2], [Q]
cannot be determined if both [Pi] and [P2] have the
same sign . However, [Q] ~-_ [P1 - P2] does not have
this defect .
To show where this difference matters, consider the

situation in Figure 1 in which two three-ended pipes
have two connections between them . In this situation,
it is desirable to infer that the two connected pipes
behave like a single two-ended pipe. QDEs 1-8 model
the relationships among the flows and pressures based
on their signs.
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[Q3] ^ [P31 e [P2] e [P4]
[-Q4]

	

^

	

[P4] e [P2] e [P3]
[Q4] ^ [Q2] ® [Q3]

(6)
(7 )
(8)

QDEs 1-4 model pipe 1, QDEs 5-8 model pipe 2, and
each P; is a pressure, and Q;, a rate of flow, at the
points indicated in Figure 1 . For example, QDE 1
states that if Pl is positive, and P2 and P3 are negative,
then Q1 is positive . 1
One would expect that QDEs 9 and 10 would model

the behavior of the device :

[Q1] ~ [Pl] e [P4]

	

(9)
[Q1] ^ [Q4]

	

(10)
Unfortunately, neither QDE follows from QDEs 1-8 .
For example, assigning [-] to Q1, Q2, and P4 and [+]
to the other variables satisfies QDEs 1-8, but violates
QDE 9 and 10 .
The problem is the inadequacy of using signs of pres-

sures. Consider using the signs of their differences to
model Figure 1, as in QDEs 11-18:

For example, QDE 11 states that if P1 is greater than
P2 and P3, then Q1 is positive .
Now QDEs 19 and 20, the description of the device :

[Q1] ^ [P1 - P4]

	

(19)
[Q1] ^' [Q4]

	

(20)
can be demonstrated.
To do this, I use amodified version of the qualitative

resolution (QR) rule [Dormoy and Raiman, 1988] . If x
is a real-valued variable, and if el and e2 are qualitative
expressions, then the QR rule can be stated as :

[x] ~ el and [-x] -- e2 imply [0] ~ el ® e2

For example, QDE 12 and QDE 15 imply [0] :..
Pi]®[P2-P3]®[P2-P4].

In addition, the following theorem shall be useful :

Theorem 1 (Qualitative Compatibility Rule)
If xl, x2, . . . , x� are real-valued variables, then

'i=
-1

[P2 -

The QDE in the theorem is satisfied no matter how
the variables are ordered. This theorem is so named
because, in the case of pressure variables, it leads to
constraints like QDE 21, which enforce the compatibil-
ity condition of system dynamics [Shearer et al ., 1971]:

[Pi - Pk] ^ [P+ - P.i] ® [Pi - Pk]

	

(21 )

'If negative pressure seems too bizarre, consider the
same QDEs using flow and pressure derivatives .

[Q1] ;-- [PI - P2] ® [P1 - P3] (11 )
[-Q2] ^ [P2 - Pl] ® [P2 - P3] (12 )
[-Q3] ^ [P3 - Pl] ® [P3 - P2] (13 )
[Q1] [Q2] ® [Q3] (14)
[Q2] ^ [P2 - P3] ® [P2 - P4] ( 15)
[Q3] ^ [P3 - P2] ® [P3 - P4] ( 16)

[-Q4] ^ [P4 - P2] ® [P4 - P3] ( 17)
[Q4] [Q2] ® [Q3] (18)

[Q1i _- [Pi] e [P2] e [P3] ( 1 )
[-Q2] ;Zt: [P2] e [Pi] e [P3] (2 )
[-Q3] %., [P3] e [Pi] e [P2] (3)
[Q1] [Q2] ® [Q3] (4)
[Q2] ^ [P2] e [P3] e [P4] (5)



An advantage of QDE 21 over previous qualitative for-
mulations of the compatibility condition [de Kleer and
Brown, 1984 ; Williams, 1984] is that QDE 21 follows
from the Q1 algebra; thus asserting additional QDEs
is not logically necessary.
Now deriving QDE 19 can proceed as follows ("QR

m n" denotes a derivation using the QR rule on QDEs
m and n, and "Th. 1" denotes that the correspond
QDE follows from Theorem 1) :

(26)

	

QR24 25
[Qll ^- [Pi - P31 ® [Pi - P4]

	

(27)

	

