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Abstract

Recent work on model-based diagnosis has mainly focused on problems of the diagnostic
procedure, tackling the task "Determine diagnostic candidates given the system
description and the set of observations" . In this paper, we address the modeling problem,
i .e . "How to structure the system description, i.e . our knowledge about the structure and
behavior of a technical system, appropriately for diagnostic purposes?" . Although
considered as an essential requirement from the very beginning of research in model-
based diagnosis, the actual use of multiple models at different levels of granularity,
abstraction, coverage and expressiveness, and in particular the use of qualitative models
in diagnostic systems is very limited. The main concern of this paper is to investigate the
nature and impact of abstraction, simplification, and approximation of models and clarify
their distinctions . For this purpose, we develop a theoretical framework including, as a
prerequisite, a formalization of what we mean by the term "model". The paper outlines
the role of these concepts in consistency-based diagnosis by consideringthem as instances
of more general relations between models.
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I Introduction

Already at the origin of research on model-based reasoning, there was a strong
understanding that the models required to solve significant problems should be highly
structured, with its elements reflecting different aspects and purposes, various levels of
structural and descriptive granularity and, in particular, involving qualitative models
(see, for instance [Davis 821) . However, an analysis of theories and systems developed for
model-based diagnosis, the most prominent sub-field in model-based reasoning, shows
that most approaches are focused on problems of the diagnostic procedure, presuming
there exists a simple and unique way of modeling the device or avoiding to specify its
nature . Some work has been done on exploiting fault models ([Hamscher 901, [Struss 88b], [de

Kleer-Williams 89], [Struss-Dressler 89]), hierarchy ([Davis 84], [Hamscher 90], [Struss 88a, 89b])

and different views on component models ([Davis 84], [Struss 88a,b], [Hamscher 901), aiming, in
particular, at reducing the complexity of reasoning about non-trivial artifacts. However,
some of the most powerful means for this purpose, namely reasoning with abstractions,
simplifications and approximations, has not been deeply investigated and exploited
so far, and moreover, we lack a coherent theory which addresses these issues and which
fits the formalisms of model-based diagnosis .

Representing knowledge about physical systems at an adequate and intuitive level of
detail is a concern of qualitative physics, and recently the problems of (automated)
abstraction and simplification of models and of selecting models appropriate for a given
task have become one focus of research in this area (see e .g . [Falkenhainer-Forbus 901,

[Weld 901, [Weld-Addanki 901) . But, on the one hand, this work has been performed for other
tasks than diagnosis (e .g. for answering queries), and, on the other hand, there is still no
uniform understanding of terms like abstraction and approximation which often results
in a phenomenological characterization and in an arbitrary, sometimes even
interchangeable use of such concepts . This due to the lack of an agreed formalization
which, more importantly, results in limitations of a rigorous analysis of the creation and
use of such model transformations and their impact, for instance, on model-based
diagnosis. This paper provides a theoretical basis for achieving this goal and offers
definitions for the important concepts which we feel to be sufficiently general, but still to
capture the important distinctions. Although the theory is motivated by problems of
model-based diagnosis, it is of interest for model-based reasoning in general and, in
particular, important for the use of qualitative models .

Overview

Section 3 briefly summarizes the background of model-based diagnosis in general, and of
our diagnostic framework, DP, in particular . In section 4, we define and discuss the
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concepts of abstraction, simplification, and approximation of models . For this purpose, we
first have to define the term model. This is done by formalizing the widely used view of a
model being specified by relations among system variables . We will also show in this
section that intermittent behavior can be covered to some extend and that the treatment
of data interpretation can be reflected in relational models. In the last section,
abstraction and simplification of relational models are considered as instances of more
general logical relations among models. Based on this, we outline their impact on model-
based diagnosis and on the development of diagnostic strategies for the selective use of
multiple models.
To illustrate the problems we want to tackle, we will start with an example from a case
study, THYC, an instance of GDE+ ([Struss-Dressler 891) that diagnoses thyristors in bridge
converters (SSrruss 89b)).

2

	

AMotivating Example

A thyristor is a semi-conductor with anode, A, cathode, C, and gate, G (Fig . la) which
operates as a (directed) switch : it works in two states, either conducting current in a
specified direction with almost zero resistance, or blocking current like a resistor with
almost infinite resistance, as is indicated by the characteristic curve in Fig 1b.
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Thethyristor

The transition from the OFF state to ON is controlled by the gate ; if it receives a pulse
the thyristor "fires", provided the voltage drop exceeds a threshold, Vth. This state ends
when the current through the thyristor drops below the holding current, ih .

This is the first description of a thyristor one probably gets out of a textbook, and this is
the model (let us call it THSWITCH) that is used in THYC. It turned out that - without
extensive measurements - the system suspected each single component, even though the
information enabled a human expert to pinpoint the faulty thyristor . The situation
changed when the system was provided with models about the possible faults a thyristor
might exhibit : PUNCTURED, i. e . acting like a wire, or BLOCKING like an open switch
(Deviations of the thresholds from the nominal ones might also be considered) . THYC
concludes that if none of these fault models, THPUNCTURED and THBLOCKING, is
consistent with the observations, the thyristor must be ok; this works fine for a class of
common devices and failures.
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However, in some circuits and situations, the thyristor is fired when the voltage drop
exceeds the breakover voltage, VBp, as is indicated by the characteristics in Fig. 1b .
From this perspective, THSWITCH is only an approximation of this extended model,
THTHRESH, under which some conclusions of THSWITCti are no longer valid. Note also,
there are additional faults to be considered : e. g. a decrease in VBp with respect to its
nominal value . Still, there is a more detailed model of the thyristor. Ungated firing may
also be caused by a voltage drop changing too fast (independent of its magnitude),
giving rise to another improvement of the model, THdV/dt.

And yet, the models considered so far are confined to a purely electrical view on the
component, ignoring, for instance, thermal properties which also might influence the
electrical behavior (For instance, the leakage current is temperature-dependent, and
there may even be thermal triggering) . Considering state transitions to occur
instantaneously is yet another simplification ; dropping it requires treatment of
temporal information, such as delay time, rise time, etc. Finally, let us merely mention
that a different kind of analysis might require looking in more detail at the structure of
a thyristor, using two coupled transistors as an analogue, etc.

The point we want to make here is that, even if we are able to develop a detailed model,
that accounts for all aspects mentioned and that covers all possible situations we might
encounter in diagnosis, we would not want to use this complex universal model at all
times, because we do not have to . The majority of problems can be solved using the
simplified versions of themodel, andit wouldbe unnecessarily complex or even infeasible
if all the details would be included (Note that a more detailed model may not only
increase the cost of inferences but also potentially require more variables to be measured
which may be expensive to obtain).We would rather want a diagnostic system to mimic a
human expert whose skills include choosing the right level of detail and simplifying the
problem in an appropriate way. This requires representing the various chunks of the
model separately, enabling the diagnostic system to focus on the relevant parts, and
combining the results obtained from the use ofdifferent models.

In the following section, we briefly summarize our background for addressing these
issues - the principles of consistency-based diagnosis and our diagnostic framework, DP.

