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Abstract

This paper discusses the restriction of qualitative models of physical systems in or-
der to ensure more specific behavior. Restriction is performed by adding constraints :
(i) directly on exogenous parameters, and (ii) on non exogenous or dependent param
eters . The former are termed primary restrictions, and the latter are called derived
restrictions . We show the connection between primary and derived restrictions, and
how to determine the consistency of multiple restrictions . Examples are given to show
how a specific model is augmented using restrictions .



1 Introduction

A serious problem Nvith current methodology for qualitative behavior generation is ambi-
guity [11] . Qualitative models may produce multiple behaviors due to lack of precision in
the model . A model of a refrigerator should generate behavior that implies heat transfers
from the cold side (i.e ., inside of the refrigerator) to the hot side (i.e ., the outside) . A
model of a heat exchanger should derive heat transfer from the hot side to the cold side .
A qualitative model intended to represent a refrigerator should not allow heat exchanger
behavior to dominate and vice versa . Very often multiple behaviors that are generated are
due to :

1 . the fact that a parameter value depends on the difference in two other parameter
values, but this cannot be unambiguously determined from their current qualitative
values, and

2. the relative rates at which interacting parameter values change is not known, there-
fore, if behavior descriptions depend on relative rates this will invariably cause
branching behavior .

Note that both these problems would not exist if more precise quantitative models were
employed . In qualitative simulation the second problem has been addressed by ignor-
ing irrelevant distinctions [10], and by incorporating higher-order derivatives of system
parameters [3,10,12] . The first problem, which is purely an artifact of the qualitative na-
ture of parameter descriptions, and not the structure of the model cannot be handled by
the above mechanisms in an elegant way. For example, if such ambiguities occur when
analyzing the behavior of a device whose properties are not well known to the user, there
is no way to read the modeler's (i.e ., the designers) mind to determine which behavior is
"correct" and which behavior is an artifact produced by the qualitative nature of parameter
definitions .
Our answer to the ambiguity problem is to refine the qualitative structure of the model to

generate the desired behavior . The methodology developed examines the qualitative con-
straints which have to be added to the model in order to restrict the behavior in the desired
way. These additional constraints are explicitly justified by propagating them back in a
specific way to constraints on exogenous parameters . Exogenous parameters are "givens",
i.e ., they are causally external to the model. The propagation is achieved by principles
based on continuity and monotonicity properties . Linking behavior to structure is achieved
by explicitly "justifying" the initial set of constraints in terms of constraints on exogenous
parameters . As a final step, we add the constraints on the exogenous parameters to aug-
ment the original model. In general, we may impose any consistent set of constraints on
the exogenous parameters, and usually there are different exogenous parameters that may
be constrained in different ways to produce a more specific qualitative model . However,
certain restrictions may be more realistic or useful than others .
Let us consider a simple example involving a container holding a gas at a pressure P .

If P > Po the container breaks, and if P < P,, the container does not break. P = A(T),
where T is the temperature, and Po = f2 (S), where S is the strength of the container . T
and S are the independent (exogenous) variables .
We wish to restrict the model to one which does not break . To guarantee the proper

behavior, we can simply add P < Po as an assumption to the model. However, this re-
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Figure 1 : Schematics of the Refrigerator
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The Refrigerator Example

0ZNC_NEE=

quirement is not useful for either explanation or control purposes. Both P and P,, are
determined by other parameters, therefore, they cannot be considered as primary causal
factors for explanatory purposes . In our example system, they are also not directly con-
trollable . Therefore, the constraint P < Po needs to be propagated back to the exogenous
parameters. In this case, it is equivalent to requiring that T and S sati:,fy fl (T) < f2(S).
To make this constraint operational, it is then necessary to derive an interval (in general,
a connected region in the space of exogenous variables) where the above inequality holds .
Another issue relates to which exogenous parameter the constraint should be related

to . For one, we consider only those exogenous parameters that can affect variables in the
original constraint . may be that the original constraint may be propagated back to one
parameter but not to the others . If we know that fi is monotonically increasing from zero
we can express the constraint fl (T) < f2(S) as T < f3(S) where f3 is some function of S.
On the other hand, if we know nothing about f2 we cannot express the constraint in terms
of S directly. Another reason for expressing a constraint in terms of particular exogenous
parameters involves realistic choices concerning which exogenous parameters are really at
our disposal . Suppose that we know that f2 is also monotonically increasing from zero.
We can express fl (T) < f2(S) either as T < f3(S) or S > f4 (T) . One of these restrictions
will usually be more realistic than the other, however. For example, from a practical
standpoint the temperature may be the exogenous parameter that is easier to control,
therefore, T < f3(S) is the explicit constraint that gets added to the model definition.
In the remainder of this paper we develop the theoretical principles of restriction and

illustrate them in connection with the refrigerator problem . In the last section we com-
pare our work with other approaches, primarily the OPERATING ASSUMPTIONS of
Falkenhainer and Forbus[4], and discuss future work.

