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Abstract

Effective problem-solving about complex engineered devices requires device models that
are both adequate for the problem and computationally efficient . Producing such models
requires identifying the relevant device features and determining applicable simplifications .
This paper presents a method for automatically constructing a device model by selecting an
appropriate model for each of the device's components using the context in which it operates .
We introduce context-dependent behaviors (CDBs), a frame-like component behavior model
representation for encapsulating contextual modeling constraints . We show how CDBs are
used in the model selection process by exploiting constraints from three sources : the struc-
tural and behavioral contexts of the components, and the expected behavior of the device .
We describe an implemented program for model selection . The inputs are the structure
of the device-the components of the device and structural relations between them-the
expected device behavior, and a library of CDBs . The output is a set of component CDBs
forming a structurally and behaviorally consistent device model that achieves the expected
behavior . We demonstrate the program on a temperature gauge .



1 Introduction

Effective problem-solving about complex engineered devices requires device models
that are adequate for the problem and computationally efficient . Producing such
models requires identifying the relevant device features and determining applicable
simplifications. In most existing applications, the user is required to construct the
device model appropriate for the task. Constructing models for complex devices with
a large space of possible models is a difficult, error-prone, and time-consuming activ-
ity requiring skilled and experienced engineers . Automating the model construction
process overcomes these drawbacks and provides future intelligent programs with a
useful modeling tool .

Model-based reasoning systems construct a device model by composing models of
the device components . These systems currently have a single model for each com-
ponent, thus limiting both the modeling scope and the problems that can be solved .
Allowing multiple component models adds flexibility and extends the scope. Produc-
ing the simplest, adequate device model consists of selecting component models that
are mutually compatible, globally consistent, and incorporate appropriate simplifying
assumptions.

The key idea underlying our research is that adequate component models are
determined by the context in which they operate. For example, a metallic pipe is
modeled either as a physical support or as an electrical conductor depending on
whether it supports a water tank or connects a battery to a light bulb . Further,
the metallic pipe is modeled either as a rigid or deformable support depending on
the strength of the pipe and the weight of the tank . Finally, if the focus is on the
pipe's support behavior, its other behaviors (e.g ., as a flow channel) are irrelevant
and are not modeled. Modeling the pipe as a combination of all its possible models
is impractical because it yields overly complicated and intractable models .

We have identified three types of contexts that provide modeling constraints to the
model selection process: the structural and behavioral contexts of the components,
and the expected behavior of the device . The structural context of a component con
sists of its physical properties and the components to which it is connected . Structural
constraints are modeling constraints on the structural context of a component . For
example, if a metallic pipe is connected to a battery, then it is modeled as an electrical
conductor. The behavioral context of a component consists of its behavior and the
behavior of related components . Behavioral constraints are modeling constraints on
the behavioral context of the component. For example, a metallic pipe acted upon
by a strong transverse force must be modeled as a deformable body. Expected be-
haviors are abstract descriptions of device behavior, and are provided by the user .
Expected behavior constraints are determined by the device's expected behavior . For
example, if the input/output behavior of an overhead flush specifies water flow, the
pipe supporting the tank is modeled as a flow channel .

This paper presents a method for constructing simple and adequate device mod-
els by selecting appropriate models for each of the device's components . Our method



Figure 1 : A temperature gauge

exploits the modeling constraints from the structural and behavioral contexts of the
components, and the expected behavior of the device . We introduce context-dependent
behaviors (CDBs), a frame-like component behavior model representation for encap-
sulating contextual modeling constraints. We describe an implemented program that
uses CDBs in the model selection process . The inputs are the structure of the device
the components of the device and structural relations between them-the expected
device behavior, and a library of CDBs . The output is a set of component CDBs form-
ing a structurally and behaviorally consistent device model that minimally achieves
the expected behavior. We demonstrate the program on a temperature gauge.
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Example: a temperature gauge
This section presents an example of a device with multiple models for its components,
and defines the properties of a good model . Figure 1 shows the schematic of a tem-
perature gauge, consisting of a battery, a wire, a bimetallic strip, a pointer, and a
thermistor . A thermistor is a semiconductor device ; a small increase in its tempera-
ture causes a large decrease in its resistance . A bimetallic strip has two strips made
of different metals welded together . Temperature changes cause the two strips to
expand by different amounts, causing the bimetallic strip to bend. The temperature
gauge works as follows : the thermistor senses the water temperature. An increase
in the thermistor's temperature causes its resistance to decrease, causing the current
flow in the circuit to increase . This current increase increases the temperature of the
wire, thereby increasing the bimetallic strip's temperature. As a consequence, the
bimetallic strip bends, causing the pointer to deflect along the scale.