QR 11 26
[01~ [P3 - P11®[Pl - P21®[P2-P31

(28)

	

Th. 1
[01~ [P3 - P11®[P2 - P31®[P2-P41

(29)

	

QR22 28
[01^ [P3 - P41®[P4 - P21®[P2-P31

[01~ [P3-Pl]®[P2-P31®[p3-P
Tlj.1

(31)

	

QR29 30
[-Q31 ^ [P3 - P11 ® [P3 - P41

	

(32)

	

QR 13 31
[Q31 ^ [P3 - P11® [P3 - P4]

	

(33)

	

QR 16 31
[01

	

[P3 - Pl ] ® [P3 - P4]

	

(34)

	

QR32 33
[01 ^ [P3-Pll®[Pl-P4]®[P4-P31

(35)

	

Th. 1
[0] ^ [P3 - Pil ® [Pi - P4]

	

(36)

	

QR34 35
[Q1] ;Zt: [PI - P4]

	

(19)

	

QR27 36

[Q41

	

[Pl - P4] can be similarly derived, from which
QDE 20 follows .
Although the QR rule can be used to derive QDEs

19 and 20 from QDEs 11-18, it is clearly tedious to do
so . Fortunately, there is another resolution rule con-
siderably shortens the length of the derivation, and,
more importantly, generalizes the derivation and leads
to a tractable application. Before the qualitative dif-
ference resolution rule (QDR rule) is described, some
useful definitions are provided .

Conditional Difference Systems
Let Y� denote n variables yl, y2, . . ., y, and let X,,,,
denote n2 variables xl,l, x1,2, . . ., xl,n, . . ., xn,l, xn,2,
. . ., xnn . I shall say that the variables Yn are depen-
dent on the differences Xnn if-

[Y,] ^®j-1[xij],

	

1 < i < n
[xik] ^ [xij] ® [xjkl,

	

1 < i, j, k _< n
xii=0, 1<i<n

The idea is that each yi is a "flow" variable and each xij
is a "pressure difference" variable . [xik] I'-- [xij] ® [xjkl
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and xii = 0 are "compatibility" constraints. For exam-
ple, QDEs 11-13 satisfy this definition in the following
way :

yl = Q1
y2= -Q2 x2=P2
y3= -Q3

Let Cnn denote n2 conditions (refer to the intro-
duction for a definition of conditions). I shall say that
the variables Y� are conditionally dependent on the
differences Xnn by conditions Cnn if :

[yi] ~ ®;-1([Cij10 [xij]),
[xik] ^ [xij] ® [xjk],
xii = 0,
[Cij] '^`'' [CA,

I shall call Yn , Xnn , and Cnn a conditional difference
system .
This extends the idea of dependence on differences so

that a flow can be conditionally dependent on pressure
differences . For example, QDEs 11-13, 15-17 form the
following conditional difference system :

yl = Q1
y2 = -Q2
y3 = -Q3
y4=Q2
y5=Q3

xl-Pl

	

;F T T F F F\
x2 -P2

	

: T F T F F F
x3- P3

	

; T T F F F F
x4 -_ P2

	

; F F F F T Tx5 -P3

	

' F F F T F T
y6=-Q4 x6=P4

	

,F' F F T T FJ

Cs,s =

where T and F stand for true and false, respectively .
For instance, QDE 11 can be recovered from this in-
formation as follows:

[Q11 = [yll
([1,11 ® [x1,11) ® ([1,21 ® [x1,2])®
([C1,31 ® [x1,3]) ® ([1,41 ® [x1,4])®
([C1,5] ® [x1,51) ® ([C1,61® [x1,61)
([F]®[Pl-Pj])®([TJ®[Pl-P2])®
([7'1®[Pl-P3])®([F]®[Pl-P4])®
([F]®[Pl-P5])®([F]®[Pl-P6])
([o]®[Pl-Pl])®([+l®[Pl-P21)®
([+] ®[Pl-P31)®([ol®[P1-P41)®
([o1®[Pl - P51)®([ol®[Pl-P61)
([+]®[Pl-P21)®([+]®[Pl-P31)
[P1 - P21®[Pi - P31

xl=P1 xij=xi-xj

x3 = P3

1<i<n
1<i,j,k<n
1<i<n
1<i,j<n

Two conditional difference systems can be merged
into a single conditional difference system by adding
compatibility constraints and lots of F conditions .
Thus, if each component in a device is described as
a conditional difference system, then the combination
of the components with additional compatibility con-
straints is also a conditional difference system. Often,
the compatibility constraints are theorems of qualita-
tive algebra, such as QDE 21 .