3

	

Model-Based Diagnosis Background

3.1

	

Consistency-Based Diagnosis

The consistency-based approach is oriented towards an assignment of behavioral modes
(correct or faulty) to the constituents (components) of the artifact which is consistent with
the system description (SD), i.e . the model, and the observations (OBS). A diagnosis is
then given by a set of faulty components, OCCOMPS such that
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SD U OBS U U FAULTY(C) U U CORRECT(C)
CE 0

	

CECOMPS\A

is consistent ((Reiter 871, [de Kleer-Mackworth-Reiter 9o]) . Finding possible diagnoses is
strongly driven by exploiting known conflicts . A conflict is a set of mode assignments,
Umodeki(Ci), to a number of components, Cl, . . ., C,ECOMPS, that leads to an
inconsistency with SD U OBS:

SD U OBS U Umodek i (Ci)

	

t- 1,
which is detected mainly through the derivation of contradictory values of one
parameter. The main focus of work in this area and the subject where considerable
progress has been achieved concerns the problem: Determine diagnostic candidates given
the system description, SD, and the set ofobservations, OBS. In practice, this turns out to
be too restricted .

3 .2

	

DP-Diagnosis as a Process

The argument for multiple models in the descussion of the thyristor example implies
that there is a set of system descriptions instead of a single one . Furthermore, we do not
only face the problem of selecting one SD appropriate for a given talk (which is the
concern of (Falkenhainer-Forbus 91]) . Rather, the system is required to exploit several
models (in parallel or sequentially), raising the question
-

	

How and under what conditions do results obtained from one model carry over to
diagnostic reasoning with another model?

Moreover, different models in use may not be complementary, but conflicting, some may
be wrong, posing even harder problems such as
-

	

How can the system deal with wrong information derived from an inappropriately
simplified model? How can it handle contradictory parts of the model?

We are not simply talking about models that are absolutely wrong or inconsistent . The
problem is that they suffice in some situations but are inappropriate for other cases, i.e .
the design of the models was (consciously or unconsciously) based on some assumption
about their context or the problem to be solved. Such modeling assumptions (and, in
particular, simplifying assumptions) are only one instance of a number of diagnostic
assumptions involved in each diagnostic process, such as assumptions about
independence and non-intermittency of faults, completeness of knowledge about possible
faults, and the system structure being unchanged . The problem is that they are present
only in an implicit, hardwired form, and, hence, cannot be subject to reasoning and be
retracted . We have developed an approach to handling such diagnostic assumptions and a
system, DP (for "Diagnosis as a Process"), that, accordingly, can serve as a basis for using
multiple and simplified models ([Struss 88a], [Struss 89a], [Beschta et al . 901) .
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DP introduces another element to the theory : the set of diagnostic hypotheses, DHYP,

which represent working hypotheses that guide and focus the problem solving process

unless they are recognized to be inadequate and dropped. This includes simplifying

assumptions and, when working with multiple models, modeling assumptions . A

diagnosis is now defined as the union of a set offaulty components, OCOMPS, and a set of

retracted diagnostic hypotheses, ADHYP, such that
SD U OBS U DHY \ DHYP U -ADHY

U

	

FAULTY(C) U U CORRECT(C)
CEACOMPS

	

CECOMPS\°COMPS

is consistent, where -ODHYP :={-dhyp I dhypEODHYP }. In other words, we search for a

mode assignment to constituents that is consistent with SD U OBS under certain
assumptions. It is crucial that DP does not generate all possible diagnoses, but only

those specified by a focus of suspicion, which can be used to treat sets of diagnostic

assumptions as defaults .

We want to emphasize that, on the one hand, existing consistency-based systems can be
regarded as instances of DP. On the other hand, it is easy to realize that assigning TRUE

or FALSE to diagnostic hypotheses can be viewed as an analogy to mode assignments to

constituents . This provides us with the basis for the implementation of DP, since we can

apply an existing diagnostic engine, in our case GDE+ ([Struss-Dressler 891), to debug the
diagnostic hypotheses as well as the device.

4

	

Relational Models
Models are a representation of our knowledge about the real-world behavior of real-world

systems or processes that can be used in order to derive a more complete description of an

actual behavior given some partial information . For instance, we know the device input
and want to infer the output, or, for some initial conditions, we want to determine the
subsequent behavior. We do not necessarily require the derived information to be

complete and unambiguous . Ruling out some possibilities may be ofsufficient value .

4.1

	

Models and Behavioral Modes

We take the view that
-

	

a system is composed of some behavioral constituents (such as components or

processes),
-

	

the system's behavior is established by the behaviors of its constituents,
-

	

the behavior of some constituent, C, can be specified in terms of local variables
vi E VARS(C), i. e . by a tuple, v_c =(vl, v2, . . ., vk) .
(Locality includes that, conceptually, two different constituents do not have variables in

common; connectivity is established by stating equality of variable values in SD). If
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DOM(v i) denotes a possible domain of v i , then
DOM(v,) : = DOM(vl) X DOM(v2) X . . . X DOM(vk)

is a space of (theoretically) possible behaviors, and a certain mode of behavior is given by
some relation RCDOM(yy,) .

This means, the physical condition of the constituent (e . g . a thyristor being correct or
punctured) restricts the physically possible behaviors to some subset of DOM(vd. In
whatever situation (e . g . given by particular test vectors) we inspect the constituent, the
observed (or inferred) value of vc lies within R. Additionally, the environment of the
device (e . g . the outside temperature) may impose further restrictions on what we
encounter in reality . The set of situations which are physically possible due to the actual
physical condition of a constituent and, perhaps, due to environmental conditions
will be denoted SIT.

If, in a particular situation, se. SIT, v_e has the value vOE DOM(ve), we will write
Val(s, yc, yo) .

It is not required that yo be unique; even with DOM(ve) unchanged, there may be one or
more other values, v'O EDOM(yc), such that Val(s, ve , v'o ) holds for the same situation, s
(This is one reason for using the Val-Predicate instead of simply writing yc =y(,). This
allows us not only to use different domains foryc , but also to accept, for instance, different
measurements for v_c that are not considered to establish a contradiction (see also
subsections 4.3 through 4.5) .

In some domains, one value maymay be implied by another one . For instance, ifDOM(yc)
consists of intervals, then if some interval, int, is a value in a situation, s, so is any
interval that contains int :

VsESIT

	

Val(s, v_,, int) A intCint' =* Val(s, v_,, int') .
However, to keep things simple, we will consider domains first that do not contain such
dependencies among values . We will call them irreducible.. In section 4.4 the theory will
be extended to cover also reducible domains, in particular for the treatment of
representational transformations .

We assume that a constituent has a number of distinct possible behavioral modes, due to
different physical conditions . A correct (unbroken) wire in a circuit exhibits a particular
behavioral mode, and a (permanently) broken wire has another one. A wire that
potentially switches between these two conditions gives rise to a third kind of physical
condition and establishes a behavioral mode that is distinguished from the two other
modes.

For principled reasons, our knowledge about the behavioral modes of a constituent is
limited :

31
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-

	

globally : we may be unable to enumerate the set of behavioral modes, because we
cannot anticipate all possible physical conditions of a constituent (in particular, the
faults)
-

	

locally : we may be unable to exactly describe the relation characterizing a particular
behavioral mode, for instance, due to incomplete knowledge about the physical
principles.

Even if we consider the second restriction irrelevant for the application we have in mind
(i . e . we pretend to be able to explicitly and precisely associate a behavioral mode with
some relation, R) it is, again for fundamental reasons, impossible to positively verify a
particular behavioral mode to be present. Firstly, in most cases, R and/or DOM(ve)
will be infinite, and, hence, we cannot exhaustively check the space of possible tuples .
Secondly, even if we (in the finite case) detected in experiments all tuples of R and none
outside R, we can still not guarantee that future observations will not include a tuple out
of R's complement which would consequently invalidate the respective behavioral mode .

