
Abstracting Irrelevant Distinctions
in Qualitative Simulationt

Pierre Fouche(1) & Benjamin Kuipers(2)

(1)Universitd de Technologie de Compibgne
C.N .R.S . U.R.A. 817

B.P . 649
60206 Compiegne, France

Email : fouche@a frutc5l .bitnet

(2)Department of Computer Sciences
The University of Texas at Austin

Austin TX 78712, USA
Email : kuipers@a cs .utexas.edu

Abstract : One main problem in qualitative simulation is that it often produces too detailed
qualitative descriptions of a system's possible behaviors, or produce a lot of behaviors that differ
very slightly . This paper addresses the problem of summarizing the result of a qualitative
simulation to make it more perspicuous. Two causes of behavior proliferation have been identified
and two algorithms to aggregate behaviors that do not differ significantly are presented. Simple
-xamples are used to illustrate the functionning of each algorithm .

t This work has taken place in the Qualitative Reasoning Group at the Artificial Intelligence Laboratory, The
University of Texas at Austin, and in the Al Group in CNRS-URA 817, The University of Compibgne . Researchof the Qualitative Reasoning Group is supported in part by NSF grants IRI-8602665, IRI-8905494, and IRI-8904454, by NASA grants NAG 2-507, and by the Texas Advanced Research Program under grant no . 003658175 .Pierre Fouchd holds a grant from Rh6ne-Poulenc .

1 . Introduction
The goal of qualitative simulation is to produce qualitative descriptions of a system's possible

behaviors from a qualitative model. Two main problems in qualitative simulation can be
distinguished :

" Due to the interaction of qualitative representations and local reasoning techniques,
qualitative simulation sometimes produces behaviors that are not actually possible . Such
behaviors are called spurious behaviors .

"

	

Qualitative simulation may give too many details compared to what is expected, or produce
a lot of behaviors that differ very slightly . It is then very difficult to extract the behavioral
features of a system .

This papers deals with the second problem. In practice, analyzing a large behavior tree or a
large envisionment graph is a difficult task and tools to summarize the result of a qualitative
simulation to make it more perspicuous are necessary to make qualitative simulation useable . At
first sight, there are many ways to aggregate similar behaviors, and finding general similarity
criteria that could be successfully applied on a large variety of simulation results is critical . After
having analyzed many envisionment graphs, it turned out that behavior proliferation could
generally be attributed to two main causes : chatter and occurrence branching . Chatter happens
when the derivative of a variable is unconstrained ; occurrence branching happens when the
temporal ordering of two or more events cannot be determined. For each of these causes, we will
present an algorithm to aggregate behaviors that do not differ significantly and apply it to a simple
example to illustrate its functionning . The algorithms presented here can be used or adapted to any
system that produce an envisionment graph . They have been implemented in Common Lisp as
extensions of Kuipers's QS IM [11],[12], and tested on TI Explorers, MicroExplorers and on VAX
Workstations running Xwindows.

We will first recall some basics definitions necessary to qualitative simulation .
1 .1 . Basic Concepts and Definitions

A physical system (p is modelled by a set of state variables and a set of constraints that relate
them . Variables are real-valued, continuously differentiable functions of time.

The qualitative magnitude or qmag of a variable is defined with respect to a set of values,
called landmarks, that represent real qualitative distinctions for the behavior of the variable . A
qualitative magnitude is either a landmark value or an open interval between two adjacent
landmarks .

The direction of change or gdir of a variable is the sign of its derivative with respect to time,
and can be either dec, std, or inc (for decreasing, steady, or increasing).

The qualitative value or qval of a variable is the pair (gmag,qdir)
A qualitative state of a system is a set of qualitative values of all the system's variables, which

are consistent with the set of constraints . We distinguish states that are valid only for an instant,
called P-states, and states that are valid over an interval of time, called 1-states.

