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Abstract

We describe an envisionment-based simulation program. The program bears
some design similarities to I(uipers” QSIM algorithm, but differs in the under-
lying ontology and in the implemented theory in the envisioning process. The
program implements part of an axiomatic, first order theory that has heen de-
veloped to represent and reason about space and time. Topological information
1s extracted from the modelled domain and is expressed in the theory as sets
of distinct topological relations holding betwen sets of objects. These form the
qualitative states in the underlying theory and simulation. Processes in the the-
ory are represented in the envisionment as paths in the envisionment tree. We
show the feasability of this particular ontology in the implementation of a sim-
ulation program derived from a logic-based formal theory. A description of the
algorithm is given and the whole 1s illustrated with an example of a simulation
of the processes phagocytosis and exocytosis - two processes used by unicellular
organisms for garnering food and expelling waste material respectively. Finally
we show how the program can be viewed as a specialized theoreni prover by
mapping program transformations to logical inferences in the modeliing theory

1 Introduction

Envisionment-based simulation programs used in Qualitative Reasoning {(QR) are
now well established. The notion of an envisionment originated in de Kleer’'s NFW.
TON (Weld and de Kleer 1990) program. but now appears as a central program
design feature in many QR simulation programs - see Weld and de Kleer (1990). An
envisionment takes a set of predetermined qualitative states, and expresses them in
the form of graph or a tree. This represents a temporal partial ordering of all the
qualitative states a modelled physical system can evolve into given some indexed
state. The term “envisionment” refers to the generated tree of possible states of a
modelled system, the term “envisioning” to the actual process of deriving this tree.
Envisionments can be attainable or total. Attainable envisionments generate the
tree from some particular initial state of the modelled system: total envisiomments
are generated from all possible states - see Weld and de Kleer (1990 for examples
of both tvpes in the literature. Our simulation program produces an atiainable
envisionment.

“This is an extended version of a paper presented at AAALYZ



The simulation program described below shares many of its general desigyn fea-
tures with Kuipers’ (1986) QSIM approach to qualitative simulation. QSIM uses a
set of symbols that represent physical parameters of a modelled system, together
with a set of constraint equations (which are taken to be qualitative analogues of
standard differential equations commonly used in mathematics and physics). The
qualitative simulation starts with a structural description of the modelled domain
(being the description of the parameters and constraint equations which relate the
parameters to each other) and an initial state. The program produces a tree which
represents the initial state of the system as the root node, and possible behaviours
of the modelled system as paths in the tree from the root node to its leaf nodes.

In our simulation program, QSIM’s physical parameters map to a set of mutuallv
exhaustive and pairwise disjoint set of dyadic relations that can hold between pairs
of regions. Similarly, QSIM’s set of transition rules map to a set of transition rules in
our theory (which determine the manner in which pairs of objects can change their
degree of connectivity over time), and QSIM’s constraint model maps to domain
independent and dependent constraints that apply to states. and between adjacent
states. While both QSIM and our simulation program take particular physical
systems as a model, unlike QSIM, our simulation program first requires the user
to abstract out a logical description of the physical model in terms of a set of
topological relationships holding between the set of objects in the modelled doniain.
An analogue of QSIM’s consistency filtering also appears in our simulation program.

The structure of the rest of the paper is as follows. In section 2 we outline that
part of the underlying theory upon which the present simulation program is based.
Section 3 discusses the simulation program. In section 4 we give an example model
and resulting envisionment. The logical correctness of the program is dealt with in
section 5. Finally in section 6 we discuss related and future work.

2 Overview of the spatial theory

The formal theory which underpins the simulation program (see Randell and Cohn
1989, 1992 and Randell 1991) is based upon Clarke’s {1981, 1985) calculus of indi-
viduals based on “connection™ and is expressed in the many sorted logic LLANA -
see Cohn (1987). The theory supports regions having either a spatial or temporal
interpretation. Informally. these regions may be thought to be infinite in number.
and any degree of connection from external contact to identity is allowed in the
intended model.

The basic part of the formal theory assumes a primitive dvadic relation: (1. y)
read as ‘x connects with y' which is defined on regions. C(ua.y) is reflexive and
symmetric. In terms of points incident in regions. C(x, y) holds when regions .+ and
y share a common point. Using the relation C{z,y), a basic set of dvadic relations
are defined. These relations are: ‘DC(x.y)" (‘x is disconnected {rom y'). "P(r.y)
(‘z is a part of ¥°), ‘PP(z,y) (*z is a proper part of y’), v = y  ("x is identical
with v'), ‘Oz, y) (‘z overlaps ¥}, ‘DR(z.y} (‘2 is discrete from y') "PO(a.y) (o
partially overlaps y’), ‘EC(2,y)" ("7 is externallv connected with y) . "TP(u.y) (o
1s a tangential part of y"). "NTP{2.y) ("2 is a nontangential part of y ). “TPP(r. ¢y
(*z is a tangential proper part of y"), "NTPP(2.y) ("2 is a nontangental proper
part of y7). "TPHz,y) ("2 is the identity tangential part of y'). aud. "NTPlH.. y)
(*z is the identity nontangential part of y°). The relations PP, PP. TP NTDP. TPp