This is what we are normally capable of: falsifying the presence of a behavioral mode
based on an observation or an inference that is definitly inconsistent with this mode . For
this purpose, we are not required to have an explicitly given precise relation for this
mode. We only have to use a relation that is guaranteed to include the unknown ideal
relation .

Positively identifying the presence of a particular behavioral mode can only be done by
ruling out all other modes . But in order to do so, we have to enumerate and model all
other modes, which was stated above to be, in principle, impossible .

To summarize:
We can rule out the presence of behavioral modes based on assumptions of the

quality of the single models (i . e . ignoring the local restrictions of modeling) .
We can positively identify a behavioral mode if we additionally assume we have

complete knowledge about the set of modes (i . e . ignoring the global restrictions of
modeling).

The first issue formulates the principle of consistency-based diagnosis and suggests that
it is the natural approach to model-based diagnosis. The second issue explains why
"pure" consistency-based systems (like GDE) never infer the innocence of a constituent,
and shows that, if other approaches do so, this is based on some global assumption about
the possible behavioral modes, either explicitly (like GDE+ or DP) or implicitly .

There may be different suitable sets of descriptive variables for behavioral modes, i . e . vc
might vary, and there may be different useful domains for a particular v,, i . e . DOM(vc)
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varies (for instance, when quantitative and qualitative values are considered) . This will
be discussed in subsection 4 .3 through 4.5 .

We emphasize that, by adopting the relational representation, we do not restrict our
capabilities of dealing with dynamic systems . It is general enough to cover not only
episode-based temporal representations, but also continuous systems; for instance,
DOM(yc ) can consist of histories, trees of qualitative behaviors, or even continuous
functions . This justifies the choice of the term "behavioral constituent" instead of
"component", because the former subsumes processes and abstract functional entities as
well as physical objects . It is a myth that model-based diagnosis in general and ATMS-
based diagnosis in particular are limited to static devices or to component-oriented
modeling. (Theoretically, even causal models might be represented by relations, if
variables are split into several ones reflecting different causal roles, even though this
may not be the most elegant and intuitive way) .

In order to establish logical links between models we cannot simply consider a model to
be a relation . Intuitively speaking, a model is the claim (or the guess) that a certain
relation, R, covers all behaviors permitted by the current physical condition in any
situation, sE SIT, we might encounter (Fig . 4.1) .

Definition 4.1 (Model)
A relation RCDOM(v_c) specifies a model of a constituent C by

M(C, R)

	

a
VvOEDOM(v_c) ( (3sESIT Val(s,vc,vo)) =:> vOER ) .

physically
possible ',

R

Definition 4.2 (Strong Model)
A relation RCDOM(vc) specifies a strong model of C by

B(C, R)

	

a
VvOEDOM(v_c)

	

( (3sESIT

	

Val(s, vc , yo)) a vOER ) .

DOM(vc )

Fig. 4.1 A model covers the physically possible values
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Note that any superset of a relation that specifies a model also specifies a model:

Lemma 4.1
M(C, R) A RCR'

	

M(C, R') .
In particular,

B(C, R) A RCR'

	

M(C, R') .

(Actually, even DOM(ye) is a model) . In consistency-based diagnosis, Definition 4 .1
suffices to conclude from observing v_ofR in one situation that the behavioral mode which
is meant to be covered by M(C, R) is not present. In contrast, strong models describe
exactly what is possible given a certain physical state of C. The idea is that they serve as
"ideal" models of the physically possible behavioral modes we are aware of (this is why
they are denoted B(C, R)), even though we may be unable to explicitly describe R and,
hence, have to cover this mode by (weak) models or approximate it .
We require that important distinctions between different (physical) behavioral modes
can be expressed by vc and DOM(y_e) ; they may overlap, but they are exclusive if and only
if they differ by at least one value: Let R, R'CDOM(y,),

R :f R'

	

a

	

( B (C, R) => -B(C, R') ) .
The idea that there is a set of strong models that correspond to a number of known,
distinguishable, and, in a sense, stable behavioral modes appears to be inadequatly
restrictive and to prevent us from handling behavioral modes of unknown or unstable
type . However, we provide a general mechanism for dealing with incomplete knowledge
of behavioral modes (as exemplified in section 3 .2) . Moreover, the concepts introduced
above allow us to model intermittent behavior to a certain degree .

4.2

	

Intermittent Behavior

By intermittent behavior, we understand the behavior of a constituent whose physical
condition changes over time, switching between two or more conditions that correspond
to elementary behavioral modes in the sense stated above (i . e . it is not an arbitrary
behavior) . If we assume that this switching occurs only between different observed
situations, SIT can be partitioned in a way that each partition covers one of the "stable"
behavioral modes B(C, Ri)

SIT = U SITi
A Vi (dvOEDOM(vc) (sESITi A Val(s, vc , vo) = :> vOERi) ) .

A model for such a behavior is specified by the union ofthe single relations :
M(C, URi) .

Whether this union provides us with a strong model depends on the nature of the
intermittency. If the switching between different physical conditions is controlled by
some "hidden parameter" that is not part of the model but physically linked to modelled
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variables or parameters (e . g. a fault occurs if a threshold is exceeded by the temperature,

which depends on, say, the speed) we have only a weak model . B(C, URi) holds only if

intermittency is random from the constituent's point of view, i . e . governed by a principle

that acts independently of the constituent's physics, including absolute randomness (Fig.

4.2) .

a)

4.3 .1

	

Multiple Models

b)

Figure 4.2

	

Intermittent behavior (shaded)

a) controlled by a "hidden parameter"

	

b) random

A shift between planar coordinates and polar coordinates

(x, Y) I- (T, P)
is an example for the first case, whereas interchanging integers and binary numbers

illustrates the second. In each example, either representation captures the same

information . But in many cases, the introduction of another representation or model is

motivated by the goal of making things simpler by ignoring details to some degree,

3 5

DOM(_vC )

In any case, if M(C, Ri) are models of some behavioral modes, we can derive a model for a
mode intermittent between them by M(C, URi) . This treatment of intermittency differs

from that in [Raiman-de Kleer-Saraswat 901 under two aspects :

- It allows to positively model intermittent behavior and to distinguish different

intermittent behaviors, whereas the latter exploits non-intermittency (by postulating a
functional dependency ofoutput values on input values) .
-

	

It is more general due to the use of relational models, rather than input - output

models .

4.3

	

Multiple Representations, Abstraction, Simplification and Approximation

For different purposes different representations and models of constituents' behaviors

may be useful or even necessary. In our relational framework, this may involve the use of
-

	

different variables, v_c , and/or
-

	

different domains, DOM(y_c), for the same variables, and/or
-

	

different relations for defining a model while v_c and DOM(y_c) remain fixed .
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rather than representing the same details differently. The thyristor example in section
1 .2 extensively illustrates this point.

The use of abstraction, simplification, and approximation reflects this objective and has
become one major topic in recent work in qualitative physics. But so far, the three terms
have often been used without explicit definition and somewhat arbitrarily. We propose to
make a clear distinction between them, since we argue that these different operations,
although often accompanying each other, are very different in nature, and, more
importantly, have different effects in a model-based system.

In order to motivate the following definitions, we present some examples of simplifying
models:

Example 1:

	

The use of qualitative values for variables which, ultimately, are
considered to be real-valued. Forinstance, we map the real numbers onto the four-valued
space of signs:

q:

	

R

	

- Q3={ -, 0, + }={

	

0), (0, 0), (0, -)} .

