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Abstract

Numerical simulation, phase-space analysis, and analytic techniques are three methods
used to solve quantitative differential equations . Most work in Qualitative Reasoning has
dealt with analogs of the first two techniques, producing capabilities applicable to a wide
range of systems . Although potentially of benefit, little has been done to provide closed-
form, analytic solution techniques for qualitative differential equations (QDEs) .

This paper presents one such technique for the solution of a class of ordinary linear and
nonlinear differential equations . The technique is capable of deriving closed-form
descriptions of the qualitative temporal behavior represented by such equations . A
language QFL for describing qualitative temporal behaviors is presented, and procedures
and an implementation QDIFF that solves equations in this form are demonstrated.

I . Introduction

Various techniques have been described in the literature for inferring qualitative behavior of
physical systems . The first techniques were based on simulation [De Kleer & Brown 84,
Forbus 84, Kuipers 86] . Analogous to numerical simulation, these techniques compute the
progression of qualitative values over time .

More recently, qualitative phase-space approaches have been introduced [Lee&Kuipers 88,
Struss 88, Sacks 87] . Augmenting simulation, these techniques explore trajectories in
phase space, showing how the qualitative values in a system will change from any point in
the space. Similar to the phase-space methods used in quantitative analysis [Thompson &
Stewart 86], these techniques are strong at indicating convergence, stability, etc ., but
weaker at explicitly describing the temporal behavior of the values.

Closed-form, analytic solution of differential equations is a well-known technique in
mathematics [Boyce & DiPrima 77] . Rather than using point-by-point simulation, this
methodology describes entire temporal behaviors in terms of a set offunctions. The set of
these functions includes tn, exp(t), sin(t), log(t), etc . Manipulation of these symbols
according to the laws of mathematics is used to find behaviors in closed form.

Although familiar in quantitative mathematics, closed-form analysis of differential
equations has seen little attention in qualitative reasoning, although closed-form algebraic
analysis has been described by various authors [e.g., Williams 88] . For differential
equations, however, techniques such as aggregation [Weld 86], abduction [Williams 90],
and dynamical systems theory [Struss 88] have been used to infer properties of behaviors
computed in other ways. To perform qualitative, closed-form analysis, qualitative
reasoning needs a set of symbolic descriptions of qualitative behavior analogous to the



i(t), log(t), etc ., of quantitative mathematics, and rules to manipulate and transform
:se functional descriptions .

Such qualitative solutions to differential equations are desirable for several reasons. First,
if an exact solution to an equation is not known, a qualitative solution can indicate the types
of behavior that are possible, augmenting numerical simulation results . Also, for complex
equations where an exact solution is known, it may be so complex as to not be
comprehensible to a person examining it . A simpler, qualitative solution may be preferable
for obtaining an intuitive understanding of system behavior . The advantages of qualitative
descriptions of behavior are covered further in [Yip 88 and Williams 90] .

This paper discusses a preliminary set of such analytic tools . Section II presents a
framework, QFL, in which to represent functions qualitatively. Section III describes how
derivatives of QFL qualitative functions are computed. Section IV defines the effects of
applying nonlinear functions to qualitative behaviors . Finally, Section V presents an
implementation QDIFF, and some examples outlining the solution of QDEs. We close with
a brief evaluation of the approach and some ideas for how it can be extended

II. Describing Qualitative Functions

Various techniques currently exist for describing qualitative values . These include the
(+,0,-) representation of [DeKleer & Brown 84], values defined in terms of a quantity
space [Forbus 84], and dynamically-defined values represented in terms of landmarks
[Kuipers 86] . For qualitative analytic solution, a representation for behavior over time,
similar to the quantitative functions such as sin(t), exp(t), and tn, is needed . One way to
do this is to define a generic quantitative template that describes a wide set of functions,
using qualitative values for its parameters to represent particular functions . A desirable
starting-point template would describe constant, increasing, and decreasing behavior, as
well as a wide variety of periodic and non-periodic oscillations . One such template is :

N

f(t) = 1: A,(t) sin(k- B(t) + 0(k))

	

(eq, 1)

where 0(k) = n/2 if k even and zero otherwise. Intuitively, the set Ak(t) describes the
envelope of the waveform of f(t) and B(t) describes the behavior of the period of oscillation
of the waveform (or that there is no oscillation, if dB(t)/dt = 0) . A great many functions can
be described in this form. The variation of A(t) with k allows for dynamically-varying
harmonic content of the waveform, and the use of B(t), rather than a constant times t allows
the time scale to be varied with time . These variations from the familiar Fourier expansions
[Gabel & Roberts 80] allow a wider variety of behaviors than might initially be expected .

