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Abstract

In this paper we present a new approach to model-based moni-
toring and diagnosis of dynamic systems. We extend related research
work which concentrates either on monitoring (i .e . fault detection) or
on diagnosis (i .e . fault localization) and therefore misses important
aspects of effective and efficient troubleshooting .

The presented DIAMON algorithm) uses hierarchical models to
monitor and diagnose dynamic systems. DIAMON is based on
the integration of teleological parameter-based monitoring models
and repair-oriented device-based diagnosis models . It combines
consistency-based diagnosis with model-based monitoring and uses an
extension of the QSIM-language for the representation of qualitative
system models . Furthermore, DIAMON is able to detect and localize
a broad range of non-permanent faults and thus extends traditional di-
agnosis which exclusively deals with permanent faulty behavior . The
operation of DIAMON will be demonstrated on a real-world example
in a multiple-faults scenario .

1 DIAMON means DIAgnosis and MONitoring Algorithm



I Introduction

Knowledge-based monitoring and diagnosis of dynamic systems has tremen-
dously gained in significance over the last years. Early approaches in this
field mainly used heuristically derived causal relations between faults and
their causes to determine a technical system's faulty behavior. Although
many implemented expert systems using these concepts offered a high run-
time performance, they all suffered from well-known disadvantages like in-
completeness and inflexibility.

On the other hand, research in the field of model-based diagnosis has typ-
ically concentrated on static technical systems (e.g . [Dav84, Gen84, Rei87,
dKW89, FLN90]) . Although these systems have been successfully applied to
diagnosis in static problem domains (e.g . digital circuits), they are incapable
of dealing with dynamic mechanisms which exhibit time-varying behavior.

Only a few model-based approaches trying to monitor and/or diagnose dy-
namic systems have been published in the past (e.g . [DK89, Ng90]) . Most of
them resort to qualitative simulation as an inference engine during the trou-
bleshooting process to predict possible behavior patterns . Additionally, the
architecture of the used qualitative system models is either non-hierarchical
or contains discrete layers of abstraction.

Unfortunately, all approaches concentrate either on monitoring (i .e . fault
detection) or on diagnosis (i.e . fault localization) and therefore miss im-
portant aspects of effective and efficient troubleshooting . We present an
integrated algorithm which performs both tasks and which can therefore be
used as a widely applicable general framework for troubleshooting dynamic
systems.

We start in Section 2 with a discussion of the various problems that occur
in the course of troubleshooting dynamic systems . In Section 3 we present
our approach how to solve these problems and describe the important prop
erties of DIAMON. The operation of DIAMON is shown on a real-world
control problem - troubleshooting a central heating system. Section 4 dis-
cusses related research work and compares it with our approach, closing with
some comments on future work.



2

	

Troubleshooting Dynamic Systems
In order to build an integrated control system doing both monitoring and
diagnosis in dynamic environments, we have to be aware of the issues which
are involved in such a task . This section will therefore be devoted to clarifying
the relationship between dynamic and static diagnosis and monitoring.

2.1

	

Dynamic vs . Static Diagnosis/Monitoring

While diagnosis of a faulty component in a static system is a comparatively
straightforward sequential process of fault detection, measurement selection
and fault localization, this process grows more complex in a dynamic system .

Example 1 [Central Heating System:] Consider the central heating sys-
tem depicted in figure 1 . The figure contains the device compo-
nents (e.g . ROOM, BOILER, RADIATOR, etc.) and parameters (e.g .
RControIJRwater, TRoa,n, etc .) . The function of the central heating system
is to guarantee that the actual room temperature TRoo�, equals the intended
room temperature T�,anted . The function and the structure of this device will
be explained in more detail in Section 3 .
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Figure l : Central Heating System



In the course of monitoring and diagnosing this dynamic system, we have
to solve the following problems :

Multiple Layers of Detail : Due to the use of several layers of models
(monitoring models, hierarchical diagnosis models), we must take a
changing system description and component set into account . In or
der to improve efficiency, real-time monitoring tends to minimize the
amount of parameters under observation, and constraints are usually
not component-oriented . In our example, checking the thermostat and
the room temperature is enough for most monitoring purposes . Hier-
archical diagnosis models use mostly component-oriented constraints
at different abstraction levels . In our example, the most detailed level
includes all the components depicted in figure 1 . Hierarchical models
can of course also be used in static diagnosis, but dynamic systems
usually need a greater variety of model layers .