To model the temperature gauge, we use a component model library that contains
multiple models for each component . Figure 2 shows part of the wire's space of pos-
sible models . For example, the wire can be modeled as an electrical-conductor,
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Figure 2 : The possible models of a wire .

which can be a perfect-conductor or a resistor . The resistor can be modeled as
a constant-resistor, a temperature- dependent-resistor, or a thermal-resistor
(which models the heat generated in the resistor) . The bimetallic strip can be modeled
as a thermal-bimetallic-strip, which models the strip's bending due to temper-
ature changes, or as any of the electrical conductor models . The battery can be
modeled as a voltage-source, which can be either a constant-voltage-source
or a variable-voltage-source (a voltage source with an internal resistance) . The
thermistor can be modeled as a thermal -thermist or, which relates its resistance
to its temperature, or as a thermal-resistor. The pointer assembly can be mod-
eled as a rotating-pointer, which relates the pointer's angular position to the scale
reading . All the components can also be modeled as physical-things with various
thermal, mass, and motion models .

The simplest model that explains the workings of the temperature gauge models
the wire both as a thermal-resistor and a constant-resistor, the bimetallic strip
as a thermal-bimetallic-strip, the pointer as a rotating-pointer, the battery
as a constant-voltage-source, and the thermistor as a thermal -thermist or.

This model satisfies the two important properties of a good model : adequacy and
simplicity . Adequacy guarantees that the model correctly captures the device's be-
havior . For example, ignoring the thermal properties of the wire (modeling it only
as a constant-resistor) fails to account for the bimetallic strip bending and con-
sequently the pointer's displacement . If the pointer does not move, the device does
not measure temperature changes any more . Simplicity guarantees that the model
captures only the physical phenomena necessary for explaining the device's behavior.
For example, modeling the wire's magnetic and kinematic properties in addition to
its thermal and electrical properties produces a consistent but needlessly complicated
model with respect to its main function of measuring temperature changes . Selecting
an appropriate subset of component models, from a space of possible models, guar-
antees both properties . In the following, we show how constraints from the structural



and behavioral contexts of components and the expected behavior of the device are
used to select adequate and simple device models .
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Context-dependent behaviors
Component models in our system are encapsulations of component behavior and con-
textual modeling constraints . We call these component models context-dependent
behaviors (CDBs) . Behavioral information is represented with qualitative or quanti-
tative time-varying equations . Contextual modeling constraints are represented with
structural and behavioral constraints (which are described in detail in sections 4 and
5) .

(defcdb resistor (electrical-conductor)

Slots of instances of resistor
((resistance

:range resistance-parameter
:documentation "The resistor's resistance"))
Values for slots of resistor

((equations
(_ (voltage-difference ?object)

(* (resistance ?object)
(terminal-current (electrical-terminal-one ?object))))

(> (resistance ?object) 0))
(possible-models constant-resistor

temperature-dependent-resistor
thermal-resistor)

(possible-model-of electrical-conductor)
(contradictory-models perfect-conductor)
(default-model constant-resistor)
(structural-constraints)
(behavioral-constraints

(implies
(> (* (terminal-current (electrical-terminal-one ?object))

(terminal-current (electrical-terminal-one ?object))
(resistance ?object))

(electrical-power-dissipation-threshold ?object))
(model-as ?object thermal-resistor)))))

Figure 3 : The resistor CDB .



CDBs are represented as frames that inherit properties to their instances . A com-
ponent is modeled as a CDB by making it an instance of the corresponding frame. As in
other frame systems, CDBs are organized into a generalization hierarchy representing
the "subset-of" relation between CDBs. CDBs are also organized into a "possible mod-
els" hierarchy (see for example figure 2) . The possible models of a CDB are the set of
CDBs that can be used to model instances of that CDB. The "subset-of" and "possible-
models" relations between CDBs may overlap , but are not identical . For example,
resistor is both a specialization and a possible model of electrical-conductor,
since every resistor is an electrical-conductor and each electrical-conductor
can be modeled as a resistor. However, thermal -thermistor is a specialization,
but not a possible model, of resistor, since not every resistor can be modeled as
a thermal-thermistor . Similarly, electrical-conductor is a possible model, but
not a specialization, of wire, since not every electrical-conductor is a wire .