We define a language QFL (Qualitative Function Language) in which functions are
described in terms of the attributes of the sets of functions Ak(t) and dBk(t)/dt, the sets
henceforth referred to as A(t) and dB(t) . In QFL, A(t) and dB(t) fall into one of the
following categories :

1 . inc : Ak(t) is non-negative, and for all nonzero Ak(t), monotonically increases as t
approaches infinity

2. dec: Ak(t) is non-negative, and for all nonzero Ak(t), monotonically decreases
asymptotically as t approaches infinity .



3 . static: - for every k, Ak(t) is non-negative constant .

In addition, QFL allows subcategories of each of the above:

1 . incC : inc, starting at a positive value, increasing without bound.

2. inc0 : inc, starting at zero, increasing without bound.

3 . incA: inc, increasing asymptotically toward a bounding final value .

4 . decF : dec, decreasing toward a nonzero final value .

5 . deco : dec, decreasing toward a final value of zero .

6 . con: static, for some k, Ak is nonzero .

7. 0 : static, for all k, Ak is zero .

A QFL function is represented by the expression

<label> (<type ofA(t)>, <type ofdB(t)>)

If aB(t) is zero, the second argument is omitted . Figure 1 shows an example of the function
FI(inc0,decF) .

Figure 1 . Example of Fl(inc0,decF)

	

Figure 2. Example of (sharp Fl)(inc0,decF)

In addition to specifying the types of A(t) and DB(t), QFL allows functions to be specified
relative to other QFL functions, by use of a set of qualitative shape operators . Shape
operators express relationships between the amplitude envelopes of different functions .
The shape operators supported by QFL include :

1 . (sharp f) : to scale the range of function f by a positive, nonlinear scaling function
which increases with distance from the origin .

2 . (flat f) : to scale the range of function f by a positive, nonlinear scaling function
which decreases with distance from the origin.



III . Derivatives of Qualitative Functions

Assume that we wish to solve a nonlinear differential equation of the form

i (fk(f(t))
d`f(t) ) + f o(f(t)) = 0

	

(eq. 2)-,

	

dt

df(t)
= 7_ (a A(t) - sin(k b(t) + 0(k))

+ k - A(t)a b(t) - cos(k b(t) + 0(k)))

Table I. Derivative Effect on A(t)

A(t) of nth derivative

dA(t) (t) A(t)=
(I

	

.
dt

3 . (invert f) : to nonlinearly reverse the scale of the range of function f, hence
changing the type of f.

Figure 2 shows an example of the function (sharp FI)(inc0,decF) .

for the behavior f(t), where the fk(x) are nonlinear functions of x . To process the terms of
an equation in this form, we need to compute the derivatives of qualitative functions, as
well as compute the results of applying nonlinear functions to qualitative behaviors .

We can elucidate the mapping between function and derivative by differentiating the
template of Equation 1 and determining the implied qualitative transformations . Operator
tables for functions, analogous to the operator transforms described for values [De Kleer
& Brown 84, Forbus 84, Kuipers 86], can then be constructed . In the following, aB will
be considered equivalent to dB(t)/dt, aDB to d2B(t)/dt2 , etc .

