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Abstract

A theory of qualitative kinematics is required for qualitative reason-
ing about the motion of objects in space . Such reasoning is important
for many physical problem-solving tasks, such as design or robot plan
ning. The practicality of earlier work has been limited by the complexity
and non-compositionality of computing with configuration space con-
straints . This paper describes a much more efficient and compositional
way for qualitative kinematic prediction .

The method is based on a combination of earlier work on kinematic
topology ( [4]), qualitative mechanism kinematics ( [3]) and subsump-
tion detection . We show how each subtheory allows certain kinematic
predictions to be made in a largely qualitative manner based on different
object models. A complete qualitative kinematic analysis is obtained
by combination of results obtained in the different models . This exam-
ple shows how using several models of the same objects in parallel can
yield significantly more powerful and efficient methodologies than were
previously possible .

Area: Qualitative Physics Subarea : Spatial Reasoning
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1 Introduction

There is much interest in spatial reasoning about the behavior of systems of

rigid physical objects ( [1, 3, 10, 11, 15]) . Qualitative reasoning about motion of

physical objects is difficult because of two aspects. First, it requires reasoning

about kinematic interactions of often complexobject shapes, which are difficult

to formalize as logical rules . Second, not all interactions are local: moving a

piano is difficult because it can be constrained by two distinct objects at the

same time . It is promising to base logical spatial reasoning not on elementary

shape descriptions, but on an intermediate representation which is computed

using numerical methods . In earlier work, we have developed the concept of

place vocabularies as such an intermediate representation ( [3, 6]) .

It has been realized by many researchers ( [3, 10, 11]) that configuration

space is a useful formalization of kinematic behavior. In configuration space,

geometric constraints are transformed into constraints on the motion of a

point . Each possible contact point between objects defines a constraint on

their motion. Even for simple polygonal objects, the constraints are nonlinear

curves in configuration space. The regions of legal motions are traditionally

computed by explicitly finding the envelope of the set of constraint curves

( [12, 14]) . This technique is appealing because of its mathematical simplicity,

but it turns the original problem of kinematic analysis into an instance of the

more general problem of finding a region structure of algebraic curves . Besides

the computational complexity, another problem is that the computation is not

local: any prediction requires analyzing the complete configuration space, and

complete information about all object shapes .

In many domains, the computational complexity and the assumption of

complete information make this approach impractical. Consider for the ex-
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at some stage in the simulation. Furthermore, it is much more efficient than

known methods of computing with configuration spaces for kinematic analysis .

The key idea of our method is to represent the shapes of physical objects

by different models, each corresponding to a different view on the physical

reality it represents . A region-based object model is used to compute the

topology of the configuration space ( [4]) . The qualitative geometry of the

configuration space region boundaries is obtained using boundary-based object

models which define possible contacts . Both sets of predictions are combined

with subsumption models into a place vocabulary, a complete representation

of qualitative kinematics ( [3]) . The process avoids entirely any computation

with algebraic curves and the associated computational complexity problems .

Furthermore, local predictions can be made using only the information that

is actually relevant to the prediction . This allows reasoning with incomplete

detail information about object shapes .

We focussed our research on two different problems types: the analysis of

higher kinematic pairs with a total of two degrees of freedom, and the mo-

tion of an polygon in two-dimensional space with three degrees of freedom.

The first example shows that our method is capable of reasoning about com-

plex interactions, while the second shows how to deal with high-dimensional

configuration spaces in an efficient manner. Our implementation handles all

examples of problems in these classes, and the central aspects of the theory

are general beyond these example domains. For example, it will be possible

to compute the kinematics of objects with arbitrary shapes by providing the

proper extensions to geometric and subsumption models. On the other hand,

the extension to three dimensional objects has not been tackled yet .
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2

	

Models for Kinematic Prediction

A model of a physical objects is a representation which characterizes its prop-

erties . In our system, important properties of the objects and their interaction

are captured in three different symbolic models. In this section, we describe

each model in terms of the object properties it represents, and the kinematic

predictions that follow from these properties .