Qualitative simulators that use states to describe a system's behavior are called state-based
simulators . Simulators that describe a system's behavior in terms of behaviors of its variables,
considered individually, are called history-based simulators (see paragraph 3.2) .
1 .2 . Behavior Generation VS Envisionment
A qualitative behavior (in a state-based representation) is a sequence of states which alternates

P-states and I-states . Qualitative behaviors can be produced in two ways:
"

	

directly from an initial state ; the result of a simulation is a tree ofpossible behaviors.
"

	

from a graph, called envisionment, whose vertices are possible states and edges are valid
transitions between them . A behavior is then a path in the graph . An envisionment is said to
be total if it contains all the possible states of the system, or attainable if it only contains
states that can be reached from an initial state.

Kuipers' QSIM [11],[12] adopts the first strategy, while Forbus' QPE [4] and de Kleer &
Brown's ENVISION [10] produce envisionments . On one hand, an envisionment provide a
compact, finite description of a set of possible behaviors. On the other hand, reasoning over
behaviors allows one to use stronger reasoning techniques, such as reasoning in a phase space
representation, or reasoning about energy (see [6]) . An attractive feature of behavior generation is
that it allows one to introduce new distinctions during simulation, by dynamically creating new
landmarks, for instance, when a variable reaches a critical value. The nature of oscillations of
oscillatory systems can be determined using this mechanism, but this cannot be done using an
envisionment graph.

However, when behaviors begin to proliferate, new landmarks prevent an easy comparison of
similar behaviors, because they are attached to a specific behavior . This is the reason why we
extended QSIM so it can now produce envisionments as well as directly generate behaviors . The
remainder of this paper presents two algorithms to aggregate similar states and behaviors in an
envisionment graph.

2 . Chatter
The graph in figure 1 contains many short cycles . A filled circle represents a state at some time

point, an empty circle a state at some time interval . Analyzing why such cycles are produced shows
that many states differ only by the direction of change of one or several variables . These
distinctions are very often useless and the graph as it is in figure 1 is not easy to interpret. In the
following sections, we explain how to group states which, ignoring the directions of change of the
variables, are identical . We introduce the concept of gmag-equivalence and describe how to
aggregate states in a same equivalence class .
2 .1 . Building Equivalence Classes

The algorithm to eliminate the proliferation of such cycles is based on partitioning the graph
into equivalence classes, which gather states for which all the variables have the same qualitative
magnitudes . The precise definition of the equivalence relation gmag-equivalent is the following:

Definition: Two states S1 and S2 are gmag-equivalent if and only if :
b' v, gmag(v, Sl) = gmag(v, S2)
It is easy to check that this relation is an equivalence relation over the set of possible states X

From this definition and the set of possible states X9, we build a partition P ofX9, P = (Ci), eac~
Ci being an equivalence class.

The next step is to identify the differences between all the states in Ci and to aggregate them to
build a new state Ti which generalizes all the states in Ci .
2 .2 . Generalizing Equivalent States

Since all the states in Ci are gmag-equivalent, they differ only by the directions of change of the
variables and it makes sense to define the magnitude of a variable v in a class Ci, gmag(v, Ci). The
magnitude of v in Ti, qmag(v, Ti) is set to gmag(v, Ci). To determine the direction of change of v
in Ti, we build the set D (v, Ci) of its possible directions of change in Ci: D (v, CI) =

U qdir(v, S) . If D(v, Ci) has only one element, then qdir(v, Ti) = D(v, Ci). If it has more than
SCCi
one element, then we set qdir(v, Ti) to ignt . Note that we can lose information in building Ti :
having qdir(v, Ti) = ign does not necessarily imply that v can take on any direction of change in the
states that Ti generalizes (but, for instance, inc or std only). We also lose information on how
states in Ci are connected together .

tign means that the direction of change is ignored.