Figure 3 shows part of the definition of the resistor CDB.' It is a specializa-
tion of the electrical-conductor CDB, and it defines the resistance param-
eter for its instances. The equations clause describes behavior with equations
relating parameters defined for instances of the CDB . The possible-models and
possible-model-of clauses describe the CDBs position in the "possible models"
hierarchy. The contradictory-models clause identifies models with mutually con-
tradictory assumptions . The default-model clause identifies a CDB that must be
added to each instance model unless the instance model contradicts the default CDB.
For example, a component modeled as a resistor should also be modeled as a
constant-resistor, unless it is also modeled as a temperature-dependent-resistor
(which contradicts constant-resistor) .

The structural-constraints and behavioral-constraints clauses define the
CDBs's contextual modeling constraints and are stated in a first-order constraint lan-
guage . Implication constraints with a model-as literal (or a conjunction of model-as
literals) in the consequent are called model-as constraints. A model-as constraint is
satisfied when the consequent model-as literals are satisfied for every variable binding
that satisfies the antecedents. A model-as literal is satisfied when its first argument
is being modeled as an instance of its second argument . Constraints that are not
model-as constraints are called general constraints.

Several CDBs, describing different aspects of a component's behavior, can be com-
bined to produce a component model. For example, a model for a wire can consist of
both the electrical-conductor CDB and the electromagnet CDB when both the
wire's electrical and magnetic properties must be modeled. The combined CDBs must
be mutually consistent . Combining CDBs supports the modeling of function sharing.

The relationship between components and CDBs is a many-to-many mapping: a
single component can be modeled by different CDBs, and a single CDB can model differ-
ent components . For example, a wire can be modeled by an electrical- conductor

'Symbols starting with "?" are variables . The variable "?object" is bound to the CDB instance
under consideration .



CDB or an electromagnet CDB . The electrical-conductor CDB can be used to
model a wire, a metallic pipe, or the chassis of a car. This many-to-many relation
between components and CDBs gives great modeling flexibility for different reasoning
tasks . For example, device analysis consists of finding the appropriate CDBs for a
given set of components . Device design consists of finding components for a given set
of desired behaviors described as CDBs.

In the following sections, we describe in detail the structural and behavioral con-
straints associated with CDBs.
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Structural context
The structural context of a component consists of its physical properties (e.g ., its

shape, mass, and material composition), the structural relations that it participates
in, and the components to which it is related by these structural relations . Struc-
tural relations are used to describe the structure of a device and include relations
such as connected-to (indicating that two component terminals are connected),
coiled-around (indicating that a wire is coiled around a component), and meshed
(indicating that a pair of gears mesh with each other) .

Structural constraints in a CDB are general and model-as constraints on the struc-
tural context of a component, that must be satisfied if the component is to be modeled
by that CDB. For example, the general structural constraint:

(and
(composition ?object ?material)
(metal ?material))

in the electrical-conductor CDB indicates that a component must be metallic for
it to be modeled as an electrical-conductor. General structural constraints are
similar to process preconditions in QP theory [5] . However, unlike process precondi-
tions, these constraints are not used to instantiate CDBs . Hence, the above constraint
does not require that every metallic object be modeled as an electrical-conductor.

Model-as structural constraints are used to enforce the selection of compatible
CDBs for structurally related device components. Compatible CDBs allow the struc-
turally related components to interact with each other . For example, the model-as
constraint:

(implies
(and (terminals ?object ?terms)

(voltage-terminal-type ?terms)
(connected-to ?terml ?term2))

(model-as ?term2 voltage-terminal-type))



in the electrical-component CDB indicates that if a component is modeled as an
electrical- component, then every terminal connected to that component's volt-
age terminals must be modeled as a voltage terminal . This allows the components
corresponding to the connected terminals to interact by sharing the voltages at the
connected terminals . In addition to being hand-crafted, structural constraints can be
derived automatically from the part of the domain theory that specifies component
interactions .
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Behavioral context
The behavioral context of a component consists of its behavior and the behavior of
related device components . The behavior of a component is the values, and variations
over time of the values, of parameters used to model the component . A component's
behavioral context can provide modeling information not explicitly available in the
structural context . Behavior generation makes the information implicit in equations
become explicit . Consider, for example, a piston moving inside a cylinder . If the
piston is reciprocating at a high frequency, as in a car engine, the friction and the heat
generated by the piston should be included in the piston-cylinder assembly model .
However, if the piston is reciprocating at a low frequency, as in a hand-held bicycle
pump, friction and heat can be ignored . The value of the reciprocation frequency
(i.e ., the behavior) of the piston determines the choice of models.