Example 2:

	

The characterization of continuously differentiable functions, fE C1(R),
by global features, such as "monotonically increasing", "periodic", "linear", etc.

Example 3:

	

Describing the dynamics of objects by its mass, height, and velocity, (m,
h, v), or, alternatively, by its energy, E =m-h - -1 mv2.

Example 4 :

	

Generating a behavior description of a composite device in terms of its
input-output values only, i. e . ignoring internal variables.

Example 5:

	

Using the switch model, THSWITCH, for the thyristor instead of

THTHRESH, thus ignoring the the potential firing by exceeding the breakover voltage as
well as thermal triggering .

Example 6:

	

Replacing the sections of the characteristic curve of the thyristor by
pieces of linear functions.

In each example, the shift aims at making models simpler, eliminates some details, and
potentially collapses previously distinguishable cases into a single one . However, in the
first four examples, this is done by a general change in the representation which then
leads to a new model; this is what we call abstraction. In contrast, example 6 basically
changes the relation that defines the model based on an unchanged representation .
Example 5 comprises both: while ignoring some variables, such as temperature, (and,
thus, changing the representation), the shift also modifies the modeling relation by
eliminating some tuples (where transition to ON occurs without a gate pulse) . We
consider these two examples to involve simplification, where example 6 illustrates a
special case: approximation.

36
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Hence, abstraction is a relation between representations (inducing a relation
between models), whilst simplification (including approximation as a special case)
is a relation between models based on the same representation .

We use our formal framework to give precise definitions for these terms . But first, for the
sake of a compact notation, for an arbitrary mapping
m :A-.B,

we introduce the inverse (set-valued) mapping
m-1 : B -" P(A)

(P(A) : power set of A) by
m-1(b) :={aEA I m(a)=b},

i . e . the preimage of b consists of all tuples that are mapped onto b. Furthermore, we
expand m and m -1 to power sets : Let A'CA and B'CB

m(A') : = U {m(a)} and
aEA'

m-1(B') := U m-1(b) .
b E B'

4.3 .2 Representational Transformations

Definition 4.3 (Representation)
A representation for modeling is a pair (vc, DOM(yc)) .

A transformation that turns one representation into another one should preserve the Val
predicate in the following sense:
(i) If Val holds for a value in the original representation, then it also holds for the
transformed value . For instance, if we map real numbers to signs then Val(s, vc, 0.5)
implies Val(s, vc, +).
GO If Val holds for a transformed value, this must be the case for one of its preimages in
the original representation : Val(s, vc, +) is only true if there exists some positive real
number rER such that Val(s, v_c , r) .
Intuitively . these properties express that none of the representations covers situations
that cannot be represented by the other one, although different kinds of distinctions may
be captured . This is formalized by the following definition .

Definition 4.4 (Representational Transformation)
Let (vc, DOM(y_c)) and (v'c, DOM'(y'c)) be two (irreducible) representations. A mapping

zo : DOM(y_e) -> DOM'(y'c)
is a representational transformation, iff

dv'OEzo(DOM(y_c)) VsESIT
Val(s, v_c, v_' o ) <* 3vo(DOM(vc) (Val(s, vc, v_o ) A zo(vo)=v'o ) .
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We will use the notation
DOM(vc) .̂z DOM'(y'c ) (under io )

if there exists a representational transformation
Lo : DOM(ye) --* DOM'(y'c),

and
DOM(v_d =i DOM'(v'd

if do is surjective, i. e. every value in DOM(yc) has a preimage under -CO :

zo(DOM(y_c))=DOM'(y'c) .
The important property of representational transformations is that they preserve models
as stated by the following theorem.

Theorem 4.2
The image of a model under a representational transformation is a model: Let
RCDOM(v d andR'CDOM'(v'c ). If

DOM(vd -i DOM'(v'c) underTo
then

M(C,R)

	

M(C, zo(R)) and
B(C,R)

	

B(C, zo(R)) .
The inverse transformation also preserves models:

M(C,R') =:~ M(C, zo-1(R'nzo(DOM(y_c)))) .

If To is surjective,
DOM(v_c) = i DOM'(v'd,

then the last statementsimplifies to
M(C,R') =* M(C, zo -'(R') .

The proof for this theorem for irreducible domains is obtained by proving its
generalization in subsection 4 .4 . It is easy to see that representational transformations
are compositional in the following sense:

Lemma 4.3
DOM(v_d =z DOM'(v'd A DOM'(v'c) ^-z DOM"(v"c)

=:> DOM(vc) --z DOM"(v"C) .

4.3.3 Abstraction

We consider the following properties as features defining abstraction transformations:
-

	

The abstract representation is "grounded" in the lower level, i.e . each abstract unit
(value) is the image of at least one lowerlevel instance .
-

	

Abstraction really eliminates some distinctions : different lower level instances are
mapped onto one abstract unit.
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Definition 4.5 (Abstraction)
A representational transformation

ao: DOM(y,) -" DOM'(y',)
is a (representational) abstraction, iff it is
-

	

surjective and
-

	

andnot injective, i . e

	

3x,y

	

( x#y A ao(x)=a0(y) ) .

(v'c, DOM'(v'c )) is called an abstraction of (v, DOM(v_d), for short
DOM(yc ) -a DOM'(y'e),

if there exists an abstraction
ao: DOM(y_c ) -,. DOM'(v-'c) .

Of course, Definition 4.4 is rather weak, since it is satisfied as soon as a single image has
two preimages under ao. It does not capture criteria for useful abstractions which can
only be discussed with respect to the properties of DOM(y,) (e . g. topologies, metrics, etc.)
and the task . But even at this general level, two ways to obtain abstractions can be
distinguished:
In example 1, only the domain of the variables involved was changed, as opposed to
example 3, where a newvariable substituted three others .

Definition 4.6 (Domain Abstraction)
An abstraction

a0 : DOM(y_c ) -). DOM'(y_c)=DOM'(vl) X . . . X DOM'(vk)
is a domain abstraction iff

a0=(al, . . ., ak)
with

	

ai : DOM(vi) --* DOM'(vi) for i>0,
(where achieving v_,=v'c may require permutation of variables) . Otherwise, a0 is a
variable abstraction.

Domain abstraction covers, for instance, qualitative abstraction (example 1), but can also
be used for temporal abstraction (example 2) . Usually, we expect variable abstraction to
decrease the number of variables (as in example 3) . However, this is dependent on
superficial features, such as whether a tuple-valued variable is expanded into its
elements (e . g. writing (x=x0, y=yo, . . .) instead of (p=(xo, yo), . . .)), and not a necessary
condition for an abstraction.

Note that example 4 (structural aggregation) does not necessarily lead to an abstraction,
although the number of variables is decreased: if the internal variables are completely
determined by the global input-output (in particular, if there is no "memory" or energy
storage that points back prior to the situation, s), the mapping between the
representations is injective.
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We can now describe how representational abstractions induce model abstraction.

a

DOM(v_c)

Figure 4 .3

	

Model abstraction

Remark

	

^-a is a transitive, anti-symmetric, irreflexive relation .