Figure 1 : Envisionment graph of A -~ B -> C -> D

2 .3 . Setting Time Label, Predecessors and Successors
In building generalizations, we also want to keep the distinction between P-states and I-states,

and connect the more general state to other states in the graph . We begin with defining the set of
successors and predecessors of a class :

succ(Ci) =

	

U succ(S)

	

pred(Ci) =

	

U pred(S)
SCCi

	

SCCi
We also make a distinction between P- and I-successors and predecessors, and split these sets

into P-succ and I-succ :
P-succ(Ci) = {S : S E succ(Ci) and time(S) =point}
P-pred(Ci) = {S : S E pred(Ci) and time(S) =point}
I-succ(Ci) = IS : S E succ(Ci) and time(S) = interval)
I-pred(Ci) = {S : S E pred(Ci) and time(S) = interval}
The successors and predecessors of Ti are defined straight-forwardly :
P-succ(Ti) = IS : S E P-succ(Ci) and S o Ci}
P-pred(Ti) = {S : S E P-pred(Ci) and S e Cl}
1-succ(Ti) = {S : S E 1-succ(Ci) and S o Ci)
Ipred(Ti) = IS : S E Ipred(Ci) and S z CiI
Defining whether Ti is a P- or I-state depends on Ti's successors and predecessors :
"

	

If P-succ = P-pred = 0 then Ti must be a P-state and we set :
time(Ti) = point.
pred(Ti) = Ipred(Ti)
succ(Ti) = I-succ(Ti)

The successors of Ti's predecessors and the predecessors of Ti's successors must be
updated as well :
b' S e pred(Ti), succ(S) = (Tj U (succ(S) - Ci)
VS e succ(Ti), pred(S) = (Ti} U (pred(S) - Ci)
If I-succ =1-pred = empty then Ti must be an I-state and we set :
time(Ti) = interval .
pred(Ti) = Ppred(Ti)
succ(Ti) = P-succ(Ti)
Successors of Ti's predecessors and predecessors of Ti's successors are updated in exactly
the same way .
Otherwise, if we want to maintain the semantics of P-states and I-states, it is not possible to
give a unique time label to Ti and Ti must be split into two identical states, TiP and Tii, one
being a P-state and the other an I-state :
b' v, gval(v, TiP) = qval(v, Tii) = qval(v, Ti)
time(TiP) = point and time(Tii) = interval
pred(TiP) = I-pred(Ti)
succ(Tit) = P-succ(Ti)
pred(Tii) = P-pred(Ti) U (TiP)
succ(TiP) = I-succ(Ti) U (Ti)
Predecessors and successors of Tii and TiP are updated slightly differently :
b' S e pred(TiP), succ(S) _ (TiP) U (succ(S) - Ci)
b' S e succ(Tii), pred(S) _ (Tii) U (pred(S) - Ci)
d S e pred(Tii), S;TiP, succ(S) = (Tii) U (succ(S) - Ci)
b S e succ(TiP), S;~fii, pred(S) = (TiP) U (pred(S) - Ci)

Thus, if P is an element of I-pred(Ti) and Q an element of P-succ(Ti), the sequence (P TiP Tj
Q) is a possible behavior, which can be interpreted like this : the system is in state P for a certain
amount of time, and then evolves to be in state TiP . This state is not instantaneous (system in state
Tii) and the system finally reaches state Q . A transition between T~ and TiP is invalid because an
I-state can only lead to a P-state in which at least one variable has a different qualitative value [12] .
2 .4 . Example

Figure 1 shows the envisionment graph2 of a system modeling an isothermal batch reactor
where three reactions in series occur: A->B->C->D . Cxdenotes the concentration of species x .
The modeling equations are :

dCA
= -ki CA

dCB
dt = ki CA- k2 CB
d
dt

	

= k2 CB- k3 CC
dCD = k3 CCdt

The simulation started from an initial state with species A at a concentration Co, and was
constrained to produce analytic functions only (analytic functions are infinitely differentiable and

2We redrew the graph by hand, because it was not easy to highlight equivalence classes on the graph drawn by
QSIM.

- INF

CC

.,7 " 7.7777.7.7777 .

- INF

0110

0

1

	

1
TO T1 T2 T3 T4 IS T6

0 54 6 5+6
1 ' S7 2,9

- - - - - - - - - - - - - - -

Fig . 2 : One behavior of A -) B B C

	

D

CA

	

DCA/DT

CB

	

DCBIDT

CC

	

DCC/DT

- INF

1

	

1

	

1
TO T1 T2 T3

-INF

-CJ10
._ .T.ey.yy . .