and NTPP support inverses. Of the defined relations, the set DC, EC. PO. TPP.
NTPP, TPI, NTPI, and the inverses for TPP and NTPP form a mutually exhaustive
and pairwise disjoint set. From now on we shall refer to this particular set. as the
set of base relations defined solely in terms of the primitive relation C. A pictorial
model for this set of base relations (excepting the relation NTPI) is given in Figure
1 1. Atomic formulae whose predicate symbol is a base relation will be called bhasic
atoms. Note that all the relations described above can be expressed as disjunctions
of sets of hase relations.

For the temporal part of the theory assumed by the simulation program. we first
introduce temporal regions into our ontology, which we call periods. Periods are
subdivided into intervals and moments, where a moment is defined as a period that
has no consituent parts such that one part is before another. In addition to periods.
a new primitive relation of temporal precedence 'B(x,v)’ read as 'x is before v7 is
added to the formalism and axiomatised to be rreflexive and transitive. A set of
13 dyadic temporal relations are then defined - see Randell {1991). These wav be
viewed as analogues of all the 13 interval relations common to interval logics - see
e.g. Allen and Hayes (1985) and Hamblin (1971). However. for the purposes of this
paper, only the relation Meets(x,y) which is irreflexive and transitive is needed.
Two periods z and y are then said to meet if and only if 2 is before y and no other
period z exists such that 2 is before z. and = is before y. The function next{+}
read as ‘the next moment after (period) a" can then be defined.

In the general formal theory, an ontological distinction is made between physical
objects (bodies) and the regions of space they occupy. Bodies and regions are
represented in the formal theory as disjoint sorts. The mapping between the two is
done by introducing a transfer function ‘space(z,y) read as ‘the space occupied by
x at y’, that takes a body at a given moment in time, and maps this to the region
of space it occupies. or to a null object if z does not exist at the moment y. In
the Jatter case NULL(x,y) is true. The transfer function is used in the theorv to
define a set of ternary relations of the form ®(a,y, z) which are used in a set of
envisioning axioms and means that body 2z is in relation ® to body y during period
z. However. the temporal parameters in formulae used in the simulation program
remain implicit, i.e. the formula NTPP(n,«) abbreviates the temporally indexed
formula NTPP(n,a.t) - where t denotes a specific period during whicl the srare
obtains.

The formal theory countains a set of envisioning axioms aund encodes a et of
theorems (derivable from the part of the theory described above)in the form of o
transitivity table - ¢f. Allen’s (1983) transitivity table.

The envisioning axioms (see figure 1) describe direct topological transitions that
can be made between pairs of regions. Thus, for example, given two regions that
DC in one state, a direct transition to EC is allowed, and from EC back to DO or
to where the regions PO. and so on. These axioms rule out certain transitions -
for example no direct transition between DC and PO is allowed: if the transition
from DC to PO is sanctioned in the model. then the underlying transition must pass

'This particular model assumes all the regions to be topologically closed (i.e. including then
boundaries). The relation N'I'Pl ix only satisfied if the regions it is defined on are open (i
not including their boundaries). and given that in the theorv used by the simulation program.
regions cannot both be simultaneously closed and open. the relation NTPUis not represented in 1l
restricted model we use here. We jusuify this restriction by noting that phvsical objects are most
naturally represented by topologically closed spatial regions.




Vayz[DC(z,y, z) AT — [DC(z, y, next(z)) V EC(z, y, next(z))]]
Veyz[EC(z, v, z) AT — [EC(z, y,next(z)) V DC(x, y, next(z)) V PO(x, y, next(z))]]
nyz[PO(:z:,y, 2)AT — [PO(z, y,next(z)) VEC(z, y, next(z)) V TPP (. y, next{z))v
TPP~!(z, y,next(z)) vV TPI(z, y, next(z))]]
Vzyz[TPP(z,y,2) AT — [TPP(z,y,next(z)) V NTPP(z, y, next(z))V
PO(z,y,next(z)) V TPl(z, y, next(z))]] :
Vzyz[NTPP(z,y,2) AT — [NTPP(z, y,next(z)) V TPP(z, y,next(z))v TPI(z, y, next(:))]]
Veyz[TPI(z,y,z) AT — [TPI(z, y,next(z)) V PO(r.y. next(z))v
TPP(z,y, next(z)) v NTPP(:L‘ y, next(z))]]
Vzyz[TPP~(z,y,2z) AT — [TPP~!(z,y, next(z)) v NTPP~!(z,y, next(:))V
PO(z, y, next(z))TPI(z, y, next(z))]]
Vzyz[NTPP~!(z,y,2) AT — [NTPP“l(:c, y.next(z)) V TPP~(z, y, next(z))V
TPI(z, y, next(z))]]
where I' = -NULL(z, next(z)) A -NULL(y, next(z))

Figure 1: The eight envisioning axioms.

through the intermediate EC state. A pictorial representation of of the envisioning
axioms is illustrated in Figure 2.