Corollary 4.4
Let DOM(v_c) -a DOM'(v:c) and RCDOM(yc). Then

M(C, R)

	

M(C, ao(R)),
B(C, R)

	

B(C, ao(R)) , and
M(C, R')

	

M(C, ao-1(R'))
holds .
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Definition 4.7 (Model Abstraction)
Let RCDOM(vc) and R'CDOM'(y'c) . M(C, R') (or B(C, R')) is a model abstraction of
M(C, R) (or B(C, R), respectively), also denoted by the symbol

M(C, R) ^-a M(C, R'),
iff there exists a representational abstraction

ao : DOM(vc) -+ DOM'(v_'c)

	

and
R'= ao(R).

(Fig . 4 .3)

From Theorem 4.2, it follows directly how models on the abstract level can be constructed
and that they form strong models only if they are the image of a strong model .

Remark

	

Abstraction may render models or behavioral modes indistinguishable ; for
instance, it maybe the case that

Rl #R2 A B(C, RI) A B(C, 112) A ao(R1)=ao(R2)=R' ,
and, hence,

(B(C, Ri) -a B(C, R')) A (B(C, 112) -a B(C, R')) .

Note also that a strong model may also be obtained as an abstraction of a weak model:
M(C, RD -a B(C, R') ,

namely if ao eliminates the differences between its relation and that of a strong model.
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Also note that, in general, mapping an abstract strong model to the concrete level yields
only a weak model:

B(C, R')

	

=*

	

M(C, a0-1(R')) ;

B(C, R') does not imply B(C, a0-1(R')) .

We see that abstraction, being a representational transformation, and its inverse
preserves models. Under abstraction, the discriminating power of models (w.r.t .
behavioral modes) may be lost, and under the inverse mapping, a strong model will often
loose its strength ; but still, the images of models are models.

4 .3.4 Simplification

In examples 5 and 6, this is different: in both cases, some "surgery" has been applied to
the model that cannot guarantee that the result is still a model . In one case, those tuples
were removed from the defining relation that allowed firing of the thyristor without a
gate pulse (i . e . tuples (OFF~ON, pulse =0)) . In fact, things are simpler now, since we can
conclude pulse= 1 whenever the transition OFF~ON occurs, but also things may go
wrong, e. g. if the thyristor is triggered by dV/dt . Note that the representation (tuples of
transitions and gate pulses) has not been changed, but within the same representation
the model has been simplified, at the risk of no longer being a model. This motivates the
following definition.

Definition 4.8 (Simplification)
A simplification is a transitive, irreflexive, and antisymmetric relation

o0CP(DOM(yc)) X P(DOM(y_c)),
such that a simplification criterion Coo(R, R') is satisfied for all (R, R')E co .

We use the notations
R -o R' and

	

M(C, R) ^-o M(C, R')
if R' is a simplification ofR under some o0.

Unfortunately, it seems hard to be more specific about the magic simplification criterion
at this level of analysis . In many cases it will be handcrafted models as replacements for
others rather than relations generated from others according to some general principle .
Example 5 gives a flavor of such a principle, but also illustrates the difficulties . One could
imagine the respective procedure to be composed of two steps : the first one is variable
abstraction, namely elimination of temperature (and dV/dt etc.), followed by a
simplification that eliminates tuples from the relation for which there is no "cause" in the
abstracted representation, in particular, tuples containing (OFF~ON, pulse= 0) which
lost their justification because thermal triggering can no longer be described in the
abstract representation . From this perspective, simplification is far from being a merely
syntactical transformation but involves some causal analysis.

4 1
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A different view, which is potentially more appropriate for generalization, is the
following . The motivation for the ultimate simplification is that temperature and other
variables remain in a range where they do not "disturb" the principal behavior of the
thyristor. Hence, in example 5, first simplification is performed by shrinking the original
relation to the nominal value (or range) of temperature etc. Thus, thermal triggering etc.
is eliminated. The simplified model is then projected to the sparse representation (which
is an abstraction if we started from nominal ranges rather than single values) .

This kind of simplification, reduction of a model-defining relation to the nominal values
or normal operation ranges, should be rather widespread and covers cases like ignoring
friction in mechanical systems etc. Based on our definiton ofmodels it provides us with a
way to clearly specify the semantics of a simplification .

This is important, because it gives us the chance to reason about conditions, under which
a simplification yields a model. Remember that, unless the simplification is the
generation of a weaker model, it is not guaranteed that the simplified relation, R', still
covers the behavioral mode (Fig. 4.4).

Figure 4.4 .

	

R' as a simplification ofR

DOM(v_ c)

Lemma 4.5
Let R, R'CDOM(y_e) .

( WC, R) A (VsESIT Val(s, v_c, yo) =* voVR\R'))

	

M(C, R') .

Intuitively, this lemma (which is general, but of particular interest for R -(Y R') simply
states that the modified relation still defines a model, if the parts of R it truncates do not
correspond to encountered situations . The condition of lemma 4.5 can be seen as the
assumption that the physical condition of C and/or environmental conditions restrict
the possible physical situations accordingly. This idea is of particular importance if we
simplify a strong model, B(C, R), because it claims to cover exactly all physical situations,
and, hence, R\R' =0 seems to be a necessary consequence . Butin this case, the condition
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in lemma 4.2 formulates the expectation that environmental factors reduce SIT to some
SIT'CSIT that excludes the dangerous cases. Remember, in consistency-based diagnosis,
the danger comes from falsely falsifying a behavioral mode. In our framework, observing
some vOER\R' gives us the choice of negating the model or the condition, which can be
given a clear semantics. We will continue this discussion in section 5.

4.3.5 Approximation

There remains a special class of simplifications to be discussed which is represented by
example 6. Here, one model is replaced with the goal of, though making the model
simpler (piecewise linear), defining it rather close to the original one. Speaking about
closeness imposes a condition on the nature of the representation : it must be a metric
space, i .e . we can define some suitable distance, dR, on P(DOM(vd) :

dR:

	

P(DOM(vd)XP(DOM(vd) -. R
with

	

dR(R, R')=dR(R', R) > 0,
dR(R, R')=0 a R=R',

and

	

dR(R, R')+dR(R', R")<dR(R', R").

Definition 4.9 (Approximation)
A simplification, o(co), is an co-approximation, iff
-

	

dR is a distance defined on P(DOM(y,)), and
-

	

3coER

	

( C,,(,0)(R, R')

	

C*

	

dR(R, R')~ co A C'o(R, R') ) .

This means, the simplification criterion contains, among other criteria (e . g. linearity), a
restriction of the deviation from the approximated model. This links the problem to a lot
of standard approximation techniques .
We will write
R ^,£ R'

	

and M(C, R) ^,£ M(C, R')
if R' is an £o-approximation ofR for some co. Note that ^.£ is transitive, but, usually, not
w.r.t. a fixed co .

For the special case that all DOM(vi)=R",we can use a distance d on R" in order to define
dR. For instance, we mightdefine

d, : R" X P(R") -" R
by dx(x', R) :=min(d (x', x)),

xER
and

	

dR : P(R") XP(R") -. R
by

	

dR(R, R') :=max

	

(max (dx(x', R)), max (dx(x, R'))) .
x'( R'

	

x(R

We conclude this subsection by summarizing that we consider
abstraction as a special transformation of representations (that induces a
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transformation ofmodels)
and simplification as a transformation of models within the same representation .

The former preserves model properties while the latter may violate them, but in a way
that can be described . Approximations are special cases of simplifications that allow
measuring the proximity of models.