This equation contains a component lagging f(t) in phase by n/2 and a component in phase
with f(t) . The oscillation characteristics of f(t) (the argument to the sin terms) are
preserved. The results for derivatives zero through two are tabulated below :

It would be desirable to express the entries in this table in algebraic terms, free of the a
operators, so that the solution of the differential equations could be found algebraically .
This is achieved by the following process, which converts the expresion dA(t)/dt into a
product. Let d(t) be the function such that

where d(t) is one of the qualitative function types . It can be shown, for the class of A(t)
represented in QFL, that

n In-phase Out-of-phase
0 A 0
1 aA A aB
2 aDA - A DBaB DA aB - A DDB



dkA(t) - d(t) . A(t)
dtk

where d-(t) is of the same basic qualitative type as d(t) . The same, of course, applies to the
derivatives of DB(t) . Therefore, we can rewrite the terms from Table I in terms of sums
and products of A(t), dB(t), a new function, D(t) (the function equivalent to the derivative
of A(t)), and E(t) (the function equivalent to the derivative of DB(t)) . For example, the
out-of-phase part of the second derivative from the table, aA dB + A BBB, would be
rewritten as D(t) A(t) dB(t) + A(t) E(t) dB(t), or, in the shorthand we will use from now
on, DAdB+AEdB.

Given qualitative types for A(t) and DB(t), qualitative types for D(t) and E(t) can be
computed as follows . First, the qualitative types of the derivatives of qualitative behaviors
are found with Table II :

Table II. Derivative of Qualitative Types

f(t)

	

af(t)
deco -deco
decF -deco
incC

	

incC or inc0 or incA or decF
inc0

	

incC or inc0 or incA or decF
incA deco
con 0
0

	

0

Next, the effective product resulting from the derivative transformation can be found with
Table III. This table was created by examining each pair of qualitative behaviors,
determining what function multiplied by the before behavior would yield the after
behavior. The values ofX and Y are variables, matched to any qualitative behavior :

Table III. Equivalent Multiplication of Various Transformations

Before

	

After

	

Effective Multiplier

f(X)

	

(flat f)(0)

	

0
f(X) f(X)

	

con
f(con)

	

(YWX)

	

X
f(inc)

	

(invert f)(dec0)

	

deco
f(inc)

	

(invert f)(decF)

	

decF
f(inc)

	

(sharp f)(inc)

	

incC
f(inc)

	

(flat f)(inc)

	

decF
f(inc0)

	

(flat f)(incA)

	

dec
f(incC)

	

(flat f)(incA)

	

dec
f(dec)

	

(flat f)(dec)

	

incA
f(dec)

	

(sharp f)(dec)

	

decF
f(decF)

	

(Y f)(dec0)

	

deco
f(decF)

	

(invert f)(incA)

	

incC
f(decF)

	

(invert f)(inc0)

	

inc0
f(decF)

	

(invert f)(incC)

	

incC



For each of the qualitative types of A(t) and aB(t), the corresponding possible types of D(t)
and E(t) have been tabulated in Table IV by use of Tables 11 and III . The table was
computed by considering the possible behaviors and derivatives of each function type .
Where ambiguous, all possible types were included :

Table IV. Derivative Functions

type of f(t)

	

d(t) for d(t)-f(t) = af(t)

decF -deco
deco

	

- decF or - deco or - con or -incC or - inc0
incC

	

incC or inc0 or deco or con or decF
inc0

	

incC or inc0 or deco or con or decF
incA deco
con zero
zero X

Finally, by use of multiplication, the expresions representing the derivatives of a behavior
can be reduced to a sum of qualitative values, given qualitative values for A, dB, D, and E.
This is achieved with the following multiplication table :

Consider the previous example, in which the out-of-phase part of the second derivative
from Table I is dA dB + A ddB. This was rewritten above as D A dB + A E dB. Suppose
that A is of type decF and dB of type con. From Table III, we see that D, the effective
multiplication of the derivative of A, must be of type -deco. Similarly, E, the effective
multiplication of the derivative of dB, is of type 0. This yields the sum

-deco - decF - con + -deco - 0 - con

which, from Table IV, is equal to -deco.

Table V. QFL Multiplication

f(t) g (t) f(t) g(t)

X con X
X 0 0
X X X
decF deco deco
decF inc0 inc0 or incA or decF
decF incC incF or decF or con
decF incA decF or incA or con
deco inc0 inc0 or incA or decF or deco
deco incC incC or incA or decF or deco
deco incA deco
inc0 incC inc0
inc0 incA inc0
incC incA incC or inc0



The remaining analytic tool needed to solve differential equations in the form of Equation 2
is the mechanism for determining the qualitative effects of the nonlinear functions fk(t) .
As is apparent from the equation, nonlinear functions will be applied directly to the
unknown f(t) . We take care to consider the effects of the transformation both on the
characteristic A(t) of f(t) and on the phase of the result.