The Topological Model

	

If the topology of a space is a graph of adjacent

regions, the topology of a shape is a graph of adjacent shape primitives . In our

representation, we distinguish pieces and cavities as shape primitives ( [4]) . A

piece is centered on a convex vertex and contains the area of the object behind

this vertex and its adjacent boundary edges. A cavity is centered around a

concave vertex and contains the empty space ouside of this vertex and its

adjacent boundary edges . A cavity also exists around the point where an

edge comes closest to the object's center of rotation ( [4]) . The topology of an

arbitrary polygon shape can be represented as a circular sequence of pieces and

cavities representing the primitives around the object . The concepts of pieces

and cavities can be generalized to sections of convex and concave curvatures,

as described in ( [4]) . A sample decompsition of a polygon is shown on the

left in Figure 2 .

The kinematic topology of the interaction of a pair of objects is given by

the topology graph, shown for example on the right in Figure 2 . Nodes in the

topology graph are either ( [4]) :

obstacles, representing the region of illegal configurations corresponding

to an overlap between two pieces .

bubbles, representing the region where a piece falls in the legal region
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represented by a cavity .

Fivure '? : .-I topological object model with pieces (Pig) and cavities (Cij) . Each

combination ofprimitives creates a bubble (B) or obstacle (F0) in the topology

graph.

infinite obstacles, representing the constraint imposed by the boundary

at the bottom of a sequence of cavities .

Adjacencies in the topology graph are given by the adjacencies of primitives

on the objects themselves : adjacent shape features generate adjacent contact

configurations . In addition, all obstacles have direct connections to those

generated by the closest primitives on each of the objects . The initial topology

graph is laid out on a two-dimensional grid in which each dimension represents

a march around one of the objects . Because each object boundary is closed,

the graph is circular in both dimensions and forms in fact a closed surface .

A remarkable fact about the initial topology graph is that because it makes

no assumptions about directions of motion, it is independent of the actual de-
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grees of freedom of a pair of objects. The raze topology graph, which describes

the actual topology of a configuration space, is obtained by embedding the

intial topology graph in the space as follows .

When motion is unrestricted, there are three degrees of freedom between

two objects (7 1 and 02, thus a three-dimensional configuration space. The

topology graph then describes the topology of the surface of the three-dimensional

configuration space obstacle that 01 poses to the motion of 02. The raw

topology graph of the full three-dimensional configuration space is obtained

by linking all nodes of the initial topology graph to a single bubble representing

the exterior configuration space.

When motion is restricted, the actual configuration space is only a subspace

and parts of the topology graph become inaccessible . For example, when

both objects can only rotate, some of the links and obstacles disarpear and

some of the bubbles are divided into two disjoint pieces . The modifications to

the topology graph which reflect this are determined by distance comparisons

taking into account the freedom of motion, as described in [4] . Finally, we

note that the embedded raw topology graph is often drastically modified by

the existance of subsumptions . These modifications are discussed in section 3 .

The Geometric Model

	

The geometry of a polygon is given by the edges

of its boundary, so the geometric model describes the object as a sequence of

boundary edges and vertices with precise coordinates. It is the metric diagram

( [6]) of our system. Additionally, all parameters relating to the freedom of

motion are precisely defined. For example, in the case of two rotating objects,

the distance between the centers of rotation is part of the geometric object

model.

The geometric model defines the different possible contacts which are pos-
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sible between objects . Two contact configurations are qualitatively equal if

they involve the same boundary elements, the qualitative directions of motion

( [3]) allowed are the same, and it is possible to pass from one to the other

by traversing only qualitatively equal configurations . The geometric model

also serves to compute properties of particular object contacts . In contrast to

the kinematic topology, these predictions are not independent of the actual

freedom of motion . As examples, we distinguish the analysis for unrestricted

motion of a polygon among obstacles (3DOF) and that for two objects with

rotational freedom only (2DOF) .

Three important types of kinematic predictions are made based on the

geometric model : possible contacts, local contact adjacencies, and qualitative

directions of motion . The set of possible contacts between a pair of polygons is

the set of combinations of a boundary elements of one object with a boundary

element of the other object . When both boundary elements are vertices, we

call such a configuration a touchpoint, and use the same term to refer to the

curve corresponding to this contact in the 3DOF case . A contact between a

vertex and an edge defines an edge contact, and a contact between two edges is
called a local subsumptiorr--Finding the potential contacts is a straightforward

combination of the sets of boundary elements .