4.4

	

Reducible Domains

We will now drop the restriction that domains be irreducible, i .e . we now allow that one
value is implied by another one (Readers who are not interested in reducible domains and
in the proofoftheorem 4.2 may skip this subsection) . A justification for this extension can
already be obtained from the simple sign algebra used in example 1 in the preceding
subsection . One might want to replace

Q3={-, 0, +}={

	

0), 10, 01, (0, °°)}
by Q4= {-, 0, +, ? } _ { ( - °°, 0), 10, 01, (0,

	

°°)}
(where ?=(- m, m) is the unrestricted value), because this allows, for instance, a complete
definition of addition (see f Struss 89cl ) . In this case,

Val(s, vc , +) =* Val(s, v_ c , ?)
would be a consequence . This motivates the following definitions .

Definition 4 .10

	

(Irreducible Domain)
An implicant of some v0E DOM(vc) is a value that implies vo in all situations . IMP(vo)
denotes the set of implicants of vo:

IMP(vo) : ={ v'oE DOM(vc ) I VsE SIT Val(s, yc , v'o) = :~ Val(s, vc,v o) } .
A value is called reducible iffIMP(vo)x{vo}.
The value hull V(R) of some relation RCDOM(vc) is defined by

V(R) :={ yoEDOM(vc)

	

imp(yo) f1R :~t01
_ { v_0E DOM(vc)

	

3v'oE R VsE SIT Val(s, yc , v'o) =* Val(s, yc , yo) } .

R is called closed w.r.t. Val iff R=V(R).
A domain DOM(yc) is called irreducible if all subsets are closed w.r.t . Val :

VRCDOM(vc) V(R)=R .

It is because of reducible values that Definition 4.1 of a relational model is inappropriate
for relations R which are not closed w.r.t. Val . This can be mended in the following way.

Definition 4.1'

	

(Models for Reducible Domains)
A closed relation RCDOM(yc) specifies a model of a constituent C by

M(C, R)

	

a

Vvo(DOM(yc) ( (3sESIT Val(s,vc,vo)) => v0ER )

We also have to alter Definition 4.4 of a representational transformation, because the
justification (ii) presented there is too strong for reducible domains. The target domain

4 4
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may contain reducible values that are not image of any value of the original domain . In
the Q4 example, Val (s, v, ?) is true even though it is not the image of any real number
under the sign transformation. The appropriate condition is
(ii')

	

IfVal holds for a value in the target representation, then it also holds for one of the
preimages of one of its implicants.
The following definition also distinguishes between the two conditions in order to obtain
a refined version ofTheorem 4.2 .

Definition 4.4'

	

(Representational Transformation)
Let (ye , DOM(yc)) and (v'c, DOM'(y'c )) be two representations . A mapping

Lo : DOM(ye) -" DOM'(y'c)
is Val-preserving iff

fvOEDOM(y,) VsESIT

Val(s, vc , vo)

	

=:~

	

Val(s, v,, zo(vo)) .
It is Val-grounding iff

dv'oEDOM'(v'c) VsESIT
Val(s, v,, v_'o)

	

=* 3vOEDOM(vc) (Val(s, vC , vo) A zo(vo)E 1MP(v'o) ) .
It is a representational transformation, iff it is Val-preserving and Val-grounding .

With these modified definitions, Theorem 4.2 holds also for the reducible case (for
irreducible domains, Definitions 4.1 and 4.4 follow from Definitions 4.1' and 4 .4',
respectively), ifmodified appropriately .

Theorem 4.2'
Let RCDOM(v_'c ), R'CDOM'(v'c), and

Zo: DOM(vO -. DOM'(v'C) .
Ifto is Val-grounding then the (hull of the) image of a model is a model:

M(C, R) =* M(C, V(io(R))) .
If io is Val-preserving, then the inverse transformation also preserves models:

M(C,R') =* M(C, V(zo-I(R'flzo(DOM(v_d)))) .
If zo is a representational transformation then the (hull of the) image of a strong
model is a strong model :

B(C, R) =:~ B(C, V(zo(R))).

Proof

(i)

	

"M(C, R) =* M(C,V(zo(R)))" .

Let v'OEDOM'(v'c) and sESIT such that Val(s, Vc, v_'o) holds. We have to show that
v'oE V(zo(R))) also holds under the condition M(C, R) .

From Val(s, v',, v'o) and Definition 4 .4' (Val-grounding) we obtain
3voEDOM(ye) Val(s, ve , vo) A zo(vo)EIMP(v'o) .
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If M(C,R) holds, this implies (by Definition 4.1')

3v0ER to(vo)EIMP(v'o),

and, hence,

to(R) f1IMP(y'o) ~0.

This means v'oE V(to(R)), completing the proof of M(C, V(to(R))) .

(ii)"M(C,R') =:~ M(C, R), where R=V(zo-'(R'flio(DOM(v_c))))" .

This part of the theorem will be proved by reductio ad absurdum. We assume

M(C,R') A

	

M(C, R) .

-M(C, R)

	

3voEDOM(yyc) 3sESIT Val(s, vc, v_o) A v_ofR .

If to is Val-preserving, this implies

3voEDOM(yc)

	

3sESIT Val(s, v' c, to(vo)) A L0(vo)Qto(R),

and
3v'oEDOM'(v'c) 3sE SIT Val(s, v'c , v'o) A v'ofR' .

This contradicts M(C,R'), and, hence, M(C, R) holds .

(iii)

	

"B(C,R) =:> B(C, V(to(R)))".

Let v'0EV(to(R))) ; we must show there exists a situation s with Val(s, v'c, v'o), given B(C,

R) . v'OE V(to(R))) implies

3v0ER to(yo)EIMP(y'o) .

B(C,R) yields
3vo EDOM(y_c) (3sESIT Val(s, vc, yo)) A to(vo)EIMP(v'o) .

Definition 4.4' (Val-preserving) establishes

3voEDOM(yc) (3sE SIT Val(s, v_'c , to(vo)) A to(vo)EIMP(v'o) ,

and finally,

3sE SIT Val(s, v'c, v'o)

completing the proof of B(C,V(tOCR))) .

4.5

	

Data Interpretation

Definition 4.1 may seem a bit strong in that it requires that the defining relation really

contains all possible values. Often, we might want to reflect aspects like measurement

precision or the degree of commitment to a certain inferred or observed value (e. g . by

using fuzzy numbers) and rather ask whether or not this is considered conflicting with

the relation . In particular, this is true if approximate models are used. For instance,

when using a linear approximation, we will want to weaken the criterion for what

establishes a discrepancy .

There are different ways to incorporate this aspect in our framework. One is to explicitly

specify interpretations ofvalues as mappings

(D : DOM(yc) -). P(DOM'(vc))

4 6
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that associate each value, vo, with the set of values, 4)(vo), it is consistent with, or, rather,
which are considered not to establish a discrepancy with yo. For real numbers, this
interpretation could be given by a sphere with a radius of precision or an environment
defined by order of magnitude relations. It could also be specified by a threshold for a
fuzzymembership function .

The interpretation can be global or specific for a certain (class of) models. It may also vary
for a given relation, R, thus defining a family of models based on R, rather than a single
one . This is captured by the following variation of Definition 4 .1 .

Definition 4.1" (Model)
LetRCDOM'(vc) . R and an interpretation

cp : DOM(y_,) -> P(DOM'(yc))
specify a model by

M(C, R, (p) a
VvOEDOM(yy,)

	

( (3sESIT

	

Val(s, ve , vo))

	

=:~

	

4)(vo)nR-?-- 0 ).