Behavioral constraints in a CDB are constraints on the behavioral context of a
component that must be satisfied if the component is to be modeled by that CDB .
For example, the constraint :

(implies
(> (* (terminal-current (electrical-terminal-one ?object))

(terminal-current (electrical-terminal-one ?object))
(resistance ?object))

(electrical-power-dissipation-threshold ?object))
(model-as ?object thermal-resistor))

in the resistor CDB indicates that if the electrical power dissipation in a resistor
exceeds a threshold, then this phenomena should be explicitly modeled by modeling
the resistor as a thermal-resistor.

The behavioral context can also be used to select appropriate (possibly approxi-
mate) models of physical phenomena . For example, suppose we calculate the current
flowing in a wire using a perfect-conductor model for it . The following behavioral
constraint in the electrical-conductor CDB :



(implies
(and (wire ?object)

(> (abs (* (terminal-current (electrical-terminal-one ?object))
(/ (* (resistivity ?object)

(length ?object))
(cross-sectional-area ?object))))

(voltage-threshold ?object)))
(model-as ?object resistor))

says that if the voltage drop across the wire exceeds a threshold, the wire should
be modeled as a resistor, rather than as a perfect-conductor .

Setting the values of the various thresholds appropriately is crucial for robust
model selection. Thresholds can be either preset or computed dynamically. A thresh-
old of 2300 for Reynolds number, that distinguishes laminar flow from turbulent flow,
is an example of a preset threshold . Other thresholds can be preset by an engineer
from common practice . Thresholds can be set dynamically based on the evolving de-
vice model and knowledge of acceptable tolerances on certain parameters (see [11, 9]
for some initial work in this area) .
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Expected behavior
The expected behavior of a device is an abstract, possibly incomplete description of
what the device does (but not how it does it) . It identifies the important aspects of
the device behavior and determines the appropriate device models . We use expected
behaviors to capture, in part, what is commonly referred to as thefunction of a device .
For example, stating that the device in figure 1 is a temperature gauge indicates that
(a) the device model must focus on temperature changes of the thermistor, and that
(b) the device model must account for a change in the thermistor temperature causing
a change in the angular position of the pointer. The most common expected behavior
descriptions are input/output descriptions of the device's behavior.

Knowledge of the expected behavior is commonplace and almost always available
either directly from the user, from the description of the problem to be solved, or
from the context in which the device operates . For example, device names, such as
light bulb, vacuum cleaner, and disk drive are widely used and all are associated with
expected behaviors. Or suppose we want to know if a disk drive can be used as a door
stop . The expected behavior-to stop the door from shutting-suggests that the disk
drive model should focus on its kinematic and dynamic properties as an object, not
its information retrieval properties! Expected behaviors are an essential component
of a device description and play an important role in focusing the model selection
process . Without it, all consistent device models are equally plausible : the disk drive
as an information retrieval device, a heating device, or a door stop .

Expected behaviors provide two types of constraints : which component param-
eters must appear in the device model, and what are the relations between them.



We specify expected behavior with causal, qualitative or quantitative, equations . For
example, the temperature gauge's expected behavior is :

(Qprop+ (angular-position pointer) (temperature thermistor))

This expected behavior provides the following modeling constraints : the CDB chosen
to model the thermistor must have a temperature parameter ; the CDB chosen to model
the pointer must have an angular position parameter ; the pointer's angular position
is qualitatively proportional to the thermistor's temperature ; and the temperature
change causes the angular displacement .

A device model satisfies the constraints from the expected behavior when (a) it
includes all the parameters specified in the expected behavior ; and (b) the equations
of the device model subsume the equations of the expected behavior, i .e ., the device
model achieves the expected behavior .
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Modeling algorithm
In this section we describe how the structural constraints, the behavioral constraints,
and the constraints from the expected behavior are used to select an adequate device
model that is as simple as possible . A device model is said to be adequate when
(a) it is consistent, i.e ., no component model includes contradictory CDBs; (b) the
structural and behavioral constraints in each component CDB are satisfied ; (c) the
expected behavior constraints are satisfied ; and (d) all applicable default models are
included . A device model Ml is said to be simpler than a device model M2 if the CDBs
selected for each component in Ml is a subset of the CDBs selected for the component
in M2 .