Temporal Observations : Observations consist of sets of measurements at
different time points, determining the value of a specified set of pa-
rameters at different times . As a consequence, taking measurements
sequentially is usually not feasible in a dynamic system as all parame-
ters in a measurement set have to refer to the same system state (which
changes over time) . Additionally, the observation rate (i .e. the time
period between measurements) is usually chosen such that all system
states can be observed .

Time Dependent Behavior: We have to take various modes of correct
behavior and various system states into account. For example, after
turning the thermostat to a higher temperature, the temperature dif
ference between room and thermostat temperature is perfectly normal .
However, if they are not equal after a sufficient time period has elapsed,
this difference leads to a conflict set .

Intermittency of Faults : Static diagnosis as in [Gen84] or [Rei87] assumes
that the mode (ok or ab) of a component does not change during the
diagnosis process (non-intermittency of component modes) . However,
this may or may not be recognized in the different situations which are
characterized by the parameter sets . A dynamic diagnosis system has
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to handle this intermittency offaults . For example, if one of the heating
elements is not working, we detect this fault only after a sufficient time
period has passed and the room is still not warm enough . Additionally,
the monitoring system should be able to detect even transient faults,
which may be caused by external events not modeled in the system.

Intra State Consistency : Some diagnosis engines (like [Dav84]) use mul-
tiple test vectors (parameter sets) which are assumed to be independent
and describe only one system state. In dynamic systems we have to
describe the system in several system states . Therefore not only con-
flicts of a parameter set with respect to the correct system state are
relevant, but also conflicts describing faulty transitions between these
system states have to be included into diagnosis . In our example, as-
sume two system states heat and cool . The transition from heat to cool
takes place, if T,oo,n > Thigh, while the system changes from cool to
heat, if T,oo�< < Tiow . If such a transition takes place too early (i .e ., if
the heater turns off too quickly), we get a conflict with the specified
behavior .

The above discussion shows that the current state-of-the-art of model-
based diagnosis which is limited to static systems and permanently faulty
behavior is unable to solve the discussed problems. It is the goal of our
approach to extend model-based diagnosis with respect to dynamic systems
and to solve most of the above mentioned problems.

2 .1 .1

	

Monitoring - a Necessity in Dynamic Systems

Having designed a structural and behavioral model of a static device we can
unambiguously derive predictions about its correct behavior . Therefore, we
do not have to monitor a static system as its behavior is precisely determined .

However, making predictions about the correct behavior of dynamic sys-
tems is a more complicated task .

If we resort to qualitative modeling techniques and use qualitative simu-
lation for behavior prediction, we can usually predict more than one possible
behavior pattern. Consequently this requires a monitoring phase in the trou
bleshooting process to detect inconsistencies between sets of observations and
possible correct behavior patterns .
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On the other hand, we claim that it is not necessary to observe all possible
correct behavior patterns . It is sufficient to determine whether the device
fulfills its function or not . For example, we will use a car long after some
small deviations from its original behavior specification have occurred . In
general this function of a device can be modeled according to its purpose TEL
(which, for example, is expressed in first order sentences) by a teleological
monitoring model (denoted with TELm) following the condition

is consistent .

TEL, n

	

n

	

ok(c) ~= TEL.
c E COMPTELM

Note that in the above definition COMPTELM will be the dynamic system
itself (i.e . we can use the abbreviation ok(device)) . However, we can easily
extend this general concept to allow subpurposes of subparts of the system.

In contrast to [Fra89] who proposes the derivation of teleological models
from an envisionment, we derive such models heuristically . We claim that a
teleologic model contains meta-knowledge about the purpose of the device
which can only be determined by a human expert and which includes such
knowledge as which faults can still be tolerated.