To illustrate the applicability of the theory developed, the restriction process has been
applied to a qualitative model of a refrigerator (Fig. 1) to generate more specific behavior[1,
7] . The model with restrictions is implemented in Prolog on a problem solver called TEPS
(Thought Experiment Problem Solver) .
The refrigerator model shown in Fig. 1 has six primary locations:



The interior and exterior of the refrigerator are modeled as heat sources or sinks . Collins
and Forbus[1] and Hibler and Biswas[7] have demonstrated that by assuming multiple
ontologies one can establish. that under certain conditions the refrigeration system in equi-
librium pumps heat from a cooler to a higher temperature, i .e ., the system actually cools .
This requires the use of general processes', such as boiling, condensing, heat flow, and
fluid flow, and more specialized processes such as throttling that takes place between the
expansion valve and the evaporator . In the rest of this paper we refer to different aspects of
the refrigeration system to illustrate various concepts that are associated with restriction
principles .
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Basic Definitions

Evaporator - ev

	

Compressor - cm
Condenser - cn

	

Expansion Valve - ex
Interior of Refrigerator - int

	

Exterior of Refrigerator - ext

As discussed earlier, the key step in restricting system behavior is to impose additional
constraints on system parameter values . If these parameter values are "causally exter-
nal" (i.e ., exogenous) to the system and create no inconsistencies the problem is solved .
However, if the restricted parameter is a dependent parameter, it needs to be linked to
exogenous parameters through a dependency graph.

3 .1

	

Exogenous and Dependent Parameters
Intuitively, a parameter is exogenous if its value is independent, i.e ., it does not depend
on values of other parameters that make up the system. If we take the point of view of
someone designing a physical system we call exogenous parameters design parameters, and
we call the added constraints design choices . The constraints are sufficient (but perhaps
not necessary) to ensure a particular behavior (design behavior) .
More formally, in the QPT framework we define two types of exogenous parameters.

The first type of exogenous parameter is a variable which is exogenous because it has no
influences on it in the given scenario model. In the refrigerator example, the exterior
and interior of the refrigerator are both modeled as heat sinks with some given fixed
temperature. Thus Tint and T,zt are exogenous parameters of the first type.
The second type of exogenous parameter is an initial condition on a directly influenced

variable . In QPT a variable may be directly or indirectly influenced, but not both. Direct
influences on a variable correspond to a qualitative version of a first order differential
equation[5]. The initial choices for the variable are arbitrary, and can be set externally
from the scenario model. In the refrigerator model the evaporator temperature, T.�, is
influenced by heat flow. Its initial value, however, can be set arbitrarily. On the other hand,
indirect influences correspond to functional relationships so initial choices of indirectly
influenced variables are not arbitrary. The saturation temperature, Ts,� , of the evaporator
is functionally determined by evaporator pressure, PV .
A variable that is not directly influenced may have functional relationships (i.e ., qualita-

tive proportionalities) and correspondences to other variables[5] . For purposes of analysis,

'We are working in the QPT framework[5]
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Figure 2 : Partial Dependency Graph for the Refrigerator
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such parameters need to be functionally related to exogenous parameters .
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Relating Dependent Parameters to Exogenous Parameters