PP} NTPP!

Figure 2: A pictorial representation of the base relations and their direct topological
transitions.

The theory also uses a precomputed transitivity table (Table 1) for the set of
dyadic base relations described above - for details see Randell, Cohn and Cui {1992).
Fach R3(a,c) entry in the table represents a disjunction of all the possible dvadic
relations holding between regions a and c, for each R1(a,b) and R2(b.c) conjunction
- where R1, R2, R3 are elements of the set of base relations in the theorv. The
transitivity table is used in the simulation program for checking consistency of state
descriptions in the envisioning process.

As mentioned above, only a part of the general theory is actually implemented in
the simulation program. For example, the general theory also includes an additional
primitive function ’conv{x) read as ‘the convex hull of x’. which is axiomatised and is
used to generate a further set of dyadic relations. These additional relations are used
to describe regions that are either inside, partially inside or outside other regions
- see Randell, Cohn and Cui (1992). As with the set of relations defined solely in
terms of C, the extended theory including the new set of inside and outside relations
also admits the possibility of constructing several further sets of base relations.
depending upon the degree of representational detail required by the user. For the
basic extension to the theoryv, the set of base relations extend from 9 to 23. However.
here we simply concentrate upon the set of base relations defined solely in terms of ¢
which turns out to be sufficient to demonstrate the general utility of our approach.
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R2(b,c
Ria.b) ) DC EC PO TPP NTPP | TPP? ntepp? [TPI |NTPI
DC no.info DR,PO,PP |DR,PO,PP{DR,PO,PP DR,PO,PP|DC DC DC DC
EC DR.PO.PP™ '?2;1?}'—’ DR.PO,PP|EC,PO.PP PO PP DR pC EC X
PO DR,PO,PP'l DR.PO,PP’l no.info PO.PP PO .,PP DR,PO,PP‘ gg_‘po PO PO
TPP DC DR DR,PO.PP|PP NTPP ?2;‘;’%# Bg‘*‘“’o TPP X
NTPP DC DC DR,PO,PP|NTPP NTPP DR,PO,PP no.info NTPP {NTPP
’I‘PP'l DR,PO,PP“ EC,PO,PP“‘ po.pp* Po,TPP,TP"‘ PO.PP pp? ntept {repet | X
NTPP? |DR.PO.PP*IPO,PR? po.pr’  |ro,pp? o ~NTPP? ~tPp? |nTPRYNTRR?
TPI DC EC PO TPP NTPP Tpp'l NTPP? TPI X
NTP! DC X PO X NTPP X nrept | X NTPI

Table 1: Transitivity table for the 9 basic relations. If R1(@, b) and Ra(b. ¢). it follows that R3{«. ¢)
where R3 is looked up in the table. “X” entries mean that the corresponding conjunction Ry (. b} and
Rg(yb, ¢} cannot be simultaneously satisfied, and “no info.” that no base relation is excluded. Multiple
entries in a cell are interpreted as disjunctions. Note that DR stands for DC and EC. PP for TPP and
NTPP, PP™! for TPP™} and NTPP™1. TP for TPP™! and TPL and O for PO. TPP. NTPP. 111771
NTPP™!, TPI and NTPL.

3 The Simulation program

State descriptions in the simulation program are represented as conjunctions of
ground atomic formulae. The program first of all takes an initial state description.
then evolves successive states according to the restrictions imposed by direct topo-
logical transitions encoded in the envisioning axioms, by sets of constraints that
apply within a state or between states, and by any sets of add or delete rules that
sanction the introduction and deletion of named entities in the modelled domain
respectively. A consistency check is made for each state, first for the initial state.
and then for all potential evolved states generated in the envisioning process. The
envisioning process terminates when for each path generated in the envisiomment
tree, the last state repeats an earlier one. Each path of states 5,. S,. ... corre-
sponds to a sequence of periods, 11,13, ... such that Meets(t;. t;41). and the state
description of S; obtains during t,. Each complete path corresponds to a possible
behaviour of the physical model as predicted by the program. However. because
the transition rules always allow the possibility that the relationship between two
entities continues indefinitely. each initial subpath also corresponds to a predicied
behaviour.

The program requires a complete n-clique as the initial state.i.e. n(n-1)/2 atomic
formulae. This requirement is needed for consistency and constraint checking by the
program to function correctly.?