0

1

	

1

	

1
10 T1 T2 T3

TO T1 12 T3

-INF

?.7.7. .. . "7.7._' . ..CJ10

0

T1 T2 T3

-IMF

0
T7.7.777 .

-MINF

1
TO

1
T2

-IMF

e0

-MINF

I
T3

T1 T2

-INF

TO 71 T2

-INF

- INF

DCCDT
- INF

.,777.T7yyy.yy . . .

1
T1 T2 T3 TA TS 76

-0

-MINF

CD

	

DCDIDT

	

CD

	

DCD/DT

Fig . 3 : Elimination of chatter

I -INF -

'"

I -GO ~i .̂~~ee0

I t e0 I -MINF

1
To

1
T1

1
T2

1 1 1
To T1 T2

I CB DCB/DT
I - INF - INF

I -GO F w0

I e0 -MINF

I 1
To T1 T2 TO T1 T2

i CC DCC/DT
- INF - INFI . .T.
rA0 -0

I 0

i

-MINF

I
I To

0
T1

1
T2

1 1 1
To T1 T2

y . . . - 0110

0
7.77777777.777 ^0

- MINF

TO fl T2 T3 T~ TS
1
T6 TO fl 11 11 14 15 76

CA DCA/DT

- INF - INF

0

TO
1
TS

1
T2 T3 TI

1
TS

- GO

e 0

11
-

t
TO T1 T2 T3 TI TS

- MINF

T6

CB DCB/DT

- INF . ,7yyy, .
- INF

-GO

0

Y -0

- MINF

TO
1
T1

1
T2

1
T3

1
T1 T5 T6

1 1 1
TO T1 T2 T3

1
T4

1
TS T6

0 51 6 56 55 57 29

I 7 57

I
- INF - INF

I

I
y . - GO 7.7.T T . . . e0

e0 - HimF

I 1 1 1 1 1

I To T1 12 TO T
1
1 T2

I CA DCA/DT

have the following property: they cannot be steady over an interval unless they are steady over their
whole domain of definition) . Figure 2 shows one particular behavior .

The graph can be partitioned into eight gmag-equivalent classes :

The direction of change of the derivative of B's concentration, &e, can be ignored in classes

C5, C6 and C7 and that of dCCdt

	

in classes C2 and C7. Three I-states are created from class C2, C5

and C7 and one P-state from class r'6 . The resulting graph contains only two behaviors shown in
figure 3 . New states are represented by a star . The direction of change ign is also represented by a
star .

3 . Occurrence Branching
Intractable branching in an envisionment graph, as well as in a behavior tree, is often caused by

another phenomenon called Occurrence Branching . It happens when the temporal ordering of two
or more events cannot be determined . Qualitative simulation then branches on all the possible
orderings .
3 .1 . Idea

This pathological phenomenon can be characterized in an envisionment graph. When a system
evolves from a state Si to a state Sf, there may be a lot of paths (behaviors) from Si to Sf. If all the
variables of the system, considered individually, exhibit the same behavior in all the paths from Si
to Sf, then the behaviors differ only by the temporal ordering of events taking place between Si and
Sf. In the following paragraphs we will formalize these intuitive notions and see how the algorithm
works on an exemple where occurrence branching masks the main behavioral feature of a system.
3 .2 . Definitions and Algorithm

3 .2 .1 . Histories
A system's behavior is a path in an envisionment graph. Thus a behavior B is represented by a

sequence of states B = [Si] . If v is one of the system's variables we first define the history of a
variable:

Definition : the history H(v, B) of a variable v in a behavior B is the sequence of Vs
qualitative values in B :

H(v, B) = [qval(v, Si)] if B=[Si] .
Definition : the history H(~p, B) of a system (p in a behavior B is the set of histories of all its

variables :
H((p,B) = (H(v, B)), b' v .
The concept of history was first introduced by Hayes [8] and Forbus [3].These definitions are

similar to those in [16] . When building histories, we would like to avoid keeping distinctions that
are not relevant to the behavior of a particular variable . But from the preceding definition, a

Classes Elements
C1 So
C2 S1 S2 S3
C3 S6
C4 S7
C5 S8 S10 S44
C6 S9 S11 S46
C7 S12 S13 S14 S15 S17 S19 S22 S23 S30
C8 S29

variable's history can contain subsequences of equivalent qualitative values . The concept of history
reduction helps define the concept of concise history3 and suggests an algorithm to build them .