IV.A. Properties of fk(f(t))

IV. Nonlinear Functions

Assume that any nonlinear function fk(t) of interest can be represented as a power series in
t . The following characteristics will therefore occur when applying fk(t) to qualitative
behavior f(t) in the form of Equation 1 :

1 . The constant term in the expansion of fk(t) will lead to the appearance of terms sin(k
B(t) + phase(k)) .

2. Quadratic terms in fk(t) will lead to contributions of the form Am(t)sin(m B(t))
An(t)sin(n B(t)), when m and n are odd. Applying a trigonometric identity yields

Am(t) An(t){cos((m - n)B(t)) + cos((m + n)B(t))) =
Am(t) An(t){sin((m - n)B(t) + n/2) + sin((m + n)B(t) + n/2)) .

(m - n) and (m + n) are both even numbers, so the result will be in phase with the terms
of Equation 1 .

3 . Quadratic terms in fk(t), when m and n are both even or for m odd and n even
similarly will yield results in phase with f(t) .

4 . Higher-order terms in will also result in terms in phase with the original terms in
Equation 1 . This can be shown inductively, using the results of 2) and 3) .

These results indicate that applying a nonlinear function to the unknown f(t) in Equation 2
will yield another function that is in phase with f(t) . By definition, f(t) has no out-of-phase
components (per Table I) . Therefore, fk(f(t)) also will have no out-of-phase components .
Recall that in Equation 2, the nonlinear functions of f(t) are multiplied by the various
derivatives of f(t) . A derivation nearly identical to that carried out above yields the
following conclusion about how those products are formed:

When multiplying fk(f(t)) = g(t) by any order derivative of f(t), the in-phase part of the
product will be g(t) times the in-phase part of the derivative. Similarly, the out-of
phase part of the product will be g(t) times the out-of phase part of the derivative.

The significance of this result is that the in-phase and out-of-phase parts of the products
fk(f(t))-dnf(t)/dtn can be found by multiplying the effect of fk(x) on the envelope function
A(t) by the resulting envelope function of the derivative operators found in Table I .



IV.B. Characterization of Nonlinear Functions

Let us now discuss how the nonlinear functions fk(f(t)) can be defined . The basic QFL
facility for representing nonlinear transformations is the set of qualitative shape operators
flat, sharp, and invert. . In Section IV.A, it was shown that the effect of the nonlinear
functions on A(t), the envelope function of f(t), is the effect of interest. Therefore, it is
adequate to define the behavior of each nonlinear function fk(f(t)) as a qualitative shape
operator operating on A(t) . For example, let fk(x) be sin(x), for -n/2 < x < n/2 .
Suppose that we wish to find fk(f(t)), where A(t) is of type inc. In this case, sin(A(t)) will
be "flattened" more and more as A(t) gets larger. Therefore, we would use (flat A) as the
factor by which the corresponding derivative in the QDE would be multiplied.

In addition to the qualitative shape operator caused by nonlinear functions, the sign of the
effect is important. Consider the nonlinear function, fk(x) = (1 - x2 ) . Proceeding as
above, we find that the corresponding factor in terns of A(t) is (con - /Sharp A b. In this
case, however, differing values of A(t) will lead to differing qualitative effects : when [A(t)
< 1, fk(A) will be positive, and negative when [A(t) I > 1 . To avoid excessive ambiguity,
therefore, consideration of the behavior is divided into distinct regions . In each region, the
behavior of this equation is given by con - /Sharp A /. However, when A(t) > 1, the
qualitative relationship Icon I < sharp A 1, is imposed, and where A(t) < 1,

	

Icon I > sharp
A I is imposed. In Section V, this technique will be demonstrated in an example.

V. Solving QDEs

The results outlined above lead to a technique for solving qualitative differential equations.
A program called QDIFF has been implemented for just this purpose. In this section, we
describe the solution method used by QDIFF and show examples of various equations and
their solution.