3.1 Constraints

The simulation program supports two types of constraints. These are intrasiale
and interstate constraints respectively. Intrastate constraints arve constraints that

2However, in practice, a partial description of the initial is usually supplied by the user and a)
the program computes the complete description or descriptions, if more than one is consistent. and
b) only those state descriptions that arise from evolved transitions from pairs of entities described
in the initial state are explicitly represented in the envisionment. Actually. our program i~ ~lightls
different to the procedure specified in section 3.4 but this need not concern ns lere,



apply within a state, and interstate constraints between adjacent states - that is to
say, between consecutive states, or states which meet. For example, in the physical
system which is used to illustrate this simulation program below - namely modelling
phagocytosis of unicellular organisms - an intrastate would be the assertion that the
cell’s nucleus is always part of the cell, and an interstate would be the fact that once
the food is ingested during phagocytosis and becomes a part of the amoeba. it will
remain so. Formally, both types of contraints assume the following forms:

Intrastate constraint: @, where @ is a quantifier free formula. and all terms are -
variables or constants (all variables are implicitly quantified). Note that & must be
composed of basic atoms.

Interstate constraints:
b — (Rp = (R1V ..V R,)) d — (Ro== (By A ... ARy

where @ is as above, and the R; are basic atoms predicating the same terms.
In the first case, where ® holds, if Ry then in any next state the disjunction Ry
VRy V...V R, holds, while in the second case the disjunction RO VR V...V R musi
hold where each R! is a base atom predicating the same terms as R0 and R/ # I?,
for any i, j. The presence of an interstate constraint does not force a transition to
take place.

3.2 Add and delete rules

In addition to the set of constraint rules described above, the simulation program
also supports add and delete rules. Both sets of rules can be viewed as another kind
of inter-state constraint. In this case add rules simply sanction the introduction of
new objects into the domain at the next state, and delete rules the elimination of
particular objects in the next state. In the model used to illustrate our program. an
example of an add rule is where, having enveloped the food. a vacuole is formed in
the amoeba, while an example of a delete rule is where the vacuole containg waste
material passes out of existence as it opens up and discharges its contents into the
amoebal environment.

Add and delete rules assume the following forms: add o4, .... 6,, with relations
¥, when ¥,; delete 04, ..., 0, when ¥, . ¥; is a conjunction of basic atoms. and
U, is a quantifier free Boolean composition of atoms. oy, .... 0, must be ground

terms (at least in the current implementation). An add rule is fired when the “when’
condition is true for some instantiation of free variables in the condition. and will
add oy, .... 0, to all next states with the specified relations. Similarlv. delete rules
will be fired when the “when’ condition is true and will delete all the specified o jocts
in all next states.

3.3 The Algorithm

The algorithm first of all takes an initial state of the modelled physical system,
then proceeds to generate the envisionment. Fach state in the envisioning process
is checked for intrastate consistency before the next state in the envisionment is
generated. The completed tree representing the envisionment has the initial state
as the root node, and paths tracing to leaf nodes as distinet sequences of transitions
undergone by the set of modelled objects.




The algorithm is as follows. First we put the initial state s0. in a set 5 of
unexpanded states; then the following steps are executed:

1. If S is empty then stop.
Select and remove a state Si from S.

Check consistency of Si, if Si is inconsistent, then go to 1.

Select applicable transition rules by applying interstate constraints,

Apply all the selected transition rules to produce a set of possible states.

Ot

6. Apply add and delete rules.

7. Delete any states that violate an imtrastate constraint.
8. Add remaining states generated to S.
9. Go to 1.

We discuss the details of steps 3 to 7 in the subsections below.

3.3.1 Counsistency checking

In step 3 the algorithm uses a simple form of consistency checking step to filter out
sets of atomic formulae (being a potential state in the simulation and thus in the
physical model) whose conjunction is inconsistent in the underlying theory, and thus
supports no model. In this instance, we use the results encoded in the transitivity
table. Given n-objects in the modelled domain, there are exactly n(n-1)/2 atouiic
formulae in a state. In particular for each tuple of objects x.v.z. there are three
atomic formulae of the form Ri(z,v), Ra(y, z) and Ra(z, z). Consistency checking
simply consists of checking that each Rs(z. z) formula is logically implied by R, (2. y)
and Ro(y, z) for each y ¢ {x, z}. In use this is effectively the same as Allen’s (1983)
constraint satisfaction algorithm, except that our algorithm can be simplified since
we have no “disjunctive labels” because we have restricted state descriptions 10
conjunctions of base relations.

3.4 Generating next states

In steps 4 through to 7, the algorithm takes a state produced in step 3. and procedes
to generate a new state. The selected state Si composes of a set of basic atoms. For
each atom there are between 1 and 5 applicable transition rules - see Figure |,
In step 4 possible transitions for each atom which violate an Interstate constrain
are filtered out. In step 5 the remaining transitions are applied in all possible
combinations to yield a set of posible next states. In step 6 the add and delete rnles
are then applied in that order. Finallv. in step 7 any next states which violate an
intrastate constraint are deleted.