Given a set of qualitative proportionalities : a9 , a4+ , a9_ which hold between the quantities
of the model we can construct a dependency graph with the quantities as nodes and the
qualitative proportionalities between quantities specifying directed edges. The direction
of the edge is in the direction of dependence, i .e ., if A aq X, then A -3 X . ' QPT
model formulations allow no circular dependencies, therefore, the dependency graph is a
directed acyclic graph (see Fig. 2) . Since there are a finite number of parameters the
graph is finite . Given any variable which is functionally dependent on other quantities
we follow all paths from that variable until we reach leaves of the graph. These leaves
represent variables which ultimately determine the value of the given variable . Since
they are leaves they are not functionally dependent on any parameter . This means they
must be exogenous parameters or directly influenced parameters' . In either case, we can
choose their initial values arbitrarily . If they are exogenous parameters we can even choose
their values as arbitrary functions of time . Since we are restricting an already existing
model the dependency graph is easily found by examining the collection of all qualitative
proportionalities which hold for a given process and view structure of the scenario model.
A part of the dependency graph for the refrigerator problem appears in Fig . 2 .
Given a functionally dependent variable we can collapse its dependency graph by sub-

stituting functions for intermediate variables in the path to the leaves . The result is a
composite function whose arguments are the exogenous variables . This composite func-
tion can be described by qualitative proportionalities . We refer to these as the ultimate
qualitative proportionalities for a variable . Derivation of ultimate qualitative proportion-
alities from the component qualitative proportionalities are discussed in Section 4.

ZThe direction of the arrow may be the reverse of what is chosen by convention . We chose this convention
initially, and have stuck to it .

'Note that rates of directly influenced parameters are also functions of other parameters ; this issue is
discussed later. For now, we consider only qualitative proportionalities



3.3 Restrictions
Constraints which must be added to a model to ensure a desired behavior are termed
restrictions . We are interested, not only in the constraint being satisfied but in "how" it
can be satisfied. We view this as solving the constraint in a particular direction. Thus,
one or more of the variables are now dependent on the others . This restriction is ex-
pressed by an equality or inequality involving the restricted variable . For example, if the
constraint involves A', Y, and Z we might restrict X in order to satisfy the constraint
so that X > FI (Y, Z) . This is needed because we want to impose specific dependency
relationships on an exogenous parameter.
Restrictions directly on exogenous parameters are termed primary restrictions . In gen-

eral, the parameters involved in forming restrictions need not be exogenous . Restrictions
on non exogenous variables are called derived restrictions . Derived restrictions often arise
because a certain component within a device has to be forced to function in a certain way
(e .g ., a transistor in an electronic circuit has to remain in saturation) to achieve a desired
overall behavior (or to ensure that certain behaviors do not occur). Derived restrictions
have to be justified by linking them to primary restrictions by a formal methodology. This
requires determining exogenous parameters from a scenario model, establishing primary
and derived restrictions and their relationships, and checking if a set of restrictions added
to achieve a specific behavior are consistent .

In the refrigerator example there are a number of restrictions which must be made
in order to obtain an equilibrium state in which the model is actually functioning as a
refrigerator . First, it is necessary to ensure that the initial conditions are such that heat
flow occurs in the proper direction, i.e ., from the inside to the outside of the refrigerator .
Correct functioning of the the condenser and evaporator are the key to ensure this behavior.
Second, it is necessary to ensure that the refrigerator continues to operate properly. Thus
we must have equilibrium conditions such as balanced fluid flow and a constant gas fraction
in each location .
To elaborate, a trivial restriction that we can establish is that the refrigerator operates

by taking heat from a cold interior to a warmer exterior, i.e ., Tint < T~t . This restriction
is primary since both parameters are exogenous in our model . To ensure heat flow into
the evaporator from the interior of the refrigerator we must choose T,� < Tint . This is
still possible since T,� is exogenous.
An example of a derived restriction is the requirement that the temperature of the evap-

orator be at the saturation temperature (boiling point) : T,� = Ts,, so as to ensure that
the fluid absorbs heat as it evaporates and expands . The temperature of the evaporator
is already constrained by T, � < Tint . Ts,�, on the other hand, is not exogenous . It is
determined by the pressure in the evaporator which in turn depends on other quantities
(see Fig. 2) . To constrain Ts,� by the above equality, we must relate it to restrictions on
exogenous quantities .

3.4

	

Ways of Implementing Restriction
The restriction method constitutes a theoretical technique which aids in constructing qual-
itative models. The implementation of this method in a problem solver can be at various
levels of detail . At the simplest level the necessary restrictions as well as their justifica-
tions are simply built into the model as assumptions . This method will be termed basic



restriction . This method has the advantage that it can be added to a qualitative model
with little change in the way the problem solver operates . Qualitative simulation using
the model verifies that the restrictions produce the desired behavior. A second method is
verified restriction . Here the necessary restrictions, both primary and derived are added
to the model; however, the justifications of one in terms of the other are verified by the
problem solver to prevent the possibility of human error in constructing the model . Yet
a third method is automatic restriction . In this case restrictions would be determined
automatically from specifications of desired behavior .
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Composition Rules for a.'s
Composition of a sequence of a q functions can be summarized into the following rules:

1 . The composition of any number of a q+ 's produces a resultant aq+.