Note, however, that, if DOM(vc)=DOM'(vd, we can achieve the same effect by a
modification of the relation R, namely by adding to R the fringe ofvalues compatible with
R under 4) :

R(p : ={yyoE DOM(y,)1 4(vo) n R # 01 .
In this case, vOE4)(vo) is a natural requirement. Then Definitions 4 .1 and 4.1" are
equivalent:

M(C, 4) t* M(C .R, 4) .
This is why we will continue using Definition 4.1 in the following. Varying the strength
of the interpretation while keepingR fixed yields weaker or stronger models.

Definition 4.10 (Weaker Interpretation)
An interpretation cpl is weaker than anotherone, cp2, iff

VvOEDOM(y,) 4)2(vo)C4)1(vo)

In other words, a weaker interpretation results in a model that is more "careful" in
generating discrepancies.

Lemma 4.6
Let RCDOM'(ye) and cpl, 4)2 be two interpretations . If 4)1 is weaker than 4)2, then the
same holds for the induced models:

M(C, R, 4)2)

	

=* M(C, R, 4)1) .

5

	

Diagnosis with Abstract and Simplified Models

In this section, the utility of the modeling theory for consistency-based diagnosis will be
discussed. Because this is not the focus of this paper, we can only outline some
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fundamental aspects of the impact of abstract and simplified models on the diagnostic

procedure . A more thorough analysis and a technical discussion of diagnosis with

multiple models are presented in [Stress 911.

The theory of model-based diagnosis we use is independent of the particular modeling

formalism (and, hence, we simply denote models by M, M', etc.) . It only requires that the

models can be seen as propositions and that logical connectors can be established between

them. Our relational formalism forms one example . We assume there exists a set of

explicit models which can be used directly for prediction of constituent behavior, e .g .

relational models defined by some (extensionally or intensionally) specified relation .

However, normally, a concept like FAULTY(C) will not be an explicit model, but rather

be specified by a choice between different possible fault modes which might be

represented by explicit models. In order to include such "implicit models", we can

generalize the concept of a model by the following recursive definition .

Definition 5.1 (Generalized Model)

A(generalized) model is

-

	

an explicit model, or

-

	

a disjunction of (generalized) models, or

-

	

a conjunction of (generalized) models, or

-

	

theantecedent of a view or of a simplification that is a (generalized) model.

The relations mentioned in the last item of this definition will be defined in the following

subsection .

5.1

	

Model Relations

Definition 5.2 (View)

Amodel M' is a view of another model, Mif

M =* M'.

In otherwords, M' is a necessary condition for M to hold .

Examples

1. From Theorem 4.2 and Corollary 4.4, it follows directly that representational

transformations in general and model abstraction in particular lead to a view:

M(C, R) -a M(C, R')

	

=* (M(C, R) =* M(C, R')).

2 . Also the incremental simulation of dynamic systems can be covered by the concept

of a view: Let us regard an n-step behavior, Bn, to be described by a tuple v,=(sl, s2,
..., sn ) where sl denotes the initial state, and each si is a variable representing the

state consecutive to si-1 for i > 1 . A particular behavior

Bno= (Slo , S2o, . . ., Sno)
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is interpreted as a conjunction of n states,
S1 = S1o A S2=S2o A . . . Asn=sno ,

An n-step simulation, Sno , is a disjunction of possible n-step behaviors,

Bni V Bn 2 V . . . V Bncn
represented by Sno={Bni .}

Furthermore, we call a simulation algorithm monotonic iff it has the property that
obtaining an n+1-step simulation from an n-step simulation involves only two
operations :
-

	

some B ni in Sn may be deleted because they are detected to be inconsistent in step
n+1
-

	

theother B ni in Sn are extended by (alternative) successor states .
Most simulation systems will have this property ; for instance, QSIM does . In this case
we can conclude:

Lemma 5.1
If an n-step simulation of a monotonic simulation system is regarded as a model,
Mn=Sn, it is a view of an n+ 1-step simulation :

Mn + 1 =:~ Mn

(Note that mapping a n + 1-step simulation to a n-step simulation (by "cutting off'the
last state in each path) can be regarded as an example for a representational
transformation which is Val-preserving but notVal-grounding. The deeper reason for
this is that the difference between the two levels is not a mere representational shift,
butincorporates the inferential power ofthe simulation algorithm).

Bi B2 B3

DOM(v_e)

Figure 5 .1 M' is a view ofM

	

Figure 5.2 {B1, B2, B3} is a choice for M

Definition 5.3 (Choice)
A set ofmodels, {Mi}, is a choice for a model, M, iff
M =* M1V M2 V ...VMn .
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Example
If model abstraction collapses a number of (strong) models into a single one this can be
expressed by a choice, e .g .

B(C, R)

	

=:~

	

V B(C, Ri) .
B(C,R;) --a B(C, R)

Note that this means essentially expressing the claim that the set {B(C, Ri)) really
contains models for all (physically) possible behaviors covered by R (Fig . 5 .2) .

Handling simplification of models is one important task which has already been
discussed for relational models in section 4.3 . As the examples in section 4.3 illustrate, it
is often not possible to guarantee that the result of the simplification is still a model
under all circumstances . Using the simplification nevertheless, is based on the
assumption that the potential deviations from the real behavior mode do not occur in
the case we are looking at. Remember that such diagnostic assumptions were introduced
in the DP system as the set DHYP.

Definition 5.4 (Simplification)
Mis a simplification of M, if

3 {dhypi} C DHYP

	

M1 n A dhypi =* M' .
i

Examples
1. Simplification may be obtained by modifying the relation that specifies a model . In

this case, Lemma 4.5 provides us with a way to specify the simplifying assumption :

Corollary 5.3
Let

	

R, R'CDOM(y_c) and
dhyp =*

	

(VsESIT Val(s, v_c , yo)

	

vofR\R') .
Then

M(C, R) n dhyp =* M(C, R') .

2 . As stated in the discussion ofexample 5 in section 4.3 (ignoring thermal influences in
the thyristor model) an important special form ofmanipulating the relation directly is
its projection to the nominal value or range of a certain variable, such as the normal
range of the temperature of the environment, e. g .

R' =Rn [templow, temphigh] X DOM(v2) X . . . X DOM(vn) .
In this case, dhyp represents the assumption that we encounter only situations with
normal temperature conditions .

3 . Global assumptions about sets of models and behavior modes establish another type of
simplifying assumptions. Assuming the completeness of the set of modelled
behavioral modes is a typical example. We can make it explicit by introducing a
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choice for a simplification, M', of a model, M, rather than for M itself:
M A dhyp =* M'
M'==> M1 VM2V . ..VMn .

It is easy to see that Definition 5 .4 captures the transitivity property of simplification .

Remark 5.4
If M" is a simplification of M':

	

M'A dhyp'

	

M",
and M' is a simplification ofM:

	

M A dhyp

	

M',
then M" is a simplification ofM: M" A dhyp"

	

M
with dhyp" = dhyp' A dhyp .

Moreover, the approximation property carries over to views :

Remark 5.5
(M A dhyp =~ M' A M' ~ M")

MAdhyp=~ M" .

In [Struss 911, more basic relations are introduced in order to structure the model set. Thus
we turn a simple list of behavioral modes into a graph which contains (generalized)
models as nodes and labelled arcs defined by the model relations .