4 An Example

By way of a simple example, we shall demonstrate the simulation program by mod-
elling cellular behaviour - in particular. the processes known as phagocytosis wnd
exocviosis. Phagoceytosis is the process by which cells surround. engull and 1hey




digest food particles. It is the feeding method used by some unicellular organisms
of which the amoeba is an example, and which is adopted here. The same process is
used by white blood cells in an attempt to deal with invading micro-organisms. Exo-
cytosis is the name given to a similar inverse process where waste material originally
contained in a cell is subsequently exprelled from the cell.

In the proposed model, an amoeba is depicted in a fluid environment containing
other organisms which are its food. Each amoeba is credited with vacuoles (being
fluid filled spaces) containing either enzymes or food which the animal has ingested.
The enzymes are used by the amoeba to break down the food into nutrient and
waste. This is done by routing the enzymes to the food vacuole. Upon contact
the enzyme and food vacuoles fuse together and the enzymes merge into the fluid
containing the food. After breaking down the food into nutrient aand waste. the
nutrient is absorbed into the amoebal protoplasm, leaving the waste material in the
vacuole ready to be expelled. This is achieved by letting the waste vacuole pass
to the exterior of the protozoan’s body, which opens up. letting the waste matorial
pass out of the amoeba and into the amoebal environment.

The formal description of the physical model is as follows. We assume six physical
objects: a, f, n, e, nt, w and v. standing for the amoeba. its food. the amoeba’s
nucleus, a packet of enzymes, nutrient, a body of waste material. and a vacuole
respectively. In the simulation, the vacuole, the nutrient and the waste are generated
dvnamicallv as the process is undergone.

The initial state is represented by the conjunction of the following atomic for-

mulae: DC(a,f), NTPP(n.a), NTPP(e,a), DC(n.e) and DC(e.f). *

Next we introduce our set of domain constraints for the phvsical model. First
the interstate constraints:

1)EC(f,a):7é:~ DC’(f,a) 8YDC(nt.v) = DC(nt,v)
2YPO(f,a :,b EC(f, a) 9)EC(nt.v) == PO(nt,v)
)TPP(f a) == PO(f,a) lO)P()(ni v) == EC(nt, v)
NTPP(f,a)== TPI(f,a) 11)TPP(nt,v #:» TPI(nt, v)
S5)NTPP(f,a) == TPI(f,a) )]\ TPP nt,v) == TPI nt.v)
6)‘(*wa:;bPOwa) HE f)y== DCle
NNPO{w.a) = EC(w,a) 1) ()( f):> TPP(C f

Constraints | to 3, 6 and 7, and 13 and 14 respectively impose a unidirectionality of
movement between the food and the amoeba, between the waste material and the
amoeba and between the enzyme packet and the food. In the first case when the
food is in contact with the amoeba it is always ingested to become a proper part of
the animal; in the second case once the waste material is in external contact with
the animal. it will never be reingested, and in the last case once the enzvine packet
contacts the food, it will always pass into it becoming a part. Constraints | and
5, and 6 and 7 respectively impose the conditions that once the food is ingested
(and 1s thus a proper part) it will remain a proper part of the animal. and that
nutrient once produced (being a proper part of the vacuole) remains a proper par

*In the initial state, since there are 5 objects. there are really 10 relationships to be specified. Ax
mentioned earlier, the program expands a user supplied partial description 1o a complete description.
In fact although the formula DC(e.f) is formally derivable in the general theory from the first fous
atomic formule, it is represented explicitly in the input languge here, otherwise no relation between
e and [ will be generated in subsequent states in the envisioning process - sce carlier footnote.




Without these constraints the transition from being a proper part to being identical
sanctioned by the envisioning axioms is not violated; this would simply result in a
possible state being generated in the envisionment with the amoeba being part of
the food, and the vacuole part of the nutrient!

The intrastate constraints are all straightforward to understand and just impose
the obvious static topological constraints between the domain entities.

NTPP(n, a), NTPP(e, a), PP(nt, a), PP(v. a). DR(n. e), DR(n. v)
PP(w.v). PP(f. v), (PP(w.a) — PP(v.a))

There are two add-rules. The first rule introduces nutrient and waste into the
food vacuole when the enzyme packet is a proper part of the food, while the second
rule sees the creation of the vacuole when the food is a proper part of the amoeba.
The delete rules govern the deletion of the enzyme and food. and vacuole respec-
tively. Since the first add rule below contains no basic atoms in the “with relations’
component, it is actually schematic for 4 rules in which only basic atoms are used.

add nt,w with relations PP(nt,v) AN PP{w.,v) when TPP(c. [)
add v with relations TPP(v,a)ANTPP{f.v) when TPP([. 1)
delete e, f when P(e¢, )

delete v when TPP(r.a)AN PP{w.cy AN DR(ni. )

The simulation program produces an envisionment with 76 distinct states. Qur
constraints are sufficiently strong because each complete path corresponds to the
English description of phagocytosis and exocytosis given above. A pictorial repre-
sentation of two paths generated in the envisionment is given i Figure 3.