The input to the algorithm is a description of the device and an expected behav-
ior . The device description specifies the device's structure its components and the
structural relations between them-and any user-selected CDBs associated with each
component . The algorithm proceeds in four steps . The first step augments the initial
device description to include all the expected behavior parameters . The second and
third steps enforce the structural and behavioral constraints using dynamic constraint
satisfaction [8] . The fourth step checks the expected behavior .

7.1

	

Details of the algorithm
In the first step, the algorithm checks if the initial device model contains all the
expected behavior parameters. If a component parameter is missing, the algorithm
searches the possible-models of that component for a CDB that provides the required
parameter. Only the most general such CDB is returned by this search and is added to
the component model . The result is a device model that includes all expected behavior
parameters . If more than one most general CDB provides a required parameter, the



result is a set of device models corresponding to the different augmentations of the
initial device model.

For example, the expected behavior of the temperature gauge (see section 6)
requires that the thermistor be modeled with a temperature parameter and the
pointer with an angular-position parameter . Adding the thermal -thermist or
CDB to the thermistor model and the rotating-pointer CDB to the pointer model
satisfies this requirement .

In the second step, the algorithm checks the structural constraints of each device
model . If a general constraint is not satisfied, the device model is deemed inade-
quate, and is removed from further consideration. If a model-as constraint is not
satisfied, then it means that the device model does not include a required CDB for
some component . The algorithm searches the possible-models of that component
for the most general CDB that meets this requirement and adds it to the component
model . If more than one such CDB is found, the device model is extended to a set
of device models. This process is repeated until each device model satisfies all the
structural constraints.

In our example, since the thermistor is an electrical component (a thermal-
thermistor), a structural constraint requires that components connected to it must
be modeled as electrical components . Modeling the wire as an electrical-conductor
and the battery as a voltage-source meets this requirement. Similarly, the kine-
maticinteraction required between the pointer (a rotating-pointer) and the bimetallic-
strip requires that the latter be modeled as a thermal-bimetallic-strip . This
requires a thermal interaction between the bimetallic-strip and the wire, and
hence the latter is modeled as a thermal-object .

In the third step, the algorithm checks the behavioral constraints for each de-
vice model by first generating their behaviors . Behavior generation proceeds in three
steps: (a) consistent default models are added ; (b) equations are generated by instan
tiating the equations in each CDB ; and (c) the equations are solved to get parameter
values and bounds. We use BOUNDER [10] to solve the equations and to compute
bounds on the parameter values . The behavioral constraints are checked using these
values and bounds, and device models are rejected or augmented as described above
for the structural constraints. Default models are retracted before device models are
augmented to avoid contradictions . The algorithm then repeats the structural con-
straints check, followed by the behavioral constraints check, until the resulting device
models satisfy all the structural and behavioral constraints .

In our example, perfect-conductor is added as a default model for the wire
and constant-voltage-source is added as a default model for the battery . Us-
ing this device model, the circuit current is computed . A behavioral constraint de
termines that the wire should be modeled as a resistor since the voltage drop
across it is significant . The default models are retracted and resistor is added to
the wire model. Since the structural constraints are still satisfied, default models
are once again added to the device model (constant-resistor for the wire and
constant-voltage-source for the battery), and the circuit current is recalculated .



A behavioral constraint now determines that since the heat generated in the wire is
significant, it should be modeled as a thermal-resistor .

The final step of the algorithm determines if the expected behavior equations are
subsumed by the device model equations . The complexity of this test depends on
the exact nature of the behavioral equations, and is in general either intractable or
infeasible . A weaker, yet effective, test is to check if the device model equations enforce
the expected behavior's causality . This is done by first computing the causal ordering
[7] of the device model parameters, using the device model equations and assuming
that parameters with known signs are exogenous .' The causal ordering is then used
to check if the expected behavior's causality is satisfied . A device model whose
expected behavior parameters' are unrelated is augmented with additional component
CDBs. We use a topology of interactions [15, 16], built out of the possible-models
of the device components, to propose additional component CDBs that connect the
parameters .