Every touchpoint and every local subsumption defines an adjacency be-

tween four different edge contacts (Figure 3) . In any given configuration, only

two are adjacent to a touchpoint or a local subsumption . For a touchpoint, the

adjacent pairs are computed by comparisons of the angles between edges that

meet at the vertices . For a local subsumption, the distinction amounts to a
comparison of relative lengths of object edges. In the case of 2DOF, only one

pair is possible, which is chosen based on consideration of the object's relative

attachments .
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Figure 3: Touchpoints (left) and local subsumptions (right) define local adja-

cencies between object contacts .

The essential feature of kinematics is that a particular contact configuration

between objects restricts the possible relative object motions . In order to be

useful for predicting behavior, every contact must be broken up according to

the relative qualitative motions it allows . This is the third class of predictions

in the geometric model.

Qualitative motion is represented using qualitative vectors, as described

in [3] . A qualitative motion vector consists of the signs of the configuration

space parameters. For two rotating objects, it is a pair of directions of rotation

(b¢, b0). For an polygon moving in space, it is a triple (bx, by, 60) giving the

direction of motion of the object center in a Euclidean coordinate system, and

the direction of rotation around the center .

In the 2DOF case, a contact fixes a particular qualitative motion vector

such that only motion along this vector or its inverse can maintain the contact

( [3]) . In the 3DOF case, a similar relation holds in touchpoints and subsump-
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motion are defined in the text .

±[6x] ± [6y] - [60] = 0

[OY] 160.1 - 10-1160y] - [60] = 0

Figure 4: The two dead point contact configurations . Qualitative directions of

tions, which leave the object with one degree of freedom. For simple contacts,

it is possible to state a confluence

where [x] refers to the sign of x . Contact configurations with different possibl,

directions of motion are separated by configurations where one of the element,

of the consistent motion vector becomes zero, or respectively the confluence

changes value. We call such configurations dead points ( [3]) . There are two

types of such dead point configurations, shown in Figure 4. 'Ale first define a

double representation for the orientation angle 0 of the moving object as either

a qualitative vector ([Bs], [0Y]) or as an angle [0] . The following confluence

relates the two notations:

Depending on which region the contact point falls in (see Figure 4), the
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following confluences hold in the contact :

Type 1 :

	

10-116X1 + [w] [by] - [P] [a©] = 0

Type 2 :

	

[ay] [bx] + [a=] [by] + [0 - a + 7r/2] [60] = 0

Note the remarkable fact that the dead point configurations are independent of

the choice of (x,y) coordinate system! It is thus possible to use the same place

vocabulary with different coordinate systems without extensive recomputation,

an important aspect in problem solving .

For subsumptions and touchpoints, all confluences which characterize the

possible directions of motion for both contacts hold simultaneously . Since

the directions of motion are always unambiguously defined, we can use the

qualitative Gauss rule ( [2]) to obtain confluences with only two elements .

These confluences define the qualitative directions of motion consistent with

maintaining both contacts .

Subsumption Model

	

Subsumption models are very different from the topo-

logical or geometric models . They are not defined for individual objects, but

only for pairs of objects. Furthermore, they do not characterize local elements,

but the characteristics of a particular subsumption configuration of the two

objects, such as shown on the right in Figure 5 .

Every pair and triple of possible contacts defines a potential subsumption

configuration . The actually existing configurations are found by applying sev-

eral filters to reduce the number of candidates, and the computing the exact

configuration by algebraic analysis . Using algebraic transformations ( [9]),

the system of nonlinear equations characterizing the intersection can be trans-

formed into a single polynomial whose roots correspond to solutions of the
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V1 114 RIO
V2 IN R10

v3 IN R17

v4 IN R17
v5 IN R3

v5 IN R2
v7 I :4 R2
V 8 IN R1

V9 I:4 R10
v10 I?4 RIO

Figure 5: A subsumption is characterized by several simultaneous unconnected

points of contact (right) . The subsumption model, which exists whenever such

a configuration is possible, gives a table of associations between topological

elements which holds in the subsumption configuration.

system of equations . Depending on the degrees of freedom, the polynomial

has 1 or 2 variables, corresponding to a point and a curve in configuration

space, respectively . Subsumption models could also be obtained by imagery

techniques, a promising solution when shapes are not precisely represented .