2 . The composition of an odd number of aq -'s produces a aq - .

3 . The composition of an even number of aq-'s results in a aq+ .

4. Any composition involving a a q results in a a q .

The conditions under which the ultimate aq value holds is determined by the logical
"and" of all the conditions under which each of the individual aq values were deemed true.
An example of composition used in the refrigerator model involves the saturation tem-

perature Ts,, . This depends only on the pressure, i .e ., Ts,, aq+ Pev (Fig . 2) . In our model,
the pressure in a container depends on temperature, T, amount of fluid, AF, fraction of
fluid which is gas, G, and volume of the container, V.

Pev aq+ AFev7 Pev aq+ Tev7 Pev aq- Vev, Pev aq+ Gev

By composition with the previous proportionality we obtain the ultimate qualitative pro-
portionalities :

The issue that remains to be resolved is what happens when there are multiple paths
from a dependent variable node to a given leaf. Forbus considers the dependency graph to
always be a tree so this case would not occur[5] . We prefer to leave this possibility open.
If there are multiple paths and the ultimate aq value of each path is the same type, then
the ultimate aq value between dependent variable and leaf node variable is of this type . If
there are multiple paths and the aq values along each path are different, then the ultimate
aq value between the two variables is indeterminate.

Relation Type of right hand side Influences
Tsev aq+ AF,.� (initial exogenous) Fluid flows
Tsev «q+ Tev (initial exogenous) Heating
Tsev aq- Vev (exogenous) none
Tsev aq+ Gev (initial exogenous) various
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Relating Primary and Derived Restrictions
Derivation of parameter restrictions for dependent variables require that they be linked
to restrictions on related exogenous variables (i.e ., primary restrictions) . This may re-
quire that the quantity spaces of the exogenous variables involved be augmented by new
landmark values .
Basically we would like to use properties of monotonic increasing or decreasing functions

to relate restrictions of dependent variables to restrictions on independent variables . In
QPT however we have qualitative proportionalities instead of directly having monotonic
functions . A qualitative proportionality expresses a functional relationship, and provides
a constraint on the partial derivative of any such function, i .e .,

Y aa+ X

	

Y

	

=

	

f( . . , X, . . .), andaf

	

>

	

0.

It does not specify the complete list of arguments in the functional relationship .
We also are faced with the need to work backward. We have restrictions on dependent

parameters which we would like to translate into restrictions on exogenous parameters .
Since the original parameters are dependent we have ultimate qualitative proportionalities
which relate them to exogenous parameters . The range for the dependent variable for which
a particular qualitative proportionality holds is important . We are trying to restrict the
dependent variable to a certain value or range of values . This means that the qualitative
proportionalities which are of interest are those which hold in this restriction range . For
example, assume we are trying to justify the derived restriction A > B where A is the
dependent variable . The restriction range for A is the open interval (B, oo) . Knowing that
A aq+ X in some region below B is irrelevant .
For consistency of notation we add to the quantity space for A, the quantities -+oo and

-oo . We add the order relations X < -+oo and X > -oo for every value in the old quantity
space including A. We also adopt the () notation for an open interval in a quantity space,
i.e ., A E (A1 , A2 ) means A > A1 and A < A2.

It is useful to go back and examine the characteristics of the exact models which we
can represent using a qualitative proportionality. In each of those models A is given by a
continuous, strictly increasing function, f( . - - , X, - - -) in some domain, D which is a subset
of the real line . The range of f is (Al , A2) . If such an f did not exist there would be some
point A3 in (A,, A2) for which the qualitative description A ae+ X (or A aq_ X) would
fail . Although this fact may seem obvious it is not totally trivial . There can actually be
several such functions corresponding to different domains. For example, if A = sin(X) and
we are concerned with A in the interval (0,1) there are actually an infinite number of X
intervals for which A aa+ X . We have a different, continuous strictly increasing function
from each of these intervals to (0,1) .