Note that if two components are connected, then
their flows (and flow derivatives) at the connection
have opposite signs (assuming some reasonable con-
vention, e.g ., flow inward is positive) and their pres-
sures (and pressure derivatives) at the connection are

[01 [P2 - Pl]®[P2 - P31®[P2-P41
(22) QR 12 15

[0] [P2-P11 ®[Pl - P31 ®[P3-P21
(23) Th. 1

[0] [P2-Pil®[Pi-Pal®[P2-P41
(24) QR 22 23

[0] [P2 - P11®[Pi - P41®[P4-P21
(25) Th. 1

[0] [P2-Pil®[Pl - P31®[Pl-P41



equal. In the example conditional difference system
above, [y2] = [-y4] and x2 = x4 .

The QDR Rule
Finally, the QDR rule can be specified .

Theorem 2 (Qualitative Difference Resolution Rule)
If Yn+2 is conditionally dependent on Xn+2,n+2 by
Cn+2,n+2r if [yn+1] ^ [-yn+2]r and if xn+l,n+2 =
xn+2,n+1 = 0, then Yn is conditionally dependent on
Xnn by Cnn, where C'nn is determined from Cn+2,n+2
by :

Cij

	

=

	

Cij V ((Ci,n+l V Ci,n+2) n (Cn+l,j V Cn+2,j))
The appendix contains the proof of the QDR rule .

If the requirements of the QDR rule are satisfied, then
the variables yn+1, yn+2, and, for all i, xn+l,i, xi,n+l,
xn+2,i, and xi,n+2 can be resolved/eliminated from the
QDEs as long as the conditions do not refer to these
variables. For example, the QDR rule can be ap-
plied twice to QDEs 11-13, 15-17. In one instance,

[y2] = [-y4] and x2,4 = x4,2 = 0 . In the second in-
stance, [y3] = [- y5] and x3,5 = x5,3 = 0. The succes-
sive results of the two applications to the Cs,s
in the previous column are as follows:

matrix

In the first application, the second and fourth
columns and rows are resolved, which is indicated by
the /'s. The conditions in the remaining 4 x 4 matrix
are all T, e.g ., c'1,5 = C1 ,5V ((C1,2 V C1,4)A (C2,5 V C4,5)) =
F V ((T V F) n (F V T)) = T.

In the second application, the third and fifth
columns and rows are resolved, leaving only [Q1]
[Pi - Pl ] ® [Pi - P4] = [Pi - P4] and [-Q4]
[P4-Pl]®[P4-P4] = [P4-Pl] . QDE 20, [Q1] ^ [Q4],
follows.

In general, the size of conditions derived using the
QDR rule can grow combinatorially . However, if all the
conditions are either T or F, then all the conditions
derived using the QDR rule will also be either T or F .
This leads to the following theorem:
Theorem 3 (QDR Tractability)
If Yn is conditionally dependent on Xnn by Cnn , if
each condition in Cnn is either T or F, and if there
are m two-element disjoint sets {i, j), 1 <_ i, j <_ n,
indicating equalities of the form [yi] = [-yj] and
xij = xji = 0, then there is an O(mn2) algorithm for
eliminating all the variables that share a subscript with
any of the m sets .
Using the QDR rule, there are O(n2) updates to be
performed for each pair of equalities . Because each
condition is either T or F, the size of the conditions
do not increase . m pairs of equalities imply O(mn2)
time .
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ports:
variables :

constraints :

port 1, . . ., portn
Q1, Pi, - . . , Qn, Pn

[Vi] ;zt~ ®;=1[8Pi -8Pj],

Figure 2 : Qualitative Model for Pipes

Theorem 4 (Qualitative Continuity Rule)
If Yn is conditionally dependent on Xnn , then

®i1[yi] '.r 101-

<

	

1i<n
1<i<n

The Qualitative Continuity Rule
Before describing examples of using the QDR rule, it is
interesting that QDE 20, the qualitative conservation
law for the configuration in Figure 1, can be derived
without using QDEs 14 and 18, the qualitative conser-
vation laws for the components . It turns out that QDE
14 can be derived from QDEs 11-13, and QDE 18 can
be derived from QDEs 15-17. There is a general rule
that underlies these derivations :