Besides establishing an adjacency between particular contact configura-

tions, a subsumption also has profound effects on the kinematic topology of

the device. It requires creating a direct adjacency link between two topological

objects which may be in very different portions of the graph. Depending on

the embedding of the graph, such a link may be inconsistent . We therefore

require that any subsumption link must pass through a sequence of elements

of the topological graph. These elements are identified in the subsumption

model as correspondences between regions defined by cavities on one object,



and shape primitives of the other object . This association is shown on the

right in Figure 5 .

3

	

Combining Predictions
Local predictions about possible contact relationships are of little use for pre-

dicting dynamics unless the adjacencies between them are also known . Fur-

thermore, many potential contacts are in reality impossible because they in-

terfere with other contacts . It is therefore necessary to integrate the local

predictions in a global structure, in our case the kinematic topology graph.

As a result of this integration, we obtain a full place vocabulary ( [3, 6])

representing the kinematics of the device .

Integrating Global Subsumptions with Topology

	

Before the topology

graph can be used as a substrate for a place vocabulary, it must be corrected

by incorporating the global subsumption predictions . We assume that the

legality of the subsumption configuration has already been established at the

time the subsumption model was computed.

The subsumption model itself defines the elements of the topology graph

which are affected by the link which is to be installed . The modifications to

each affected element depend on its type . A bubble of free space connected only

to bubbles or only to obstacles is split in two, and a link is created which has

the two bubbles on its sides . In the case where the graph is embedded in three

dimensions, these two bubbles remain circularly connected around the link . A
bubble with free space on one side is left unmodified, and the subsumption

link passes through the links between the neighbouring obstacles . These local

criteria define completely how a subsumption link is installed in the topology
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graph.

Integrating Geometric Predictions with Topology Edge and vertex

contacts correspond to configurations on the boundary between free and blocked

configuration space, modelled topologically as the boundary between obsta-

cles and bubbles . In a consistent solution, every qualitatively different contact

corresponds to one piece of this boundary . In particular, connections between

obstacles in the topology graph, which we call LINKS, must correspond to

connections between contacts, called JOINs. The consistency of the network

of LINKS and JOINs together with the correspondences among elements of the

geometric and topological object models eliminate all the physically impossible

object contacts .

The contacts associated with a particular obstacle are given by the corre-

spondences between topological and geometrical models. In order for a contact

to be physically feasible, it must be possible to integrate it consistently with

neighbouring contacts . Possible JOINS between contacts are defined in the ge-

ometric model by subsumptions, touchpoints and qualitative direction changes

(deadpoints) . Subsumption models contribute additional JOINs .

The first consistency constraint is that every valid JOIN must be associ-

ated with one side of a LINK which it topologically directly adjacent to free

space bubbles. The second constraint is that JOINs and contacts must form
a consistent surface. The two constraints suffice to determine a unique set of

actually valid contacts and adjacencies between them. As each JOIN unam-

biguously defines two adjacent contacts, it is not even necessary to propagate

constraints beyond local adjacency . Contacts adjacent to a particular starting

point can thus be computed based only on the complete topology, subsumption
models, and information relevant to the starting contact and its neighbours .
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No precise information about other parts of the shapes is required .

The Place Vocabulary

	

Once the adjacencies between contacts have been

determined, the place graph is constructed by turning all bubbles adjacent to

valid contacts into free-space regions and linking them to the adjacent edges .

Finally, each adjacency in the place graph is labelled with the qualitative

directions of motion which are consistent with its traversal . We first consider

adjacencies which correspond to changes in contact . Such adjacencies are

traversed when the point of contact moves beyond the endpoints of a boundary

segment . In the case of two degrees of freedom, it turns out that the qualitative

direction of motion of the contact point on an edge can be unambiguously

inferred from the qualitative direction of motion . In the case of three degrees of

freedom, the direction of movement bP of the contact point along a boundary

edge (as defined in Figure 4) is characterized by the following confluence :

[a=] [bxl + [ay ] [by] + [bel - [bPJ - o

Thus, we can expect considerably more transition ambiguities in the case of

three degrees of freedom--A dead point of type 1 is defined by a particular

contact point on the object boundary, so the directions of motion consistent

with a transition over it can computed similarly to transitions to other contact

configurations . A dead point of type 2 is defined only by the angle between the

objects, and so a transition over it is always consistent with any angle change

in the proper direction, independently of movements in the other coordinates .