It is an elementary theorem that the inverse of a continuous strictly increasing function
is a continuous, strictly increasing function . Thus f has an inverse finv. Furthermore,
the image of (Al , A2) under this inverse is an open interval (Xl , X2 ) . The domain of our
qualitative proportionality is described by landmarks and certainly does not include a
landmark for every point in (XI , X2) ; we can, however, add further landmark values to
the quantity space for X which correspond to any of these points . The only requirement
on a new landmark value is that such a value must exist in every exact model which is
represented by our qualitative model.



Figure 3: Behavior Of A And B With Respect To X

We would like to use continuity and asymptotic behavior to propagate derived constraints
of the form A > B or A < B or A = B back to constraints on exogenous parameters .
For example, in the refrigerator model, total flow of fluid is determined by competition
between compressor and expansion valve . We choose models where the compressor runs at
a constant rate, but the expansion valve opens and closes depending on the pressure in the
condenser and evaporator. From a control viewpoint, the expansion valve must determine
the fluid flow rate when it is open, and the derived restriction Flex > F",' has to be
imposed so that the amount of fluid in the evaporator does not decrease to zero . Note that
Flex and Fhm are flow rates in the expansion valve and compressor, respectively. Flex
depends on several quantities, one of which is a size parameter for the expansion valve
opening : Flex aq+ ESize. By propagating the derived constraint back to a constraint on
this size parameter we can ensure that it is large enough so that Flex > F1,, .
The basic idea when using aq+ to justify a derived constraint is that if B is in the open

interval (Al , A2) and is not increasing with X while A does increase with X we must have
the situation shown in the graph in Fig. 3 . This means we can ensure A > B, A < B or
A = B with the proper choice of X . A similar situation holds when using aq_ .
The following lemmas can be rigorously established .
Restriction Derivation Lemmas

X

Lemma 1 . A > B justification by X > X3 when A aq+ X
Assume :
a . A aq+ X forA E (Al, A2)
b . B aq+ X is not true if B E (A,, A2)
c. B < A 2 , and d. X is exogenous.
Then:
We can add an element, X3, to the quantity space for X such that a choice of the primary
restriction, X > X3, implies the derived constraint, A > B.

Lemma 2 . A < B justification by X < X3 when A aq+ X
Assume : a . A aq+ XforA E (Al, A2)
b . B aq+ X is not true if B E (Al, A2)
c. B >A,



d. X is exogenous.
Then:
We can add an element, X3, to the quantity space for X such that a choice of the primary
restriction, X < X3 , implies the derived constraint, A < B.

Lemma 3. A > B justification by X < X3 when A a9_ X
Assume :
a. A a9_ XforA E (A1 , A2)
b . B aq _ X is not true if B E (Al, A2)
c. B < A2
d. X is exogenous
Then :
We can add an element, X3, to the quantity space for X such that a choice of the primary
restriction, X < X3, implies the derived constraint, A > B.

Lemma 4 . A < B justification by X > X3 when A aq_ X
Assume:
a. A a q_ XforA E (A1, A2)
b . B aq_ X is not true if B E (Al, A2)
c. B > Al
d . X is exogenous .
Then:
We can add an element, X3, to the quantity space for X such that a choice of the primary
restriction, X > X3 , implies the derived constraint,'A < B.
Lemma 5 . A = B justification by X = X3 when A aq+ X.
Assume :
a. A aq+ XforA E (Al, A2)
b . B aq+ X is not true c. B E (Al, A2)
d. X is exogenous.
Then:
We can add an element, X3, to the quantity space for X such that a choice of the primary
restriction, X = X3, implies the derived constraint, A = B.
Lemma 6. A = B justification by X = X3 when A aq_ X
Assume:
a. A aq_ XforA E (A1, A2)
b . B aq _ X is not true c . B E (Al, A2)
d. X is exogenous .
Then :
We can add an element, X3 , to the quantity space for X such that a choice of the primary
restriction, X = X3 , implies the derived constraint, A = B.