For example, QDEs 11-13 form a conditional differ-
ence system as follows:

yl = Q1
y2 = -Q2

Xi = Pi
x2=P2

x3 = P3y3 = -Q3
xij = Xi - xj

F T T
C3,3 =

	

T

	

F

	

T
(T T F

From the qualitative continuity (QC) rule, QDE 37
follows:

[Q1] ® [-Q2] ® [-Q3]

	

[0]

	

(37)

which is equivalent to QDE 14, [Q1] $4-1 [Q2] ® [Q3] .
Thus, a conditional difference system of flows and

pressure differences implies a qualitative version of the
continuity condition of system dynamics [Shearer et
al ., 1971]. Similar to the qualitative compatibility rule,
an advantage of the QC rule over previous qualitative
formulations of the continuity condition We Kleer and
Brown, 1984 ; Williams, 1984] is that the QC rule fol-
lows from a conditional difference system and is not an
additional "law" that must be added to constrain the
system.

Pipes
Figure 2 is a qualitative model for pipes with n ports,
n >_ 1. Qi is the rate of flow into the pipe through
porti ; Qi is negative if flow is outward. Pi is the pres-
sure at porti . Semantics of connection are : Each port
can be connected to at most one other port . If porti is
connected to portj, then Qi = -Qj and Pi = Pi .

Figure 2 defines two sets of QDEs. The first set
specifies n QDEs, relating each Qi to the pressures.
The direction of flow for any porti corresponds to the
"sum" of pressure differences (the sign summation of
Pi minus other pressures) . The second set specifies
similar QDEs for the first derivatives .

IT / T / T T T / / / / T

T / T / T T / / / / / /

T / T / T T / / / / / /
~T / T / T T T / / / / T



ports :

	

port,, . . .,port,,
variables:

	

Q1, Pi . . . . , Q� , P�, A, P
constraints :

	

[Qi] . :̂ [Pi - P],

	

1 < i _< n
[-8A] ,.®

	

1[P - Pi]
[aQi] Z:~ [api - aP],
[-a2A] ^®°1[aP - aPi]
[P]^ [A]

1<i<n

Figure 3 : Qualitative Model for Containers

Theorem 5 (Pipe Continuity Laws)
For

	

a

	

pipe

	

with

	

n

	

ports,

	

®

	

1 [Qi]

	

. ..

	

[0]

	

and
(

	

1[aQi] .^ [0] .

The QC rule applies to the QDEs given in Figure 2 .
Theorem 6 (Pipe Consolidation Law)
If a pipe with m ports has k connections to a pipe with
n ports (k < m and k < n), then a pipe with m+n-2k
ports describes their combined behavior.
Just as the QDR rule was applied twice for the two
connections in Figure 1, it can be applied k times for
k connections to obtain the QDEs relating flows and
pressures at the external ports and another k times to
obtain the QDEs relating flow and pressure derivatives.

Consequently, the consolidation of any configuration
of pipes can be done very efficiently . Qualitative con-
servation laws can also be efficiently inferred .

Figure 3 is a qualitative model for a container with n
ports, n >_ 1. In addition to the ports' variables, A
is the amount in the container, and P is the pressure
inside the container.
The constraints as shown in Figure 3 are: (1) The

direction of flow at any port is the sign of the differ-
ence between the port's pressure and the container's
pressure . (2) Change in the container's amount de-
pends on the qualitative sum of the differences be-
tween the container's pressure andthe ports' pressures .
For example, the container's amount will increase if
the container's pressure is lower than the ports' pres-
sures. (3,4) The flow and pressure derivatives and the
amount's second derivative have similar constraints .
(5,6) The container's pressure depends on the con-
tainer's amount . In particular, pressure increases or
decreases as the amount increases or decreases.