In both paths generated we can see that the food is ingested by the amoeba. a
vacuole is formed which then contains that food, digestion takes place transfornung
the food into nutrient and waste. and finally the waste is exprelled. Note that iu
one path the enzyme packet begins to be absorbed into the food before the food is
completely enveloped by the amoeba, while in another path the vacuole is formed
before the enzyme packet is similarly absorbed.

Altogether there are 6 terminal states although there are 264 paths leading from
the initial state to these final states representing different ordering of the topological
transformations. However all the complete paths predict that phagocvtosis and
exoctosis will be undergone. Some of the paths exhibit oscillatory beliaviour.

5 Correctness

As mentioned above, the program terminates when for each path generated i the
envisioning process, the last state repeats an earlier one. It should be evident tha
the algorithm will terminate if there are no add rules, but the same applies il there
are finitely many add rules. This follows from the syntactic restriction on add rules.
that the objects must be eround terms. so onlyv finitely many new objects can ever
be introduced.

[t is important to show that all the hehaviours predicted by the simulation cor-
respond to possible behaviours of the physical syvstem being modelled. This issue




Figure 3: A pictorial representation of two paths generated.

brings to the fore the question whether or not the simulation can be proved to be
“sound” and “complete”. In our case by “soundness” we need to show that every
frontier of the envisionment tree (viewed as a disjunction) generated in the simu-
lation is a provable consequence in the underlying theory, and by “completeness™.
to show that, given an initial state, every proveable disjunction of conjoined basic
atoms in the underlying theory will be expressed in the envisionment. Whereas
Kuipers proves the correctness of QSIM relative to ordinary differential equations.
our gold standard is the logical formalism presented in Randell (1991). We discuss
these issues in the following subsection.

5.1 The Logical Basis of the Program

We now show how the above simulation system can be viewed as a specialized
theorem prover. In particular we wish to show that the following is true.

Conjecture {AF,A} = [So — (S51V...VS,)]and Vi(1 < i < n) {AF, A} £ [So —
(S1V...VS_1VS41V...VS,)]iff an envisionment with root Sy and the frontiers
Sy1....,5, can be produced by the program. Here A is a logical representation of
the constraints, add and delete rules, and the structure of the envisionment.

The if direction represents a soundness result and the only if direction a com-
pleteness result. A straightforward induction on the structure of the tree shows that
we can restrict our attention to a root Sg and immediate descendents S5y.....9,.

The soundness result is fairly easy to show. but our proof of completeness still
relies upon an unproven conjecture. First we need to show how to represent the
various structures in the siimulation program in our logic.

Formally, a state 5; corresponds to {R(a,b.t;) : R(a.b) € S;}. The strue-
ture of the envisionment is generated by a set of atoms {Meets(t,t'): 5" is a
sucessor state of S}. Intrastate constraints ®(aj.....an) in the program corre-
spond to Vi(-NULL(ay.t) A ... A -NULL(a,,, 1) — ®P(a;.....a,.1)). Interstate
constraints of type 1 can be represented as Vit'[[Meets(t.1") A ®(1)] — (Roll) —
(Ro(yV Ry(1')V ... R, (1'))]. Interstate constraints of type 2 can be replaced by
interstate constraints of tvpe 1 because there are onlyv finite number of base relations.



Add and delete rules are translated by the following 2 wifs respectively.

Vit ((®2(t) A Meets(t,t')) — (®1(t) A=NULL(o), #')A ... A=NULL{0,.1"))
Vit ((®s(t) A Meets(t,t')) — (NULL(0y.#) A ... ANULL(0,.t'))

We also need axioms to ensure the continued (non) existent of objects unaffected
by add or delete rules. The following schemas, paramaterised by "o" suffice.

Vit'(~d(t) A Meets(Z,1') ANULL(0.1)) — NULL(0.'))
Vit'(—d/ (1) A Meets(t,t') A ~NULL{0, 1)) — ~NULL(0.1"))

where & is the conjunction of all ®, conditions (with suitable renaming to avoid
variable clashes) in add rules for 0. and @’ is the conjunction of all ®; conditions
in delete rules for o. (If there are no add rules for o then ®(1) is taken false. and
similarly for ®'(t).)

A step by step analysis of the program shows that each step preserves soundness
and that there are no extraneous S;, thus proving the if part of conjucture 1. The
only tricky part is the consistency checking step (3). In the program each triple of
atoms Ri(a,b), Ra(b,c), R3{a,c) in a state is checked for consistency using a transi-
tivity table analogous to that of Allen(1983), see Table 1. In Randell et al (1992). we
demonstrate its soundness and completeness. This soundness ensures the soundness
of step 3.