The proofs of these Lemmas appear elsewhere.
In the refrigerator model we wish to justify the derived restriction Ts,� = T,� where

Tse� aq+ AF,� . The interval for Ts,� is (0, oo) . AF,� plays the role of X. We use lemma
5 and require AF,� = AF, for justification.
Lemmas 1-6 did not specify how X3 depends on the other quantities . In each case we



held fixed all dependencies except those on X . The other quantities involved are A1 , A2 , A,
and B. Let us consider A1 and A2 to be fixed . We, therefore, take the set of all parameters
on which A, and B depend and delete X . The resulting set is the set of parameters on
which X3 will depend . In the above example the primary restriction is actually AF,, _
AF'1 (Te,, Ve� , G.� ) . We can actually determine more details of the parameter dependencies
in primary restrictions . The primary restriction in any corresponding exact model can be
written as an equality involving a new parameter K1 . X = X3 + K1 , where Kl is required
to be +, -, or 0 as needed to provide the >, <, or = when Kl is not present . Likewise the
derived constraint may be written .4 = B + K2 , where K2 is -}-, -, or 0 as required . Thus
dA = dB + dK2

If A = A(X, Si , -

	

, S�,) and B = B(X,T1 , - ,T�,,) then the above equation which be-
comes

aA(-)dX + ( aA )dSi + .. . + (
aA )dS,i =

	

aB(-)dX + ( aB )dTi + . . . + (
aB
a,T, _ )dT,n + dK2,

UAL

	

USl	8Sn

	

aX

	

aTl

where aG means the partial derivative of F w.r.t . G . This leads to

dX 3 =

	

as )dT, + . . . + (aTm )dTm
a

(asl )dSl - . . . - (ann )dSn

	

dh'1 + a dK2
( aT,

where a = ((aAlax)-(aBlax))
By examination of the above equations we can determine four rules for qualitative pro-

portionalities involving X3 . These dependency rules are :
Restriction Dependency:

1 . If either A or B in the lemmas above depends on a parameter in an unknown way,
then X3 depends on the same parameter in an unknown way.

2 . For justification lemmas using aq+ :
If B depends on a parameter, X3 depends on that parameter in the same way.
If A depends on a parameter, X3 depends on that parameter but in the opposite
way.

3 . For justification lemmas using a9- :
If A depends on a parameter, X3 depends on that parameter in the same way.
If B depends on a parameter, X3 depends on that parameter in the opposite way.

4 . In case of conflict using the above rules a dependency exists but is of unknown type .

In the refrigerator example, Ts,, is A, T, is B, and AF,� is X3. Since Ts,, a4 - Ve�
must have AF,, av+ Ve� .

5 .1

	

Consistency of Multiple Restrictions

We can combine primary restrictions if they are consistent . This, of course, means
corresponding derived restrictions must hold and be consistent .
Primary restrictions are of one of the following three types:

(I) X > X,(Ri,- . .,R,,,)
(II) Y < Yi(Si , . . . , Sm)

we

the



(III) Z = Zi(T1,- . .,T.)
The left sides represent the dependent quantities; the right sides contain the independent
quantities in the given restriction . To determine the consistency of the set of restrictions
do the following -
First for each restricted parameter determine whether the set of restrictions for it is con-
sistent using the following rules :

1 . Any two nonidentical restrictions of type three are inconsistent .

2 . Any set of restrictions on the same parameter which are all of type one or all of type
two are consistent .

3 . Two restrictions of different types are of unknown consistency unless there is special
information in the form of an auxiliary inequality relating the right hand sides of the
restrictions, i.e .,
if X > Xl and X < X2 then we need Xl < X2
if X > Xl and X = X2 then we need X2 < Xl
if _X < Xl and X = X2 then we need X2 < Xl
The needed auxiliary inequalities may be known. If not, they must be taken as
additional derived constraints and we must attempt to find choices for primary re-
strictions which justify them. In special cases this works but not in general.

If each pair of restrictions on a parameter are consistent then the set of restrictions on
that parameter is consistent . If any pair of restrictions on a parameter is inconsistent then
the set of restrictions is inconsistent . Otherwise, consistency of the set of restrictions on a
single parameter is unknown.
To show that a given set of restrictions on multiple parameters is consistent we determine

if the restrictions on each parameter are consistent . If they are, then we construct the de-
pendency graph for all restrictions on all parameters . A sufficient condition for consistency
of the entire set of restrictions is that this graph have no cycles .

If the dependency graph for restrictions has cycles, they can often be broken by compen-
sation. For example, if A aq+ X and A aq+ Y , and these proportionalities have the same
range, we can force A not to be dependent on X by adding the derived constraint A = B,
where B is constant . This is nothing more than an application of Lemma 5 . It is called
compensation since the primary restriction which ensures A = B will force Y to depend
on X in such a way that it compensates for changes in X .