QDIFF solves differential equations by finding values for A(t) and DB(t) that allow the sum
of the in-phase and out-of phase contributions of the terms in the equations to add to zero .
The problem can be broken down in this way because the in-phase and out-of phase parts
are linearly independent (although not necessarily orthogonal) . The solution is achieved
with the following procedure :

1 . From Table I, gather the in-phase and out-of phase expressions for the envelope
function A(t) for each derivative of f(t) that appears in the QDE.

2 . For terms multiplied by a nonlinear function, obtain the expresion, in terms of A(t),
that describes that function, and multiply the corresponding in-phase and out-of phase
expresions from step 1) by that function .

3 . Replace a operators in the resulting in-phase and out-of phase sums with D(t) and
E(t) terms, according to the translation process of Section III .

4. Using Table IV, constrain the values of D(t) and E(t) with respect to potential values
of A(t) and DB(t) . Using multiplication via Table V, find all combinations of A(t) and
DB(t) within these constraints that allow both sums to be zero . (If the equation is linear,
the only values of DB(t) that need be tried are con and 0.)
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A successive-refinement strategy is used to find values for A(t) and DB(t) in step 4 . QDIFF
chooses values for A and aB from the most abstract level, inc, dec, and static . When a
solution is indicated as feasible, the more refined functions incC, incO, incA, decF, deco,
con, and 0 are considered . The solution technique will be clarified with some examples .
First, consider the pendulum shown in Figure 3 .

This is a nonlinear system described by the equation

m12 aag+ cl a g + mgl sin g = 0

where the damping constant c > 0. No reasonable exact solution to this equation is known.
An approximation that is often made, for the case where g is near 0, is

m12 aag + cl a g+ mgl g = 0.

Let us first solve the linearized equation using the QDIFF algorithm. Using Table I and
Table III, equivalent representations of the in-phase sum for the equation are found . The
in-phase part of the differential equation terms is :

A + DA + aaA - aB aB A = 0 or, in terms ofproducts and suns,
A+AD+A bl- AOBI=O,or
con+D+ IDj- 0B1=0,

where common factors are removed. The out-of phase sum is :

A aB + aA aB + A aaB = 0 or, in terms ofproducts and sums,
ADB+DADB+DBAE=0,or
con +D+E=0.

Figure 3 . The Nonlinear Pendulum

The term A, factored out of both equations, immediately indicates that F(0) is a solution .
The term DB, factored out of the second sum, also easily leads to a solution when D = -con
(and, hence, A = deco). This indicates that F(decO) is also a solution . Another solution
occurs when D = -con and E = 0. In this case, con + D + E can equal zero . For D = -con,
Table III shows that aB can equal con, which allows the in-phase sum to also be zero,
indicating the solution F(decO,con), depicted in Figure 4.
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No other values of A and aB simultaneously solve both sums. The complete set of
solutions is found by QDIFF is:

F(0), F(decO), -F(decO), F(decO,con),

Figure 4 . Linear pendulum solution F(dec0,con) .

consistent with textbook solutions to the problem [Boyce & DiPrima 77].

An example demonstrating more powerful capabilities of the analytic approach, is the
nonlinear pendulum. Assume that -n/2 < l,t < n/2 . Sin(F(A,dB)) is represented
qualitatively as (flat F)(A,dB), according to the process outlined in Section IV. The sums
for this differential equation are, in-phase:

flat A I + DA + aaA - aB aB A = 0 or, in terms ofproducts and sums
iinvert A I A+ DA + fD 1 A - A OB I = 0, or
(invert A (+ D + b l- 0131=0

and the out-of phase sum is the same as the linear case :

ADB+DADB+AaaB=Oor con+D+E=O.

For this equation, the solutions F(0) and F(decO) are found in the same manner as before.
It is more interesting to note, however, what happens to the "linear" solution F(decO,con) .
The out-of phase sum will be zero for these values of A and DB . However, because the
constant in the linearized system has been replaced by an (invert A) in the nonlinear system,
the constant-period value for aB no longer holds . For the case where A = deco , (invert A)
= incA . As a result, QDIFF finds that aB must be of type incA for a solution to exist . The
complete solution set is :

F(0), F(decO), -F(decO), F(decO,incA) .