Definition : Reducing a history H = [Vi] consists of replacing a subsequence of H,
[VkVk+]Vk+2], such that gmag(Vk) = gmag(Vk+l) = gmag(Vk+2), gdir(Vk) = gdir(Vk + l) _
gdir(Vk+2) and time(Vk) = time(Vk +2) = interval, with the subsequence [Vk] .

The motivation for this definition is that we want to eliminate irrelevant time-points . If Vk, V-
k+1 and Vk+2 all have the same qmags and qdirs, then time-point k+1 is not a distinguished time
point for the variable and Vk+1 does not introduce an interesting distinction in the history. It can be
withdrawn. Vk+2 is identical to Vk and can be withdrawn as well .

Definition: The concise history h(v, B) of a variable v in a behavior B is a reduced history of
H(v, B) which cannot be reduced anymore .

Definition : The concise history h(q, B) of a system cp in a behavior B is the set of concise
histories of all its variables:

h((p, B) = (h(v,B)), b' v.
A system's concise history keeps all the relevant behavioral features of all the system's

variables, without taking into account the ordering of events between variables. We can define an
equivalence relation based on the concept of concise history :

Definition : Two behaviors B1 and B2 of a system (p are history-equivalent if (P's concise
histories for B1 and B2 are the same .
3 .2 .2 . Single-Input, Single-Output Subgraph

Now the question is to determine when it is appropriate to build concise histories. Intuitively a
system may exhibit occurrence branching when all the behaviors starting from a state Si lead to
another unique state Sf. The concept of Single-Input, Single-Output or SISO graph formalizes this
idea .

Definition : Let G = [X, U) be a graph. X is the set of nodes (or vertices), U the set of
edges. Let G'= [X', U') be a subgraph of G (X' c X, U' c U). Let xi and xf be two nodes of G'.
G' is a SISO Subgraph of G with starting node xi and ending node xfif:

"

	

G' is acyclic,
"

	

G is no longer connected if the edges adjacent to xi and xfin G' are removed from G,
"

	

xi has at least two successors in G' and xf two predecessors in G',
"

	

b'x E G', there is a path from x to xfin G' .
Thus if a system is in a state Si which is a starting node of a SISO subgraph G', and follows a

transition from Si to another state which is in G', it will sooner or later reach the final node Sfof
the subgraph . If there are multiple paths in the subgraph, they may differ only by occurrence
branching. Finding SISO subgraphs is very similar to finding triconnected components of a graph,
for which an algorithm linear in the number of edges exists [9]. The algorithm we use find only
minimal SISO graphs, that is, graphs that do not contain any other SISO graphs, and whose initial
and final states are P-states . See [7] for a complete description of the algorithm .
3.2 .3 . Eliminating Occurrence Branching

Once a SISO Subgraph is identified, we generate concise histories for all the possible behaviors
in the subgraph, and partition the set of behaviors using the relation history-equivalent. For each
class, we generate a new behavior corresponding to the system concise history. There is a little
difficulty in building a behavior from a system's concise history, for the length of variable concise
histories are not necessarily all the same. When the end of some variable's concise history is
reached, we build successor states using the last value of that variable . This is not really critical,
for states built in this process are not meaningful by themselves, but only the behavior as a whole
is : when a state contains two events, it does not imply that they occur simultaneously, but that they

3Williams [86] defines concise histories in terms of maximal episodes, but they can be define without this
concept.