5.2

	

Restrictions and Time Behavior
The correct time behavior of a system may occur automatically if the correct restrictions
are made at an initial instant of time . We can also restrict the time behavior more directly
by restricting the values which can be assumed by the magnitude of the derivatives of
quantities of interest . The magnitude of a derivative can be equated to a separate variable .
The methods discussed above will apply to this variable and we can restrict its values by
the same methods we would with any other variable . If we define Y =X then Y is just
another parameter which we can restrict .
In certain cases, when the exogenous parameter is not of an initial value type the pa-

rameter value may be defined to vary as a function of time so that the restriction holds
permanently . Using an exogenous parameter whose value varies as a function of time
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to ensure a desired behavior usually means that the system is actually coupled to some
feedback device which is not modeled .

6 Conclusions

We have developed a technique for restricting qualitative models to ensure more specific
behavior . The basic restriction technique was applied to a refrigerator model. It required
fourteen primary and six derived restrictions in order to ensure that the basic model
(a) transferred heat from cold to hot sides only and (b) started from and stayed in an
equilibrium state[8] .
The implementation method involved adding primary restrictions as assumptions to the

individual view for the refrigerator . The individual view for the refrigerator also contained
Prolog rules which produced the associated derived restrictions when the appropriate qual-
itative proportionalities were active and recorded the connection for possible explanatory
or diagnostic use.
One solution to the ambiguity problem is to add to the model assumptions which select

one of the possible behaviors . These additional assumptions are termed OPERATING
assumptions by Falkenhainer and Forbus[4] . OPERATING assumptions are always con-
sistent with the model in that they select one of the possible behaviors and do not impose
a behavior which contradicts the model.
What is wrong with OPERATING assumptions? The difficulty is that they are ad hoc

selection rules which are not explicitly connected to the structure of the model. Derivation
of behavior from structure is more than a philosophical requirement ; it makes the model
more useful . For example, if our refrigerator fails to operate properly the restrictions
should provide an aid in diagnosing the cause of failure . The restriction process can be an
aid in developing qualitative designs for mechanisms and qualitative control methods. The
specificity of restriction allows for more realistic models . Do we prevent a gas container
from exploding by limiting the amount of gas it contains or by increasing the strength of
the container as needed. Both parameters may be technically exogenous but limiting the
amount of gas may be far more realistic than increasing the strength of the container .
A problem solver using basic restriction must explicitly contain the connections between

primary and derived restrictions . This makes them available for diagnostic and explanatory
purposes . It can, however, rely on the person constructing the model for the validity of the
connections . Qualitative simulation with such a problem solver verifies that the restrictions
produce the desired behavior .
A problem solver capable of restriction verification must be able to verify that the con-

nections are valid ones according to restriction theory . It should perform the following
steps :

1 . Identify all exogenous parameters in the model it is using .

2 . Verify the association of derived restrictions with primary restrictions using the rules
1-6 given.

3 . Verify consistency of multiple restrictions .

Steps 1-3 are not difficult and has been added to the TEPS problem solver. Verification
can be turned on or off; when it is on the problem solver examines all a9 's which are active



for the current process and view structure, and constructs a dependency graph based
on these. Leaves of this graph determine exogenous variables . The composition rules
given earlier allow verification of ultimate qualitative proportionalities. Restrictions are
labeled by type ; consistency of restrictions of each variable is checked separately. Finally,
a dependency graph for restrictions is created and checked for cycles .
Automatic restriction is a difficult problem. Often there are many possible ways of

restricting a system with no unique choice . Furthermore, finding a set of restrictions
which ensures a specified behavior by performing a systematic search through the space of
all possible combinations of all possible restrictions seems hopelessly difficult in most cases .
One possible approach involves the thought experiment method discussed elsewhere[7] . As
applied to this problem the method would consist of using simplified versions of a problem,
determining the restrictions needed to ensure a certain behavior for these simplified models
then assuming that the restrictions required for the more complex model were a superset
of those found for the elementary model.
The present paper has dealt with the restriction problem for qualitative models based

on the QPT formalism. Qualitative Process Theory has the advantage that the basic
formulation of a model uses functional dependencies are always "one way", leading to
clear identification of exogenous parameters . If suitable information about exogenous
parameters is added to models based on the techniques such as those of de Kleer and
Brown[2], Kuipers[9] and others, similar results are possible .
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