While monitoring, we have to check only the accordance of the actual
behavior with this teleological model under the assumption that the device
works correctly.

Definition 1 (Monitoring) Monitoring is the process of testing whether

TELM n ok(device) n OBSM

Usually fault detection alone is not sufficient and we need an additional
diagnosis phase to provide sufficient information about fault localization for
repair .

Additionally, we have to clarify how the choice of a qualitative model
influences the monitoring and diagnosis process.

2 .2

	

Viewing Qualitative Models from Different Per-
spectives

In order to clarify the differences between simulation, diagnosis and moni-
toring models, we have to analyze the task that uses these models.
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2.2.1

	

Simulation Models

An important issue concerns the structure of qualitative models . In most
cases simulation does not use hierarchical models . Although [FD89] intro-
duce component-connection models which allow hierarchical modeling at an
abstract level, the translated QSIM-constraints again use only one level and
are therefore flat .

Doing simulation we are mainly interested in the behavior of the dynamic
system over time . This behavior is optimally deduced from a structural model
which uses time-varying parameters as its model primitives and which does
not necessarily have to contain component-oriented knowledge.

Doing simulation we want to derive all behavior patterns with respect
to the qualitative model no matter whether they describe faulty or correct
behavior . Note that the term all refers to the chosen level of qualitative
abstraction in the simulation model - of course we can not guarantee the
derivation of the complete set of behavior patterns including all possible
levels of abstraction .

The partial inclusion of models which describe physically impossible be-
havior is caused by the qualitative nature of the representation language and
the problem-solving strategy of the simulation algorithm ([Kui85]) .

2 .2.2

	

Monitoring Models

We claim that the main task of monitoring is to check in real time if the
purpose of the system is still fulfilled. A monitoring system observes under
real-time constraints a small set of parameters and determines their correct-
ness with respect to the system description. Consequently, efficiency is one
of the main goals.

Therefore, a monitoring model usually contains only a few parameters
and constraints necessary to describe the teleological purpose of the device .
Additionally, such a monitoring model will not contain hierarchies in most
cases.

Informally, we restrict the set of simulation models by adding teleology in
accordance with the previous discussion about teleologic monitoring models .

Note that a monitoring model can be viewed as an instantiation of the
system's teleology . In general, however, system teleology may cover a broader
range of purpose than the monitoring model actually expresses.
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2 .2 .3

	

Diagnosis Models

Simulation and monitoring models are both built using parameters and con-
straints . This parameter-oriented view, however, is not sufficient for di-
agnosis. Parameters can represent fault symptoms (e.g . the exceeding of
thresholds), but faults are usually related to physical components . We as-
sume here that the main aspect of diagnosis is to provide information for
repair, and only mechanical devices (and not parameters) can be repaired
' . We therefore have to relate purely parameter-oriented constraints (e.g .
QSIM-constraints) to the device components that we want to diagnose and
to repair .

Diagnosis models include component-connection information and are typ-
ically hierarchically structured. It is obvious that the lowest-level model has
to contain only components which can be repaired, also called smallest re
placeable units or SRUs . The choice of the SRUs depends on the availability
of a repair-technician as well as on cost considerations .

An additional problem stems from the ambiguity of qualitative models .
It is well-known that qualitative simulation produces behavior patterns that
are physically impossible . These behavior patterns do not cause problems
for diagnosis as they are physically impossible and can never occur in reality.

However, there exists a third class of derivable behavior patterns (in ad-
dition to correct and physically impossible), faulty behaviors, which can lead
to diagnostic problems . Simulation of a qualitative model of correct behavior
can result in behavior patterns which could stem from a fault model as well,
even if correct and faulty behavior do not overlap in reality. This is caused by
the inexactness of the qualitative model describing dynamic behavior, whose
abstractions can sometimes remove the difference between different states .

We have already stated that simulation and monitoring models both are
usually flat and do not contain a structured hierarchy.

