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Abstract

Accuracy plays a central role in developing models of continuous physical
systems,both in the context of developing a new model to fit observation

or approximatingan existing model to make analysis faster. The needfor
simpleyet su.fficiently accuratemodelspervadesengineeringanalysis,design,
and diagnosis tasks. The central problem is determining when a model will
be sufficiently accurate for a given task in a way that is simple and doesn’t
overwhelmthe benefitsof having a simplified model. This work presents cred-

ibility extrapolation, an inference procedure for using experienceto sanction
the use of approximations. It usesthe accuracy measureobtained from prior
(analytic or empirical) observations to project an accuracy bounds on the
proposed model for a given setting prior to its use. This allows validation

of the model without resorting to more expensivemeasuressuch as search or
empirical confirmation. We then describe representation methods that make
the storage and retrieval processefficient. The technique is illustrated on a
moderate sized example.

1 Introduction

When usingan approximatemodel to predict the behaviorof somephysicalsystem,
how can its approximations’ appropriatenessbe determined?For someapproxima-

tions, general-purposerules of thumb may be consulted [1, 7] (e.g., Biot modulus,
Mach number,etc. [10, 14]). Alternatively, acommonanswerto this questionis that
you should empirically or analytically confirm the derivedresult [3, 1, 17, 21, 13].
Though an important part of modeling, this isn’t done for every behaviorderived
from the simplified model; therewould be little point in having madethe simpli-
fication. Some approachessuggesta searchparadigm, trying one model and then
anotheruntil a useful one is found [1, 22]. Yet, clearly an experiencedengineer
knows a lot about the available models and rarely searches. Missing from these
accountsis this experiencefactor. One of an engineer’smost oft usedskills is the
ability to retain and reasonfrom past analysesand observations. Knowledgeof a
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Figure 1: What is the temperature,within +5%, at the gate valve outlet?

model’s accuracyat some points can be used,often in quite simple ways, to bound

its accuracy as it is applied to different parts of the behaviorspace.

This paperexaminesthe issuesthat arisewhen trying to incorporateexperience
into an automatedmodelingframework. It describesmethodsfor model representa-
tion that eliminate the complexindexing and retrieval problems normally associated

with experiential systems. The core rule of inference, credibility extrapolation,uses

the error measured (analytically or empirically) in prior situations to bound the

error of the approximate model for the current problem description. In the case of

a beamloaded at one end (the valve leverin Figure 1), if its deformationwas found

to be insignificant under a load of 5 N, then clearly, “all elsebeing equal”, it will

be insignificant if the current problem specifiesa load of 3 N and the beammay be

safely treated as a rigid body. Further, this information applies to any situation in

which an object is subject to the samedistribution of forces and is not specific to

the valve lever. No searchor complexvalidation analysis is necessary.However, we

must addressthe fact that rarely will all elsebe equal.

The paper begins by establishingsome basic primitives and presenting the core

credibility extrapolation inference procedure. Section 4 looks at representational

and memory issuesaimed at reducing complexity and increasing adaptability to

new situations. The valved heat exchangerexampleis usedfor illustration.

2 Models and their accuracy

For what follows, it is important to understandthe larger context. We assumean
external automatedmodeling systemdesignedto formulate an appropriatemodel

to answer a given query (e.g., [7]). It must searcha spaceof candidatemodels
differing in perspective,resolution,and accuracy,weighing the relative costs and
benefits in the process. This paper focusessolely on the accuracydimension. The

subtask being examinedtakes as given a relevant model and a query. Its function
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is to determineif the accuracyof the model satisfiesthe conditions imposedby the

query.

A model M contains a set of (algebraic and ordinary differential) equations
E describing the behavior of some physical system in terms of variables V
{t,y

2
,. . . ,yk.-1,Pk,. . . ,p,~}, where yj representsa dependentvariable, and p~ rep-

resentsa constant, model parameter (i.e., pj is a function of elementsexternal to

the model).’ At most one varying independent variable t is allowed (which typi-
cally denotestime). Eachmodel alsohas an associatedset of logical preconditions,
as describedin [7]. We make the simplification that all analysesoccur in a single

operatingregion (i.e., the statusof the preconditionsdoesnot changeand thus can
be ignored for the purposesof this paper).

A behavior is a vector v = [vi,. .. , v,~]of assignments to V as a function of I

over the interval t E [0, tf]. A set of boundaryconditionsB specify values for I~,

the model parameters,and enough values for y~(t~)such that B and M uniquely
specify a behaviorV = BEHAVIOR(M,B).

In this paper, we treat errors as arising from only two types of approximation —

physical idealizationof the phenomenon (e.g., frictionless motion) and mathematical

approximation of a function (e.g., linear discretization, polynomial expansion, etc).2

An idealization assumes that some physical property is sufficiently close (in the

current context) to a limit value (e.g., 0, 1, or oo) to render the associatedaspect
of the model negligible and thus ignorable.3

The error function e of an approximate model M* is taken to be with respect

to some base modelMB, which may denote the physical systembeing analyzed or
an equational model we wish to approximate. A base behavior ~B will typically
be referred to in a virtual senseas being that behavior which would be observed

if measurementsof MB were taken. Drawing upon standard practice in numerical

analysis for measuring an approximation’s quality [3], we expressthe error function
e of an approximate behavior v* as an appropriate scalar norm e = v~—

The results are independent of the particular norm. In the examples we will use the
maximum (L~) norm:

ej(vj,MB) = max v~(x)— v,~(x)
tE[O,t

1
]

where e~~ e = [e
1

,. . . , ek] is the error norm for variable v~.