This solution is consistent with the solutions demonstrated numerically in [Thompson &
Stewart 86] . The oscillating result F(dec0,incA) is shown in Figure 5.



Figure S . Nonlinear Pendulum solution F1(dec0,incA) .

The pendulum example shows that the analytic techniques described here are sufficiently
powerful to identify certain qualitative differences between a linearized differential equation
and the more accurate nonlinear equation from which it was derived . Identifying temporal
behavior of this nature is a feature not found in most other qualitative reasoning
approaches.

As a final example, consider the more complex system described by the differential
equation

aaX-p(1 -x2)aX+X=0.

This is known as the van tier Pol equation, a relation of significance in engineering as well
as medical modeling [Hirsch & Smale 74] . It is an interesting problem from a phase-plane
perspective in that it exhibits a limit cycle. This example has been studied from that
perspective in the piecewise-linear approach of [Sacks 87] . Here, we find that the QDIFF
qualitative function perspective is also able to identify this unique behavior.

The nonlinear function 1-x2 leads QDIFF to divide consideration of the system behavior
into distinct regions, where differing qualitative relations between the con term and the
(sharp a) term are known (see Section IV) . First, consider the behavior in the region
where sharp a I is small . The sums are, in-phase :

A + ssharp a 1 aA - con aA + DDA - A aB aB = 0 or
con+AD-D+ LDl- 0131=0

where (AD 1 < (-D I and, out-of-phase :

IsharpAIADB-conADB+aAaB+ADDB=0or
1AI-con+D+E=0

where [A I < 1-con 1 . Consider the case where A is of type dec.

	

In this case, QDIFF finds
that consistent values for D and E cannot be found to make the out-of phase sum be equal
to zero. Likewise, QDIFF fails to find a consistent solution for A of type con. When A is
of type incA, however, solutions are found. QDIFF finds solutions for aB of types incA,
decF, and con.
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When QDIFF considers the region where (sharp A) is large, the in-phase and out-of phase
equations are unchanged, but the qualitative ordering between the con and Sharp a / terms
is reversed . This leads to a different set of solution values for A and DB . The complete
solution set is :

For Region I, (small A(t)) :
F(0), F(incA,decF), F(incA,con), F(incA,incA)

For Region II, (large A(t)):
F(decF,con), F(decF,incA), F(decF,decF)

For Region III, boundary:
F(con,con) .

QDIFF finds the correct solutions to the equation, with regard to the increasing and
decreasing oscillations and convergence to a stable amplitude, although it does not
determine whether the convergence would occur via increasing or decreasing period of
oscillation . Interestingly, this convergence to a stable oscillation is equivalent to the
detection of the limit cycle by phase-plane methods, but was achieved through functional,
temporal techniques.

Conclusions and Further Work

The analytical technique described in this paper provides a method to augment the existing
techniques of qualitative simulation and phase-space analysis . It shares several of the
characteristics of its quantitative analog, including conceptually simple solution
mechanisms, but the drawback that solutions outside the representational scope of QFL will
not be found . An informal argument shows that the technique described here is complete,
in the sense that it will find all solutions to a differential equation that are represented in the
repertoire of QFL. This follows from noting that in each step, all possible outcomes are
computed, and that the algorithms make use of no filters, such as heuristics, other than
those that are based on mathematical possibility . The QDIFF algorithm described here is
reasonably efficient, solving nonlinear equations such as those in this paper in about two
seconds on a . Symbolics XL-400 . It is interesting to note that simple explicit reasoning
about qualitative behaviors avoids some of the problems of severe ambiguity that are found
with simple simulation-only qualitative reasoning systems.

Potentially interesting extensions will briefly be mentioned here . First, a richer set of
qualitative shape operators and function types would allow more detailed qualitative
solutions to be found. One way to achieve this would be to break nonlinear functions into
regions of differing shape operator, similar to the way QDIFF currently breaks them into
regions of differing sign. Another interesting extension would be a coupling between the
analytic approach presented here and other qualitative reasoning techniques . Possibilities
include the use of a QDIFF-like system to solve for waveform characteristics in the various
regions found by phase-space analysis, and a QDIFF filter for use with qualitative
simulation systems .
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