Diagnosis, on the other hand, greatly benefits from hierarchical models.
Complex real-world technical systems include intrinsic hierarchies which are
related to the modularity or the purpose of the mechanism. Note that not
only a derice-oriented structural model can be hierarchical ; we use hierarchi-
cal, parameter-oriented structural models as well to represent decomposable

'The adjustment of parameters is a struggle against fault symptoms, not against fault
causes .
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physical quantities (e.g . fluid flow) .
We have of course described extreme positions for these models . Some-

times it might be useful to express sub-purposes of sub-mechanisms . On
the other hand, diagnosis coupled with repair is also often oriented towards
reconstruction of a teleology which may be different from the one used for
monitoring . This topic is discussed in more detail in [FGN90b] .

The above discussion shows that diagnosis models are more restricted
than simulation models s but cover a broader range of expertise than moni-
toring models do .

In the above section we have clarified the problems that we have to solve
in the course of monitoring and diagnosing dynamic systems. In the follow-
ing part of the paper, we present our approach which solves most of these
problems .

3

	

The DIAMON System
The following section introduces the DIAMON system, a qualitative rea-
soner for model-based diagnosis and monitoring, which incorporates the prin-
ciples discussed in the previous section . After a short presentation of an
application example which will demonstrate the capabilities of DIAMON we
start with the discussion of some modeling aspects and continue with the
presentation of the algorithm.

3.1

	

Example: Central Heating System
Figure 2 shows the constraint-network of the central heating system: the
parameter model and the device model are connected by constraints. The
device-model contains three hierarchies consisting of 1 component (Central
Heating), 3 components (Room, Boiler, Pipe-System) and 8 components
(Thermostat, Radiator, Heaterl, Heater2, Switch, Insulation, Pipes, Pump) .

We use a flat monitoring model and a hierarchical diagnosis model which
consists of two levels . The monitoring level is modeled with 2 parameters and
1 constraint. The first diagnosis level (describing the 3 device-components)

wwtth respect to their qualitative expressiveness
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Figure 2: Constraint Network for the Central Heating

uses 7 parameters and 5 constraints, the SRU-level (describing the 8 device-
components) which is used for repair consists of 16 parameters and 13 con-
straints .

Table 1 explains those parameters of our model that are used for moni-
toring and diagnosis .

3 .2

	

Qualitative Modeling using Device Constraints
We extend the QSIM-language of [Kui86] by adding device-oriented knowl-
edge to the constraints .

Definition 2 (Device-Constraint) The syntax of a device-constraint is
grammatically defined as follows

Dev_Constr := ((constr)(of-comp)(corresp_values)+)

where (constr) and (corresp_values) refer to the traditional QSIM definitions
of (constraint) and (corresponding - values), and (1-of-comp) denotes the
list of device components which are associated by the constraint .
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is interpreted as follows :

Example 2 The device-constraint

Table 1 : Model Parameter

((M+(PA PB))(COMP1 COMP2)((lml lm2)(lm3 lm4)))

* parameter PB is a monotonic function of parameter PA

the constrained parameters are associated to the device-components
COMP1 and COMP2

o if the qualitative value of PA is landmark value lml (or lm3), then PB
simultaneously has the qualitative value lm2 (or lm4).

According to the introduced device-oriented extension, we distinguish
between four classes of device-constraints in our modeling language .

Teleologic Device-Constraints: A teleologic device-constraint contains
parameters that are used during the monitoring cycle to detect a first fault
symptom. It is obvious that the device itself (at its highest level of abstrac-
tion) is the device-oriented part in such a device-constraint.