Theorem 7 (Container Continuity Laws)
For a container with n ports, ®

	

1[Qi]

	

.. [aA] and
®f 1 [aQi] __ [a'-A)

Containers

The QC rule directly applies to the containers QDEs.
The QDR rule can clearly be applied to connected

pipes and containers . However, two connected contain-
ers cannot be described as a single container because
the consolidated QDEs will have two amount and two
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pressure variables associated with the two containers .
The QDRrule eliminates the variables of the connected
ports, but does not eliminate "internal" variables . Of
course, [P] .^: [A] and [8P] ;:t~ [aA] should be kept in
any consolidated description .
The container model does not place any restrictions

on the ranges of pressures and amounts. To model
containers with lower limits of zero for pressures and
amounts, one can simply require A >_ 0 and P >_ 0 .
To model acontainer with maximumcapacity Amax,

[aP] ;:z~ [8A] can be replaced with [A < Amax]® [8P] .:
[8A] . If the container is full, then [8A] = [0] and 8P
is no longer constrained by this QDE. Instead, 8P
will be governed by the -tVA QDE of the container
model . Since a2A must also be zero, the values of both
P and aP must lie somewhere between the values at
the ports .

The Pressure Regulator
In this section, I show how our qualitative models and
the QDR rule can be used to consolidate the pressure
regulator example [de Kleer and Brown, 1984] . Figure
4 shows the pressure regulator on the left and its di-
vision into four components (called a, A, y, and b) on
the right .

a, y, and b are pipes with 2, 3, and 2 ports, respec-
tively. /3 is a valve, which is modeled as a component
with three ports, one of which is "blocked ." Although
no flow can occur through /3's third port, it still is a
point of interaction, in this case, with the pipe b . In
particular, the pressure from b will be the "pressure"
to close the valve's position .
Our QDE description of the valve is in Figure 5. The

first QDE specifies that, if the valve is open (V > 0),
then the direction of flow Q1 corresponds to the sign
of the pressure difference Pl - P2; else Q1 is zero . The
second QDE is a similar constraint for Q2 . The third
QDE makes port3 the blocked port .
The aQl constraint is somewhat complex because it

makes no assumptions about direction of flow or the
position of the valve. There are two factors that influ-
ence 8Q1 .

(1) If the valve is open (V > 0), the difference be-
tween pressure derivatives will be an influence, e.g ., an
increasing Pl and a decreasing P2 will tend to make
Q1 increase .

(2) If the valve is open, then an increas-
ing/decreasing position of the valve will tend to in-
crease/decrease the magnitude of the change of rate of
flow, e.g ., if the valve position is decreasing (the valve
is closing) and the direction of flow (the pressure dif-
ference) is negative, then the flow tends to go towards
zero, i.e ., the flow tends to increase .

If one factor is positive and the other negative, then
it is unclear whether flow is increasing or decreasing .
OQ2 has a similar constraint .
The last constraint models the relationship between

the position of the valve V and the pressure at the
blocked port P3 . It specifies that the direction of



ports:
variables:

constraints :

Figure 5:
Valve

change of the valve's position will be opposite of the di-
rection of change of the pressure at port3 as long as the
valve is not completely closed (V > 0) and not com-
pletely open (V < V....) . V... is a positive constant
representing the maximum position of the valve.

Using the pipe consolidation law, y and b can be
consolidated into a three-ended pipe with ports porti,
port2, and porn (superscripts indicate the original
component) .
Although A is not a pipe, its QDEs relating flow

and pressure along with those of the pipe
conditional difference system as follows:

Figure 4 : The Pressure Regulator and Its Components

port 1, port2, port3
Q1, P1, Q2, P2, Q3, P3, V
[Q1]

	

[V > 0] ® [P1 - P2J
[Q21 ^ [V > 010 [P2 - P11
[Q31 ^ [01
[8Q1] ~ ([V > 010 [OP1 - aP21)®

([V>0]®[aV]®[P1-P21)
[0Q2J ~ ([V > o] ® [aP2 - apll)®

0] 0
<a[[aV] Pe [v(> oVv~®]®[-ap3J

Qualitative Model for Pressure Regulator

a form a

The connection between a and ,Q implies y2 = -y3 and
x2 = x3, so the QDR rule and a few simplifications lead
to QDEs 38 and 39:

[Qil ':Z~ (V'6>0l®[Pi -P2)
[Q2J "̂ [Vo > 010 [P2'6 - P101

(38)

(39)
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_ _ _ _ _ _ _
1

	

b

	