5 .2

	

TheModel Graph

We illustrate this by returning to the initial example. Fig . 5 .3 shows a possible model
graph for the thyristor . o-arcs correspond to simplifications, v-arcs are views, and choices
are marked with "c" . The graph indicates, for instance, that under simplifications al, a2,

03, the model THSWITCH is a valid model for the correct behavior, and we have to
consider THBLOCKING and THPUNCTURED as the only possible faults . Graph nodes with
bold labels are the (ideal) behavioral modes which are considered to be only implicit
models to be checked by views and/or simplifications . As a technical remark, we state
that these ideal behavioral modes define the places where assumptions are introduced
(namely that the respective mode is the actual one) which are then recorded by the ATMS
and propagated via view and simplification links. Only simplification links add further
assumptions (which may be either unspecified ATMS assumptions or nodes ultimately
justified by explicit simplification conditions as specified by Lemma 4.5) . For instance,
THSWITCH might be labelled by the assumption set {thCORRECT, al, 02, a3}. This allows
us to use ATMS-based focusing techniques as described in [Dressler-Farquhar 901 for guiding
the focus for prediction by simplification assumptions . In order to banish potential
objections about too many assumptions floating around, we finally mention that rather
than positively representing the presence of simplification assumptions we encode them
as the absence of exceptions from the standard case, and treat them as defaults in the
style of [Dressler-Struss 911.
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THCORRECT

THPOSSIBLE

5.3

	

Diagnosis with Multiple Models

THF,BLOCKING

52

THFAUL'PY

TH F,PUNCTURED

Figure 5.3 A model graph for the thyristor

THF,use

The model graph is used to guide the selection and instantiation of models (and also their
deactivation) in the course of the diagnostic process . Basically, we start at the leaves ;
views and simplifications are to be used first in order to save costs in prediction . We climb
up in the model graph if there is evidence that a revision ofmodeling assumptions and/or
a refinement of models is required . The system description, SD, is no longer fixed for the
entire diagnostic process, but may change.

SD can (and for practical purposes has to) be decomposed into different knowledge
sources . In a first step, we can identify that SD comprises (at least) knowledge about
- the domains of the variables used to define models (e.g . what constitutes a
discrepancy) (V-DOMAIN)
-

	

the constituents in the application domain (LIBRARY),
-

	

the structure of of the device to be diagnosed (e.g . identify variables shared among
constituents) (D-STRUCTURE) .
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(Again, we refer to [Struss 911 for a more detailed description of SD's content, in particular
for relational models) . Furthermore, the LIBRARY contains
-

	

the model graphs for the constituents (M-GRAPH), i.e . inferences such as
M1 A dhyp =:~ Ml',

-

	

the set of model definitions for the explicit models (M-DEF), in the relational case
according to Definition 4.1 or its variants:

M1

dvOEDOM(y,) ( (3sESIT Val(s, vc , vo)) =* v0(R) .

Hence, we assume that, at each stage of the diagnostic process, SD is given by
SD =V-DOMAIN U D-STRUCTURE U M-GRAPH U M-DEFACT

= SDCORE U M-DEFACT,
where the set of active models, M-DEFACTCM-DEF, normally contains only a small
subset ofmodel definitions at a time . For the sake of simplicity, we assume that SDCORE
is always complete, and remains stable (actually, we need to consider only subsets of it, as
well, dependent on the active models) .

Organizing the use of constituent models in the diagnostic process according to the
principle stated above is based on a monotonicity property whose ultimate foundation is
captured by the following theorems .

Theorem 5.1

Let M, and M' be models of one constituent C, and M-DEF(M) and M-DEF(M') be the
respective model definitions.
if

	

0is a diagnosis for OBS U SDCORE U M-DEFACT U {M-DEF(M)}
and

	

M'(C) is a view of M(C) ,
then A is a diagnosis for OBS U SDCORE U M-DEFACT U {M-DEF(M')} .

Basically, this theorem says that when working with a view of a model, we do not loose a
diagnosis we would obtain when using the original model; or, stated differently, that
switching to this more powerful model is really a step of refinement. This provides the
ultimate justification for applying models, which are gained by (qualitative) abstraction
or which model only particular physical aspects, in order to cut down the space of possible
diagnoses before further investigation with more fine-grained, but also more costly
models.

Of course, when using simplified models, this kind of monotonicity will be restricted, as
indicated by the following theorem .

Theorem 5.2
Let M, and M' be models of one constituent C, and M-DEF(M) and M-DEF(M') be the
respective model definitions .
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if

	

0 is a diagnosis for OBS U SDCORE U M-DEFACT U {M-DEF(M)},
and

	

M'(C) is a simplification of M(C): M A dhyp =~, M',
then

	

0 is a diagnosis for OBS U SDCORE U M-DEFACT U {M-DEF(M')},

or

	

dhypE0 .

This theorem formulates what is in accordance with our intuition, namely that by using a

simplified model, the system will infer all diagnoses that can be obtained from the

original one and do not contain the retraction of the underlying simplifying assumption.

Part of the diagnosis space that is based on -dhyp may be invisible ; however, it can be

regained in DP, since the diagnostic assumptions are made explicit and kept in

dependencies .

We illustrate this process by going back to the thyristor example and its model graph in

Fig . 5 .3 . Assume we diagnose a thyristor stand-alone and start by activating the correct
mode only while keeping all simplifying assumptions :

M-DEFACTI ={M-DEF(THSWITCH)b
If the predictions based on SDI =SDCORE U M-DEFACTI are inconsistent with the
observations, {thCORRECT , 01, 02, 03} is a conflict, and, under a focus of suspicion that
does not contain diagnoses involving any of ol, 02, 03 (the diagnostic hypotheses

currently taken for granted), 0={thCORRECT } is the only diagnosis, and the thyristor is
considered faulty .

If now fault models are activated by the system, while still keeping the simplifications 01,

02, 03, we have

M-DEFACT2
={M-DEF(THSWITCH), M-DEF(THF'BLOCKING), M-DEF(THF'PUNCTURED)}

Let us assume that the two fault models are also contradicting the observations. This

invalidates THFBLOCKING and THFPUNCTURED and, hence, TH FSWITCH . Under the

simplifying assumptions o1, 02, 03, now both THCORRECT and THFAULTY are refuted,

and so is THPOSSIBLE, which is considered to be a fact. This inconsistency triggers a

change in the focus of suspicion, since it can only be resolved by retracting simplifying
assumptions, in our case (at least) 03 . Permitting the occurrence of the respective

modeling assumption in diagnoses extends the space of diagnoses again and activates

new models:
M-DEFACT3={M-DEF(THTHRESH), M-DEF(THF'BLOCKING),

M-DEF(THF'PUNCTURED), M-DEF(THF'VBO)} .

If is THF'VBO is also inconsistent with the observations while THTHRESH is not, the
thyristor is considered correct, under the simplifying assumptions 01, 02.
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6 Summary

We presented a theory of transformation, abstraction and simplification of relational
models that allows us to prove logical links between different models which in turn lay
the foundation for their well-understood utility in a diagnostic framework . In particular,
we are able to characterize classes of mappings between different representations that
preserve model properties . Furthermore, explicit conditions can be described for
simplified versions ofa model to be still appropriate .

The concepts for structuring models we developed, together with the capabilities of the
DP framework enables us to chunk our knowledge about a system's behavior in such a
way that we can obtain results by instantiating and using only a portion of the entire
model. Because modeling assumptions can be represented explicitly, the system is able to
reason about them and has a basis for a controlled navigation through the model graph.
We are convinced that progress in developing a theory of diagnosis with multiple,
abstract and simplified models will be a major step towards a general theory of diagnosis
and crucial for expanding the range ofreal applications of model-based diagnosis.
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