Example 3 In our example, the following teleologic device-constraint states
the desired relationship between the intended and the observed room tem-
perature :

((EQUAL(T�,antod,TRoo.n))(Central-Heating) ((cold cold)(troo�, trt�,n )(hot hot)(inf inf)))

PARAMETER : EXPLANATION :
anted intended room-temperature (thermostat)

TRoom actual room-temperature
TBK"ater actual water-temperature in the boiler
TRWater actual water-temperature in the radiator
Wfl- water-flow in the pipe-system

Thcantrol control signal from the thermostat feedback
Rcontrol signal for the radiator-switch (exogenous)
Switch signal for the water-heater switch
HPower Heating Power (total)
HF,nl Heating Power from Heater 1
HF,n2 Heating Power from Heater 2



Tautologic Device-Constraints : These constraints exclusively denote
relations between parameters that cannot cause inconsistencies due to a com-
ponent failure . We use them to denote laws of nature, for example energy-
conservation, or to relate computation parameters. In contrast to the other
types of constraints a tautologic device-constraint is not associated to any
component as it can not provide any diagnostic information for troubleshoot-
ing .

Example 4 In our example, we use a tautologic device-constraint to relate
the intended room temperature, the actual room temperature and the tem-
perature difference (which is a computation parameter) . NIL denotes the
empty component set .

((ADD(Tdjf,f,TR.,T.uonted))(NIL)((0 cold cold)(0 tro. troom)(0 hot hot))))

Singleton Device-Constraints : Some device-constraints are explicitly
associated to only one component . They express restrictions on internal
operations of the component which do not affect its surroundings. An incon-
sistency between such a device-constraint and the observed values is therefore
explained by the assumption that the component is behaving abnormally.

Example 5 A device constraint is associated to the radiator, that expresses
a qualitative state of the radiator-signal :

((EQUAL(Rc.«,,,ON))(RADIATOR)(on on))

Set Device-Constraints : This class of device-constraints associates at
least two components. Although the included components are usually sit-
uated at the same level of abstraction, some set device-constraints might
associate components at different levels of abstractions as well. This is a use-
ful strategy for sophisticated focusing techniques during diagnosis . Clearly,
an inconsistency between constrained values in a set device-constraint and
observed values can only be explained by the fact that not all concerned
components can be assumed to work correctly.

Example 6 The monotonic functional relation (expressed by an M+ -
constraint (see [Kui86])) between the amount of water in the pipe-system
and the pressure of water associates the pipes and the pump:
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((M+(WPreaeure, WAmount ))(PIPES,PUMP)((O0)(pn~mol full)))

In this case, we use a set device-constraint to avoid the introduction of

additional parameters which are not observable . Additionally, set device-

constraints represent the behavior of connected groups of SRUs (we cannot

replace an abstract component like PIPE-SYSTEM) .

In contrast to [FD89], we do not view device-oriented models to be at a

higher level of abstraction than parameter-oriented models are . Instead, we

use different levels of abstraction for the integrated modeling language which

concerns device- and parameter-oriented aspects simultaneously.

3.2 .1

	

The Hierarchical, Qualitative Modeling Architecture

Monitoring and diagnosis of dynamic systems frequently requires hierarchi-
cally structured models . This is due to the complexity of dynamic systems
as well as to the different tasks for which the models are used .

The modeling architecture of DIAMON consists of three layers :

Monitoring Layer:

	

The monitoring layer of DIAMON contains a teleo-
logic device-constraint model which is used to check for faults in the system .
All parameters in the monitoring layer are continuously observed to guaran-
tee fast fault detection . Clearly the choice of an optimized monitoring model

(containing as few parameters as possible) is extremely important for the
efficiency of monitoring.

Note that if the monitoring layer contains enough parameters to pinpoint

the failure of a specific part of the device, then this focusing is done on the first
diagnosis level . In this case the first diagnosis level could actually consist of
the same parameters as the monitoring level, but additionally include device
components.

Diagnosis Layer:

	

The diagnosis layer of DIAMON contains hierarchically

structured device constraints which are used for the dynamic refinement of
fault localization . It is obvious that the complexity of a device is represented
in the hierarchical architecture of the diagnosis layer .
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Repair Layer :

	

The repair layer of DIAMON contains device constraints
which exclusively relate SRUs . If the diagnosis process reaches the repair
layer (i .e . all actual diagnoses only contain SRUs), it switches control to the
repair process.

3.3 Algorithm

The following section introduces the algorithmic principles of DIAMON. Us-
ing the central heating as an example we demonstrate how DIAMON detects
and localizes multiple faults .