I
1
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the QC rule, for that matter) . Both the aQa and aQ2
QDEs have an extra term (their dependence on aV)
that does not fit into the QDR rule . In such cases,
explicit compatibility constraints must be added, as in
QDEs 40-44:

[aQ011

	

[V > 0] (D[xp,21

	

(40)

[aQ21 ^ [V > 010 [x,1]

	

(41)2

[x1,21

	

[aPp -,9P2'] ® ([aV'3] ®
[PQ

- PZ]) (42)

[x .11

	

;zt~

	

[19P2" - OPP] ®QW] ® [P2# - Pp]) (43)

[01

	

~

	

IXij,21® [x2,11

	

(44)

Now to consolidate QDEs 40-44 with those of a,
additional compatibility constraints are necessary, re-
sulting in the following conditional difference system :

[ax; _ axj],
[xiA ;Z:~

	

[ax; _ axi]®
([aV,I] (9 [xi - xj]),

	

otherwise

[xik] -- [xij] ® [xfkl,

	

1 < i, j, k < 4

1<i,j<2

y2 = -ys and x2,3 = x3,2 = 0, so applying the QDR
rule results in QDEs 45-49:

[Ni] ^ [V > 0] ® IXi21

	

(45)

P4261

	

IV > 01 (9 IX2,,,611

	

(46)

[xiil ^ [aPi - 9P21® &V"] ® [Pi - PZ]) (47)

[xz~J ^ [aP2 - P10']
® ([aV'] ® [PZ - Pi]) (48)

101 IX71,2 2,1

	

(49)

Of course, [19V#] ~. (V# > 0 n V,6 < V,nazl ® [-aP3l
should be retained .

Similar reasoning can be used to consolidate a/j with
yb. The end result is a behavioral description with two
ports, porn and portZ, and the following QDEs:

y1 =aQi x1 = Pi T F F
y2=aQ2 x2 = P2

C4'4

(F
T F F F

ys = Vi' x3 = PA F F F VP> 0
y4=aQ2 X4 = P2 F F V ,6 >0 F

y1=Qi
x1=P1 F T F F

y2=Qi
y3=Q2

x2=P2
x3 = P15 C4,4

T F F F
=

y4=Q2 x4 = P2
I F F F V >0
`F F V#>0 F

[Qil ~ [V# > of ® [Pi - Pzl (50)
Of course, [Qa] & [0] should be retained in ap's be-

[Qz] ~ [V'6 > of ® Ipi - Pil (51)
havioral description.

However, the constraints on flow and pressure [Oil [V0 > of ® [x1,21 (52)

derivatives of ,Q do not conform to the QDR rule (or [aQ2l N [V' > 01 0 [x2,11 (53)



[x1,21 ;; [aPi - 8P21® ([aV'] 0 [Pi - P2 ]) (54)
[x2,11

	

;~:5

	

[aP2 -,9P,'] ® ([aV'] 0 [P2 - Pi]) (55)
[01 ti [x1,21® [x2,11

	

(56)
[W]

	

zt~

	

[VA > 0 n V6 < Vmaz] ® [-aP3]

	

(57)

The presence of aP3 in the last QDE is a problem .
One possibility is to assume that it is equal to aP2,
which is implicitly done in de Kleer and Brown [1984] .
It can be shown, though, that :

[aP31 ;~-- ([V" > 01 0 [19P,"]) ® [aP2]

	

(58)

This, however, requires additional reasoning beyond
the QDR rule .

Remarks
The QDR rule can be used to perform tractable consol-
idation of components for which the direction of flow is
dependent on the signs of pressure differences . In this
paper, I have shown that pipes and containers can be
modeled to fit the QDR rule . With the exception of
one QDE, consolidation of the pressure regulator can
also be accomplished with the QDR rule . I believe that
the QDRrule explains why many examples in the qual-
itative reasoning literature can be efficiently processed .
To the extent that the components ill these examples
are pipe-like or container-like, efficient reasoning can
be guaranteed .
One limitation of the QDR rule is that no variables

in the conditions are eliminated . The simplest example
of this limitation is a one-way valve, which would have
a QDE like [Q11 s.. [Pi > P2] ® [Pi - P2] . If a one-way
valve is connected to three-ended pipes, there is no easy
solution to eliminating Pl and P2 in the condition.
Another limitation is that the QDR rule results in

loss of information . For example, if there is one connec-
tion between two three-ended pipes, the consolidated
QDEs do not enforce the constraint that flow from one
pipe to the other can only be in one direction. In
this sense, the QDR rule produces abstractions of con-
nected components, and not equivalences.
The final, perhaps most important, limitation is that

the QDEs of a component must have the appropriate
form, i.e ., be aconditional difference system. Whether
our approach can be extended to additional types of
components (e.g ., pumps, transformers) and phenom-
ena (e.g ., momentum, heights), and, if not, what ad-
ditional resolution rules are needed, are the subject of
further investigation .