The central part of the completeness proof is to show that disjunction of nuext
states (57 V...V S5,) is minimal, i.e. none of the 5; are inconsistent. Athough the
transitivity table is complete, this does not necessarily imply that simply checking
tuples of atoms guarantees global consistency with respect to the theorv. We Lave
not yet been able to prove this formally (though we have no counterexample). How-
ever, three space is the intended model in the theory. If this is indeeded the case.
then the following operations on regions are allowed: cutting, resizing, overlapping.
Since there are indefinitely many DC regions in three space, it turns out that the
completeness of the consistency checking algorithm can then be proved. Therefore
the immediate task is to show there 1s a model of the theory, which allows infinite
number of DC regions and all of the aforementioned operatious.

5.2 Complexity

The critical point about the algorithm (and its complexity) is that states are com-
plete, i.e.. all relations between all objects are explicitly given in terms of base atoms
and there is no disjunctive or indefinite information. This means that all constraints
and add/delete rules can be considered individually. one at a time. without worrvinge
about interactions. The complexity of the algorithms is as follows:

Step 3 — the complexity of consistency checking is O(n?) because there are
n® — 3n* 4+ 2 different triples given n objects in a state.

Step 4 — Suppose there are ¢ interstate constraints and each constraint contains
at most v variables and there are n objects. then each constraint can be applied at
most ' ways. This is polvmonial of degree of v. Applving a constraint is lnear 1o
the number of connectives in it.

Step 5 — If there are n objects there are (n? — n)/2 relations. The maximmun,
branching rate in the graph for direct topological transitions is 5 (from equaliny




if interstate constraints forbid transition to equality and no objects start off equal.
then maximum branching rate is 2) so there are at most 5" successor states (but
more likely 2" which is of course still exponential). This compares to the situation
in QSIM. In practice, consistency checking will prune the number of next states
dramatically (though they still have to be generated and checked).

Steps 6 and 7 — the complexity of these steps are the same as step 5. 1.e. O(n").

6 Related Work

For a detailed discussion of the ontology and formalism used in the simulation see
Randell (1991) . We have already discussed the relationship between this simula-
tion program and Kuiper’s QSIM above. The volume (Weld and de Kleer 1990)
contains several papers on qualitative spatial simulation. Forbus (1980) reports on
a simulator called FROB. Gardin and Meltzer (1989) describe an analogical spatial
simulator, but all these use very different ontologies to our work. Freksa (1990).
Hernandez (1990) and Mukerjee and Joe (1990) present qualitative ontologies of
space based on Allen’s temporal logic but does not consider simulations. Kaulman
(1991) presents a logic of space based on tolerance spaces and uses it to analvze (for
example) why a string can pull but not push.

7 Work in Progress

In section 2 we mentioned how further dvadic relations describing bodies that ave
either inside, partially inside or outside each other can be added. This set could
be exploited in the amoeba simulation to give a richer and more realistic model
where the food can be made to pass from being ouside the animal to being inside
the animal, and then options would be available once the food has been engulfed to
whether the food is modelled as forming a part of the animal or not. Originally we
simply specialised the DR relation to cover relations describing bodies being inside.
partially inside and outside others, together with their inverses. but this ignored
some useful distinctions that could be drawn between different cases of bodies being
inside another. In this case we separate out the case where one body is topologically
inside another, and where one body is inside another but not topologically inside

this we call being geometrically inside. A pictorial representation of these are given
in Figure 4 below. The important point of one body being topologogically inside
another is that one has to "cut’ through the surrounding bodyv in order to reach and
make contact with the contained body; in the geometrical variant. this is not the

case.

Figure 4: The distinction between being topologicallv and geometrically insidi

The definitions for these new variants are given bhelow based on the predicate




Connected(x)*. and the function outside(x).

Separated(z,y) =ges ~C(cl(z),y) A ~C(z,cl(y))
Connected(z) =405 ~y2[EQUAL(sum(y, z), ) A Separated(y, =)
outside(z) =4.5 ty[V2[C(z,y) — Fw[Outside(w.z) A C(z, w)]]]
Top-Inside(z. y) =405 Inside(z, y)A

Vz[[Connected(z) A C(z,2) A C(z,outside(y)] — O(z.y)]
Geo-Inside(z, y) =4e5 Inside(a. y) A =Top-Inside(z, y)

It is relatively easy to see how a path in the simulation using this extended set of
relations would satisfy the English description of phagocytosis and exocytosis. First
the food would be outside the animal, then it would pass to be partially inside. to
being geometrically inside and then topologically inside as the vacuole containing
the food is formed. Exocvtosis would simply see a reversal of this sequence except
that waste material replaces the food in the example. With the food ingested. and
broken into nutrient and waste material (as before), then we return to the ser of
basic relations as the nutrient is allowed to overlap the amobal protoplasim and
become part of it.

It is also possible to specialise the relation of being geometrically inside too
— in this case setting up definitions to distinguish between the following picrorial
representations — Figure 5 below:

Figure 5: Two variants of being geometrically inside.