3.3 .1

	

The Extended HS-DAG-algorithm

Previous approaches to monitoring have usually concentrated on the control
of predefined thresholds. Conversely we view both monitoring and diagno-
sis from the consistency-preserving point of view which allows us to cover
a broader range of detectable faults . The limits of detectability are due to
the expressiveness of the underlying constraint language, not to the moni-
toring/diagnosis algorithm itself.

DIAMON is built on top of the HS-DAG-algorithm [GSW90] which is
an improved version of the Reiter-algorithm [Rei87] for model-based diag-
nosis. The device-constraints are checked for consistency by a constraint
propagator . If an inconsistency in a constraint is detected, DIAMON adds
the associated components to the conflict set.

We have extended the basic HS-DAG-algorithm to deal with dynamic
systems similarly to the algorithm presented in [Ng90] .

3 .3.2

	

Dynamic Model Zooming

We have developed a continuous strategy of dynamic model zooming for the
diagnosis layer. Zooming denotes the process of focusing the diagnosis pro-
cess to the relevant parts of the model. In our current implementation we
use a breadth-first zooming strategy which recursively zooms in the hierar-
chically deeper level for all components which are part of a diagnosis. This
strategy guarantees a diagnostic process which is optimal w.r.t . the amount
of detectable faults .
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Best-first-zooming, on the other hand, allows the integration of heuristic
information and takes only small sets of diagnoses into account at a given
point of time. However, in comparison with breadth-first-zooming, a lot of
faults are not detected which can question many safety-critical applications .

The careful integration of both strategies will be a topic for future re-
search. We will allow the integration of heuristic information for model-
zooming whenever possible and if no safety-criteria are violated .

3 .4

	

The Monitoring/ Diagnosis Cycle
Continuing the above discussion we present a formal definition of the
DIAMON-algorithm .

Let M be the system description consisting of a sequence of qualitative
models mo, ml , . . ., Mn, E denotes a set of diagnoses A (following [Rei87]) .

According to our hierarchical modeling concepts, mo is the monitoring
layer, Mn denotes the repair layer and Mk with 0 < k < n are the models of
the diagnosis layer . mactua! E M denotes the current working model used for
troubleshooting .

Let Pn, ; denote the set of parameters of model mi and let Cm; denote the
set of components of model mi for 0 _< i < n, rni = Pm; U C~ni .

Let further succ be the binary relation M x (CM x CM) --4 M with
succ(mi, E) = mi+l for i = 0 to n-1 . In our current implementation, succ is re-
alized by a breadth-first zooming strategy which refines all device-components
of a dynamic diagnosis .

Let further D, denote a sequence of sets of measurements do , dl , . . ., d,
with cardinality(di ) _< cardinality(dj) and di g d; for j > i . dactuai E D, is
the current working set of measurements .

Finally let follow be the unary relation D, --+ D, with follow(di) = di+i
for i = 0 to n-1. DIAMON's implemented follow-relation extends Pma,t,

by Psucgma«ua,) = Pmaa,ad U follow(dactua,) .
In the following description, CONSISTENT(m, d) denotes the call of

the theorem prover which checks whether model m and measurement set d
are consistent . The result of CONSISTENT(m, d) is either the empty set
or the set of conflicts con . HSDAG(con) denotes the call of the HS-DAG
algorithm which returns the set of diagnoses (i.e . the minimal hitting sets
for con) and READ(d) describes the observation process of parameter set d .
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Accordingly the DIAMON-algorithm consists of four steps :

1 . INITIALIZATION :
Tnactual :_ 7no ;
dactual := do ;
E := 0;

2 . MONITORING :
WHILE ((con := CONSISTENT(mactual , dactual)) = 0) DO
READ(dactual):

3. DIAGNOSIS:
REPEAT

UNTIL (E C mn)

4. (REPAIR:
REANIMATE; GOTO 1)

E := HSDAG(con) ;
7nactual := Succ(mactual, F+);
dactual = follow(dactual) ;
READ(dactual) ;
con := CONSISTENT(mactual,dactual) ;

In this paper we concentrate on monitoring and diagnosis and do not dis-
cuss repair strategies . We are currently investigating and evaluating various
strategies how to restore teleology in a dynamic system doing repair (see also
[FGN90b]) .