Finally, the directions of motion consistent with breaking or establishing
a contact are given by all the qualitative directions of motion that fall within
the half plane established the normal vector to the corresponding surface in

configuration space ( [3]) . In the case of three degrees of freedom, the normal
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Figure 6 : Tzco examples that our program has analyzed: a ratchet (left), and

a triangle moving in a space of obstacles (right) .

vector is the normal vector to the applicable confluence (as defined in Section

2), whose components are the coefficients of the three quantities.
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Examples of Problem Solutions

The techniques described in this paper have been implemented for two example

domains : a pair of rotating polygons, and a polygon moving freely in a space

of obstacles . The two examples, shown in Figure 6, pose different difficulties .

In the ratchet example, the difficulty is that the topology graph is embedded

on a lower-dimensional surface, as described earlier in the paper. Predictions

from the geometric model are also restricted to this lower-dimensional surface .

We do not reproduce the results of the complete analysis here, as the resulting

place vocabulary is the same as that already shown in [5] . It has been shown

to be a sufficient basis for computing an envisionment of qualitative behavior
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( [13]) in the framework of qualitative process theory ( [7]) .

The example of the polygon is similar to that analyzed by Davis in [1],

or by Forbus in FROB ( [8]) . The difficulty is that the configuration space

is now three-dimensional, making it impossible to rely on planar geometry to

compute its characteristics . Place vocabularies for three-dimensional configu-

ration spaces turn out to be extremely large : even for the simple example in

Figure 6, the complete place vocabulary has as many as 1300 places! A total

envisionment of such an underconstrained system is not likely to be a useful

end result . More realistically, one would like to answer questions such as :

o What positions can the object end up in from a given starting position?

* Is a particular combination of contacts possible?

9 Are there alternative behaviors to an intended behavior?

The answers to such questions, can be obtained by analyzing a qualitative

simulation or the place vocabulary directly . In the case shown in Figure 6,
we can for example deduce that all the final positions shown in Figure 7 are
possible when the object starts with no motion in the starting position (a), but

that no motion will occur when the object starts out at rest in the position

(b) . While such conclusions are similar to those produced by FROB . they
are derived in a more realistic domain which takes into account the kinematic

interactions of the moving object with the obstacles . We have thus made a

big step towards methods which are able to qualitatively analyze situations

such as those shown in Figure 1 . We expect the generalization of our methods

from three-dimensional configuration spaces to the higher-dimensional spaces

involved in such problems to be much easier than the generalization to three

dimensions which we have now achieved .
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5 Conclusions
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Figure 7 : Different possible behaviors of a polygon under the influence of grav-
ity (downward) . Starting at rest from position (a), the object can end up in
several final positions as shown. Starting at rest from position (b), no motion
will occur.

In this paper, we have seen an example of how the most elegant mathematical
formalization of a physical problem can result in unncessary computational
complexity of the solution . We developed a less elegant but much more prac-
tical solution using different models of the same physical system . The resulting
algorithm is not only much more efficient, but can use input information of
a very qualitative nature. All numerical computation occurs in the calcula-
tion of well-defined models, avoiding the unstructured (and often unstable)



computation inherent in classical configuration space analysis .

We believe that similar lessons can be learned in other domains, where a

qualitative analysis of the problem can provide the framework within which

an intractable mathematical formulation can be efficiently solved . This could

result in useful applications of qualitative methods to important practical prob-

lems.

We have also made an important step towards making qualitative kinemat-

ics practically useful . Our algorithm for computing place vocabularies is far

more efficient than methods based on algebraic computations in configuration

space. More importantly, we are able to derive characteristics of parts of the

configuration space based only on the information relevant to that part . The

next steps to be tackled are the extension to arbitrary object shapes and three-

dimensional objects . We are also using the algorithms as a basis for automatic

mechanical design .

While the techniques we have shown come closer to a purely qualitative

kinematics, we are not quite there yet. First of all, the subsumption models are

not really compositional qualitative models, but have to be computed anew

for each particular pair of-objects . Furthermore, several predictions in the

geometric model and in the embedding of the topology graph imply numerical

computation using dimensions of both objects which can not be expressed as

qualitative combinations of properties of the individual objects. Finally, the

fact that several models of the same object are used limits the possibilities of

backward reasoning from function to shape .
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