In our example the device model does satisfy the causality specified in the expected
behavior-a change in temperature of the thermistor causes a change in the angular
position of the pointer. Hence this device model is adequate . It is also the simplest
possible because the algorithm only adds a CDB to a component model if it is required
to satisfy a constraint .

7 .2 Implementation
We have constructed a library of fifteen components, including wires, bimetallic strips,
bourdon tubes, and contained gases and liquids . Each component has an average of
15 CDBs describing different aspects of its behavior . The modeling algorithm has
been implemented and has been tested on a dozen examples including the tempera-
ture gauge (figure 1) . These devices have between 10,000 and 100,000 combinations
of component models, almost none of which are consistent with the contextual con-
straints . Our program produces adequate models for these devices in under 5 minutes
on an Explorer II .

The modeling algorithm has two main limitations . First, it generates and checks
only differential behavior from a point of equilibrium and performs no integration
(qualitative or quantitative) over time . Second, expected behavior constraints are
limited to behaviors described as qualitative proportionalities ((Qprop+/- q1 q2) ) .
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Related work

Falkenhainer and Forbus [3, 4] select models by compositional modeling. Each model
is conditioned on a set of simplifying and operating assumptions. Simplifying as-
sumptions capture a model's approximations, perspectives, and granularity. A set of
constraints govern the use of simplifying assumptions. These constraints are similar

'Hence this causal ordering is useful only for checking causality in differential behaviors .



to our structural constraints. In addition, we have identified a useful source of these
constraints-the observation that components must be modeled in a compatible way.
Operating assumptions are similar to behavioral constraints, except that the former
are restricted to parameter inequalities, while the latter are general first-order and
model-as constraints. This means that behavioral constraints can be used, not only
to validate approximations, but also to select additional phenomena to be modeled
(e.g ., selecting thermal-resistor because the power dissipated in a resistor is too
high) . Falkenhainer and Forbus use a user query to generate an initial set of simpli-
fying assumptions . This is similar to our use of the expected behavior to generate
an initial model. However, in addition, the expected behavior provides feedback on
the choice of models-an adequate model's equations must subsume the expected
behavior.

Both Addanki et al [2, 1] and Weld [14] discuss model switching techniques . Ad-
danki et al show how conflicts within the currently selected model can be represented
by delta-vectors, which are the qualitative changes to parameter values that will elim
inate the conflict . Domain-dependent parameter-change rules are then used to select
models that resolve the conflicts . Weld shows how the domain-independent tech-
niques of intra-model comparative analysis [13, 12] are used to select appropriate
models when the models can be formalized as approximations of one another. These
model switching techniques are similar to our behavioral constraints, in that models
are rejected/selected based on the behavior predictions of the device model .

Our definition of the expected behavior, as an abstract description of the actual
behavior, is similar to Franke's definition of a scenario as a time-ordered sequence of
partial qualitative states [6] . One difference is that scenarios abstract a behavior by
eliminating states and by leaving out parameters from a state . On the other hand,
our expected behaviors abstract a behavior by specifying qualitative, quantitative,
and causal relations between parameters .

The algorithm used to connect the parameters of the expected behavior, using the
topology of interactions, is based on a similar algorithm used by Williams [15, 16] as
part of his This design system.

9 Conclusions
Having multiple models for individual components is necessary to account for the dif-
ferent assumptions, perspectives, and purposes that determine the adequate device
model. This paper shows how the context in which the device and its components
operate provide a powerful guide for the model selection process. We introduced
context-dependent behaviors (CDBs), a frame-like component behavior model repre-
sentation for encapsulating contextual modeling constraints . We showed how CDBs

are used in the automated selection of device models by exploiting constraints from
three sources: the structural and behavioral contexts, and the expected behavior of
the device . We tested our ideas with an implementation.



We believe that our modeling paradigm will prove to be useful for a variety of
tasks including analysis, and design . As mentioned in section 3, the compositionality
of CDBs and the many-to-many relationship between components and CDBs provides
great modeling flexibility. We introduced expected behaviors to allow teleological
reasoning (section 6) . CDBs provide a uniform mechanism to represent and reason
about the structure, behavior, and function of a device .

Future work will involve handling a wider range of expected behaviors, including
behaviors over time, dynamic setting of thresholds in behavioral constraints, and the
automatic generation of structural and behavioral constraints.
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