3 .5

	

Example: A Fault Scenario in the Central Heat-
ing System

Applying DIAMON to the on-line control of the central heating system yields
the following results for the detection and localization of a double fault .

Assume that the radiator is switched off and one heating element (H2)
is permanently faulty. DIAMON correctly detects that TRoom differs from
Twanted and switches to the first diagnosis level . Additional parameters
and constraints are zoomed in (state s2), i.e . the parameters are mea-
sured and the constraints are evaluated . This is done again in state s3 to
reach the SRU-level . The diagnosis process finally localizes the double fault
[RADIATOR, H2] .

Table 2 summarizes the control process (s0 - s3 denote the qualitative
system states (see [Kui86])) .
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Table 2 : Double-Fault-Diagnosis

4

	

Conclusion and Related Work
We have presented a new approach to model-based troubleshooting dynamic
systems which uses an extended constraint language for hierarchical system
models and which is based on consistency-preserving algorithmic concepts
for monitoring and diagnosis .

Our work is closely related to that of [DK89] and [Ng90] and it can be
seen as a continuation of their results . [DK89] present MIMIC, a sophisti-
cated program for model-based monitoring based on qualitative simulation .
In [Ng90], the algorithm of [11.687] for model-based diagnosis is extended
w.r.t . to the incremental diagnosis of dynamic devices . The DIAMON sys-
tem differs from these approaches in some important ways .

First, we use a combined model-based algorithm which integrates both
monitoring and diagnosis and which additionally uses hierarchical models
and a dynamic zooming strategy.

Second, DIAMON's fault coverage is more complete than those of [DK89]
and [Ng90] . In [DK89] faults can be missed due to the use of pre-simulated
fault models which do not allow the detection and localization of unantic
ipated faults . The algorithm of [Ng90] can miss faults if the heuristically
chosen incomplete sets of measurable parameters (as proposed in the exam-
ple of [Ng90]) do not represent the actual fault scenario .
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[ s0 sl s2 s3
Twanted TRaom std TR_ std TRoom std TRoo�, std
TRoom TRoom std (Cold TR-) dec Cold std Cold std
TBWater Cold HOT) dec Cold HOT dec
TRWater Cold std Cold std
Thc~oral ON std ON std
Rc-trol 0 std
Switch CLOSED std
Hpower ON nil
HF;�i ON std[ . HF

.nl 0 std
Layer: Monitoring Monitoring Diagnosis Repair
Actual Diagnoses

-
nil [Central-Heating ~ - [ROOM],

[BOILER]
RADIATOR,H2



In contrast to [Ng90], we allow many-to-one relations between compo-
nents and constraints and thus achieve more expressiveness in our qualita-
tive modeling language . For example, we can relate components at different
levels of abstraction .

The use of a hierarchical modeling architecture for troubleshooting is
closely related to to the work of [Ham91] who distinguishes between a func-
tional and a physical (repair) model for diagnosis of digital circuits .

We differ from [DK89] in that we do not use fault models and inductively
derived fault hypotheses for monitoring . Rather, we rely on the behavior
discrepancies to the correct behavior model, which allows us to handle unan
ticipated faults . Additionally, we do not have to simulate a sometimes large
set of fault hypotheses, which leads to better complexity of our system (see
also [FGN90a]). However, an integration of fault models or physical impossi-
bility axioms along the lines of [FGN90a] is possible, if this proves necessary .

An interesting topic which we are currently investigating is the question
of ontologies for reasoning about non-permanent faults in dynamic systems
(pseudo-transient and transient) .

We are also currently integrating this work with work done by the Fault-
Tolerance community on reasoning about time in the context of mean time
to failure (MTTF) and mean time to repair (MTTR) .
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