In order to make this formal distinction we first set up a stronger casc of a
connected or one-piece region to that assumed above. The important part of the
following definition is the P(conv(sum(v.w)),x) literal in the consequent of the
definiens. This condition ensures that the connection between any two parts of a
region whose sum equals that region, is not point or edge connected. That is 1o sav
it ensures a ‘channel” region exists connecting any two connected parts. This notion
of being connected mirrors and simplifies our previous definition of a quasi-manifold
- in this case we use the concept of a convex body rather than use topological and
Boolean concepts in the earlier definition - see Randell and Clohn (1989). Details of
the axiomatised primitive convex-hull function can be found in Randell et al( 1092},

Connected’(2) =4.5 Connected(z) A Vyz{[sum(y,z) = 2 — C(y. 2)] —
Jvw[P(v.y) A Plw.z) A Plconv(sum(v.w)). 2)]]

1t should be noted here while we have used the original theory based on Clarke's calculus 1o =1
up these definitions, we have developed a new calculus which obviates the need for the topological
distinctions drawn between open, semi-open and closed regions. In the new theory, the dehuition
for a connected (one piece) region and the strong concept of being connected using the convex-hull
property reappears, but differs from these appearing here - see Randell ¢t al (19924, 19920 fo
further details.
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Now we give the formal distinction between the two cases of being geometrical
inside. In the first case a ‘channel’ region exists connecting the outside of the
surrounding body with the contained body, in the second case the surrounding body
has closed forming (in this case) a point connection. In both cases we can see how
in contrast with the notion of being topologically inside, it is possible to construct a
line segment that connects with both the surrounding body and the contained body
without cutting through the surrounding body. Definitions distinguishing between
the two cases are as follows, where the “Open” and “Closed™ variants respectively
refer to the first and second cases described above.

Geo-Inside-Open(z,y) =45 Geo-Inside(z, y)A
Connected’(sum(inside(y), outside(y)))
Geo-Inside-Closed(z, y) =4.5 Geo-Inside(a, y)A
Connected(sum(inside(y), outside(y)))A
-Connected’(sum(inside(y), outside( y}))

The rewrite option mentioned above would require additional relations to be
defined. The idea would be to allow the user to choose between whether one bodv is
inside or part of another, where the relations TPP, NTPP and their inverses apply in
the part/whole case of this. For example, in order for a configuration satisfving the
NTPP relation to be redescribed so that both parts in the configuration are discrete.
we require a specialisation of the topologically inside definition to be defined. In
this case we would need to ensure that apart from the body that maps to the
nontangential part, no other region exists disjoint with this region that could also
be viewed as being inside the enclosing region. An idential rationale also applies to
the case where a configuration satisfies the TPP relation.

Any simulation using these new definitions in the modelling language would of
neccessity require an extended set of envisioning axioms and a very large transitivity
table to be constructed. Simply using the unexpanded set of inside, partially inside
and outside definitions (and their inverses) alone, generates a set of 23 base relations
(529 cells) — see Randell, Cohn and Cui (1992). Further refining of the inside rela-
tions to include the distinction between being topologically inside and geometrically
inside, increases this set to 31 (961 cells) — this does not exhaust the distinctions
mentioned above. Towards this end we have recently constructed a transitivity table
via a program which reasons about a bitmap representation of space for the set of
23 base relations, but the resulting transitivity table has not vet been verified with
respect to the modeling theory. It should be remembered that each entry in the
table corresponds with a theorem in the formal theorv. emphasising the difficuliy of
the task - again see Randell, Cohn and Cui (1992).

At present, the modelling primitives simply capture qualitative information re-
lating pairs of regions. These could be extended to include metric information.
capturing for example notions of relative size and distances between objects. The
language for expressing constraints would then need to be extended to allow rela-
tions of such quantities to be expressed. A standard library of constraints would
relate (for example) the distance between two objects and their relationship (eg.
if the distance is non-zero then they must be DC). The possibility of introducing
a metric extension to the theory is outlined and discussed in Randell (1991). The
derivatives of quantities could be introduced and reasoned about in the usual QR
manner. We already have definitions that allow one to define increasing. decreas-
ing and constant magnitudes over time - see Randell et al (1992a): these conld he




used in the simulation as the basis for reasoning about changes in distances between
objects, or the degree of overlap or inclusion between bodies or regions. Further
envisaged extensions to the theory that would include a subtheory of motion to
the modelling language, for at present motion is represented implicitly by speci-
fied topological transitions between sets of objects. Other useful extensions would
include explicit information about causality and processes; the latter including tele-
ological accounts of a physical system’s behaviour. Another desirable extension to
the program is to handle ambiguities produced by alternate temporal orderings of
topological transformation where these are not important.

In the implementation presented, constraints and objects have to be individually
specified. However, this can and has been generalised in the current program to allow
for generic constraints and typed objects in the program’s description language.
relating individuals of particular types.
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