Proof of the QDR Rule
The QDEs for a conditional difference system include :

[yn+ 11 ^®j=1 ([Cn+11] ® [xn+l,jl)

[yn+21 ^~ ®j ±1 ([Cn+2,j] ® [xn+2,jl)

Because xn+l,n+2 = 0 and [xn+l,j] .': [xn+l,n+2l
[xn+2,j] for all j between 1 and n + 2, it follows that
[xn+lal ^ [xn+2,j] for all j between 1 and n+2. With

23 0

xn+2,n+1 = 0, xn+l,n+l = 0, and xn+2,n+2 = 0, the
following QDEs can be derived:

[yn+11 N ® -1([Cn+1 .7] ® [xn+l,jl)
[yn+21 ^ ®j=1([ Cn+2,Jl (9 [xn+l,j])

Because [yn+11 ;'~ [-yn+21, the QR rule can be applied,
leading to :

[ol ^ ®j=1([Cn+l,j V Cn+2,jl 0 [xn+l,jl)

Consider xn+l,l . xl i1 = 0 and [x1,1] .^: [xl,n+ll
[xn+1,1] implies [xn+l,ll = [-xl,n+ll, SO :

[Cn +l , l V Cn+2 , 11 ® [xl,n+ll

®j=2([Cn+1,j V Cn+2,7] ® [xn+l,Jl)

Assume that cn+1,1 V Cn+2,1 is true, i .e . :

Because

[xl,n+ll ^ ®j=2([Cn+l,j V Cn+2J] ® [xn+l,j])

[xl,n+ll N [x1 , 21 ® [x2,n+ll :

[Cn+1,2 V Cn+2,21 ® [xl,n+ll N
([Cn+1,2 V Cn+2,21 ® [x1,21)®
([Cn+1,2 V Cn+2,21 ® [x2,n+ll)

Since [x2,n+ll ;Z~ [-xn+1,21, the QR rule can be applied:

[xl,n+ll ® ([Cn+1,2 V Cn+2,21 ® [xl,n+ll)
([Cn+1,2 V Cn+2,21 ® [x1,21)®
®j=3([Cn+l,j V Cn+2,j] ® [xn+l,j])

Note that [xl,n+ll ® ((CI ® [xl,n+11) = [xl,n+ll for any
condition c. Further note that the QR rule can be sim-
ilarly applied for the remaining j from 3 to n, resulting
in :

[xl,n+ll '. . ®%2[C-+1,j V Cn+2,jl ® [x111)
Now consider the QDE for yl :

[yll ^' ®j +1 ([Ci,jl ® [xl,jl)

Because [xl,n+1] _ [xl,n+21, it follows that :

[Y11

	

--

	

([Cl,n+l V Cl,n+21 ® [x1,n+11)®
®~=1([Cl,1] ® [xl,j])

Recall that cij = Cji, s0 Cn+l , l V Cn+2,1 = Cl,n+1 V
Cl,n+2 . Hence, xl,n+l is a factor only if [cn+1,1V Cn+2,11
is true, so the QDE for xl,n+l derived above under the
assumption that [Cn+ l,l V Cn+ 2,1] is true can be used to
substitute for [xl,n+ll, leading to :

[yll ^

	

([Cl,n+1 V Cl,n+21®
(®j=2[Cn+l,j V Cn+2,1] ® [x1,11))

®®;=1([Cl,jl ® Ix l,jl )

which after a few simplifications becomes:

[yl] ^ ®j=1([Cl,j V ((Cl,n+l V(Cn+l,j Cn+2j)® [x11)

which is the same as :

[yl] ^ ®j=1([01,1] ® [xl,j])
The other QDEs for y2 to yn can be similarly de-

rived. c;j = cjl ; follows from cij = cji . QED .
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