0 ; 2 3 4 2 8 119 12 15 16 19 20 21 23 25 208 31

1717 36 3! 2.1

4~0444
L44

t3 51751

99 60 62 ~1

Fig. 4: Envisionment of A -4 B -4 C -4 D -~ C---> E

0 1 2 3 4 7 8 11 12 15

	

21 23 25 2* 310

	

0

	

0 31
17 36 38 2.1

13s 404
14 36

- -

-INF

C,

';1 12

	

'1'3

	

1'4 Ts

CA

rO TI T2

	

T3

	

T4 TS

CB

CC

n r2

	

TII

	

T4 T'S

CD

TI T2

	

T3

	

I. T.,

CE

DCA)DT

DCBWT

DCODT

DMYDT

DCODT

TO T1 T2

	

T3

	

T4 T5

-INF

F-~---TI

-IMF

10 "'T
.L. 1 .

	

-4.4 4 . . .

TO TI T2

	

T3

	

I. T5

-IMF

IM

TO Ti T2

	

T3

	

T4

Fig. 5 : Partial elimination of occurrence branching

INF

TO

	

T1

	

T2

	

T3

0

CA

_ .T

	

. . . .T.T yI I Iy. II

INF

GO

e' 0

CB
INF

GO

0

a

	

o

	

0

	

0

TO T1

	

T2 T3

CC
INF

GO

0

o

	

n

TO T1

	

T2 T3

CD
INF

. .t
MO

. . . .T.TT T. TTTTTT H

0

n

	

n

TO T1

	

T2 13

TTT.TTTTTT.TT?I'

INF

^0

MINF

DCA/DT

. .y TTT.T T,'

INF

~0

MINE

DCB/DT

-Ty 1y. . .

T1

INF

DCC/DT

T1

INF

' .y I . . . 0

MINF

DCD/DT

. TTTTTTTy.yy.

Fig . 6 : Total elimination of occurrence branching

occur sometime in the behavior . States built in this aggregation phase are labelled to distinguish
them from other standard states . We kept the state-based representation to have a unique
representation of behaviors .

Once all the SISO subgraphs are analyzed, the algorithm is applied again on the resulting
graph, and so until no more SISO subgraph can be found.
3 .3 . Example

Figure 4 shows the envisionment graph of a system similar to the one presented in 2.4 : an
isothermal batch reactor where four reactions in series occur: A->B->C->D->E . Dalle Molle [1]
made a detailed study of that system. The simulation started from an initial state with species A at a
concentration CO, used second- and third-order derivative constraints [14], and was constrained to
produce analytic functions only . This is an example where the simple behavioral nature of the
system is masked by the occurrence branching phenomenon.

Once enumerated, the graph contains 39 behaviors, and the variables considered individually
have the same behavior accross all the system's behaviors : A's concentration decreases towards 0;
concentrations of B, C and D reach a peak and then decrease towards zero; E's concentration
increases towards CO. The distinctions occur because certain critical points can be achieved before,
at the same time, or after other critical points depending on the value of the system's parameters .
Here five pairs of critical points exhibit occurrence branching. Note that while five pairs of
variables, each of which can lead to three distinctions, could generate 243 distinct possibilities,
only 39 behaviors remain .

Figure 4 shows the envisionment graph as it is produced by QSIM. Arrows are not plotted, but
edges are oriented from left to right and top to bottom . Cycles are not explicitly represented, but
states with multiple predecessors are duplicated and printed as small circles surrounded by larger
circles .

Four SISO subgraphs are detected at this level . Each subgraph contains one class of history-
equivalent behaviors, and only one new state per class is built, as shown in the table below :

The resulting graph is shown in figure 5, as well as one particular behavior. New states are
represented as squares . Behaviors are plotted slightly differently : we still have a succession of P-
:Imags and I-gmags, but P-gmags no longer have a specific time point associated with them when
,hey belong to a special state . For instance, we do not know any longer the temporal ordering of

the events ddc reaches a critical value and ddD crosses zero in the behavior of figure 5 .

When the algorithm is applied a second time, another SISO subgraph is detected, starting from
state S3 and ending at state S25, and all the behaviors are history-equivalent . Thus the graph is
reduced to a chain and five new states are created, as shown in figure 6.

4 . Comparison with other work
Chatter is a well-known problem in qualitative simulation. It has been identified by de Kleer &

Bobrow [2] and Williams [15] . Basically, if at some time point a variable transitions to a critical
point (that is, its derivative becomes zero), and its derivative is only constrained by continuity, then
its qualitative value in the next open interval of time is determined by its second derivative . If no
information is provided about this second derivative then qualitative simulation branches on each
possible future . Multiple occurrence of this phenomenon leads to intractable branching. Two ways
of solving the problem have been studied so far:

The first consists of trying to constrain variables whose qdirs are not sufficiently constrained .
Variables which are likely to chatter have to be identified before simulation, and expressions for the

Sub a h Si S Other nodes New nodes
G1 S3 S11 S544067 S70
G2 S7 S54 S10 S9 S60 S62 S72
G3 S15 S21 S18 S16 S19 S20 S71
G4 S36 S25 S42 S40 S45 S48 S73

second derivatives of these variables must be derived by algebraic manipulations . Such
expressions may be hard to compute by hand. An algebraic manipulator can be used to do the
algebra, as in QSIM, but designing a manipulator to produce expressions which can be efficiently
used in qualitative simulation (that is, expressions which produce qualitatively non-ambiguous
results) is not easy . Moreover, in many cases, one has to make additional assumptions about the
nature of some constraints (for instance, the sign-equality assumption for M+ and M' constraints in
QSIM) to be able to derive expressions for the sign of second-order derivatives . However, when
such assumptions make sense (for instance, for quasi-linear systems) and when algebraic
expressions can be obtained, using higher-order derivatives is a very powerful filtering technique .
[14] gives a detailed account on how to use higher-order derivatives in qualitative simulation .

The second consists of masking the problem by ignoring the directions of change of chattering
variables [131 . Similarly to the preceding method, it is necessary to identify chattering variables
before simulation but tedious algebraic manipulations, as well as additional assumptions, are no
longer needed . When used in conjunction with higher-order derivatives, it can weaken the power
of the latter if the direction of change of a variable is both ignored and used in an expresion for the
second-order derivative of some other variable . [1] provides examples of such bad interferences .

In comparison with these methods, the aggregation method does not require any assumption or
manipulation before simulation, but is used as a graph simplification tool . Of course it can be used
only when envisioning, as opposed to the others which can be used when directly generating
behaviors as well as envisioning . It does not interfere with the use of higher-order derivatives. It
provides a finer level of description than the ignore-gdirs method, for the direction of change of a
variable is only ignored when necessary .

The following table summarizes the differences described above.

The problem of occurrence branching was identified by Williams [16] . He did not adopt a
state-based representation, but an history-based representation . For Williams, a behavioral
description is composed of two parts : the histories of the system's variables and the set of relevant
temporal relations between events . Histories and temporal relations are built incrementally, using a
contraint propagator called TCP. This is a major difference between his and our approach:
Williams argued that eliminating occurrence branching during simulation was necessary to avoid
combinatorial explosion . While this argument is theoretically valid, we never simulated a system
for which occurrence branching caused a major problem at simulation time. Problems always
showed up at interpretation time. For instance, simulating the second exemple took about 80 s, and
the aggregation phase about 20 s . The major advantage of TCP is that it maintains dependency
traces for causal explanations . On the other hand, feedback systems are not easy to handle in TCP,
but are treated in a very natural way by QSIM [5] . The main advantage of our method is that it
integrates state-based and history-based representations into a single framework, in which many
other qualitative simulation techniques are available .

5 . Conclusion and Future Work
We identified two problems, chatter and occurrence branching, which cause the proliferation of

very similar behaviors . We presented two algorithms to eliminate these problems and to obtain
much more concise envisionment graphs . We see these algorithms as basic tools to incorporate in a
general qualitative simulation framework . In this paper we showed that histories and
envisionments can be used together . As we explained in the first section of this paper, the concepts
of envisionment and dynamic landmark creation are still hard to put together. Though envisioning
allows algorithms based on graph theory to be used efficiently, dynamic landmark creation is a
powerful tool to study important problems such as stability of controllers, but can be used only

Higher-order derivatives Ignore dirs Aggregation
Identify chattering variables Yes Yes I No

Manipulate equations Yes No No
Alwavs applicable No Yes Envisionment only

when behaviors are generated. Trying to unify behavior generation / landmark creation and
envisionment is currently one of our directions of research .

Acknowledgments
This work benefited from discussions with many members of the Qualitative Reasoning Group

at the University of Texas at Austin, and people of the Al team at the University of Compiegne.
Special thanks to Pierre Villon for his help in graph theory and Anne Charles for a careful reading
of a previous draft of this paper. Pierre Fouche thanks Prof. Jean-Paul Barthes for his constant
support in this research .

References
[1]

	

D. Dalle Molle, "Qualitative Simulation of Dynamic Chemical Processes", Ph.D. dissertation,
University of Texas at Austin, 1989 .

[2]

	

J. De Kleer, and D.J . Bobrow, "Qualitative Reasoning With Higher Order Derivatives ", in
Proceedings of AAAI-84, Austin, TX, 1984, pp . 86-91 .

[3]

	

K.D. Forbus, "Qualitative Process Theory", Artificial Intelligence, vol. 24, pp . 85-168,
1984 .

[4]

	

K.D. Forbus, "The Qualitative Process Engine", In Readings in Qualitative Reasoning about
Physical Systems. Morgan Kaufman Publishers, D.S . Weld, and J. De Kleer, Eds., pp. 220-
235, 1990 .

[5]

	

P. Fouche, and B .J . Kuipers, "Qualitative Simulation of Feedback Control Systems", in
Proceedings of MIM-S2 90, Bruxelles, Belgium, September 1990.

[6] P. Fouche, and B .J . Kuipers, "An Assessment of Current Qualitative Simulation
Techniques", In Recent Advances in Qualitative Physics . MIT Press, P. Struss, and B .
Faltings, Eds., 1991 .

[7]

	

P. Fouche, and B .J . Kuipers, "Abstracting Irrelevant Distinctions in Qualitative Simulation",
Tech. Rept . Forthcoming, The University of Texas at Austin, Department of Computer
Science, 1991 .

[8]

	

P.J. Hayes, "The Naive Physics Manifesto", In Expert Systems in the Microelectronic Age.
Edinburgh University Press, D . Michie, Ed., pp . 242-270, 1987.

[9] J.E . Hopcroft, and R.E . Tarjan, "Dividing a Graph into Triconnected Components", SIAM
Journal of Computing, vol. 2, No 3, September, 1973 .

[10] J. de Kleer, and J. Brown, "A Qualitative Physics based on Confluences", Artificial
Intelligence, vol. 24, pp . 7-83, 1984.

[11] B .J . Kuipers, "The Limits of Qualitative Simulation", in Proceedings of IJCAI-85, Los
Angeles, CA , 1985, pp . 128-136.

[12] B .J . Kuipers, "Qualitative Simulation", Artificial Intelligence, vol. 29, pp . 289-338, 1986 .
[13] B .J . Kuipers, and C. Chiu, "Taming Intractible Branching in Qualitative Simulation", in

Proceedings of IJCAI-87, Milan, Italy, 1987, pp . 1079-1086.
[14] B.J . Kuipers, C. Chiu, D. Dalle Molle, and D. Throop, "Reasoning with Higher-Order

Derivatives in Qualitative Simulation", Tech. Rept. A189-1 10, The University of Texas at
Austin, Department of Computer Science, 1989 .

[15] B.C. Williams, "Qualitative Analysis of MOS Circuits", Artificial Intelligence Journal, vol.
24, pp. 281-346, 1984 .

[16] B.C . Williams, "Doing Time : Putting Qualitative Reasoning on Firmer Ground", in
Proceedings ofAAAI-86, Philadelphia, PA, August 1986, pp. 105-113 .