Intuitively, amodelM* is anapproximationof model M if V* ç V, E* is simpler

than E (e.g., of lower order), andcritically, the error norm for M*~sbehaviorswill
tend to begreaterthan for M’s behaviors.

‘This is also known as an exogenousvariablein the economicsandAl literature, Throughout,
we will try to usestandardengineeringterminologyandindicatesynonyms.

‘Of course,errors can arisefrom manyother sourcesas well, such as numeric instability and

unexpectedphenomena,We ignore thesefactors for the present.
3The idealization / approximationdistinction is standardin the engineeringliterature. Ideal-

izations with a specific property are called fitting approximationsin [21], which shows how this
property can be exploited to refine an approximatemodel found to deviatefrom observation.
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A query = (W, Q, B, r) has four elements,where

~ W is a set of variables. The model used to answerQ must satisfy W C V.

~ Q is (1) a relation between variables in W (e.g., equality, inequality) whose

status we wish to test or (2) a requestfor eachvariable in W as a function of

t, for tin [0~t~].

B is a set of boundaryconditions.

• r is a vector of error tolerancesT = [ri,. .. , rk], where r,j E ~ specifies that

e~(v~,M11) < r,~must hold for every v~C W. This condition is abbreviated

e(v*, M~)< y, wherethe tolerance for the unconstrained variables V — W
is taken to be infinity. The type and magnitudeof the tolerance(e.g., abso-
lute or relative) dependson the goals of the task. To simplify the remaining
presentation,we will write VARS(T) in placeof W.

Tolerance Ti is weaker than tolerance r if VARS(T’) C vARs(r) and r~’ > r~

for every v~EVARS(T’). This relationship enablesa more generalformulation for
comparingthe resultsof different queries.

The standarddefinition of modelcredibility with respectto a toleranceanderror
norm [3] may be expressedas follows:

Definition 1 (model credibility) A behavior v* is credible with respect to

base MB and tolerance T, written CREDIBLE(V*, MB, r), if e(v~,MB)< y,
A model M is credible for query Q = (W, Q, B, T), written CREDIBLE(M, MB,

Q), if v~= BEHAVIOR(M, B) and CREDIBLE(v*, MB, r)

3 Credibility extrapolation

Our basic goal in evaluatingthe credibility of an approximatemodel for somequery

is to determineif e<T holds. However,e canbe quite expensiveto compute.Luckily,
this is often unnecessary. Given that a model’s accuracyis known at some points,

we can often useknowledgeof the error’s qualitative behaviorto boundits accuracy
at new points. We call this process credibility extrapolation. Importantly, only
knowledgeof the behaviorof the error is required,not its specific valuation. In fact,
it isn’t necessaryin principle that the error function itself be known (e.g., when
thereis no baseequationalmodel, only empirical data). The more that is known
about its behavior, the greater the inferential power in determiningthe credibility

of a model.

3d Proof by reduction

One approachis to directly compare the current prediction problem to a single
prior behavior and show the credibility of M at v,-,~given the credibility of M at

47



V
0

1d. This approachis particularly suited to low-experiencesettings, as in when e
is known at only a single point.

Proposition 1 (Reduction by measurement) Let r be a tolerancevector. Let
v’ and v be behaviors derivedfrom M such that the value of e~(v~,MB) is known
forv~C VARS(T). Let ~e = e(v,MB) — e(vi,MB).

If e(v’, MB) <T and ~e < 0, then CREDIBLE(v,MB,T).

This basesa model’s credibility directly on the availabledatapointsand is the
typical mode of inference. However, there may be situations in which only the

relative error is known, such aswhen a model’s credibility for behavior V’is asserted

directly, without an explicit error value. Useful inferences may still be drawn using
the following rule.

Proposition 2 (Reduction by transitivity) Let T’ and T be tolerances. Let v’

andv be behaviorsderivedfrom M. Let L~e= e(v,M~) < T — e(v~,MB)< T.

IfCREDIBLE(v’, MB, r’), L~e< 0, and r is weakerthanT’, then CREDIBLE(v, M~,T).

Note that by using reduction to a previous case,the credibility of M for query Q

can be determined prior to consuming resourcesto derive a behavior using M simply
by examining perturbations in e caused by changes in the boundary conditions.

This is in contrast to even the use of standard applicability constraints (e.g., Biot

modulus), which often can only be checked after spending resources to derive a
behavior.

The task is then to determine the sign of z~egiven some i~.v.This is a special-
caseof the problem of multivariate large-change sensitivity analysis [2, 19]. Note

that the problem here is much simpler; we seek only the direction of change in
e, not a specific sensitivity coefficient.4 There are a variety of methods, including

qualitative comparative analysis [20], inequality reasoning over the interval z~vand
the magnitudes of Oe/ôv~(e.g., BOUNDER [16]), or examination of the system’s

higher-order derivatives (i.e., its Jacobian and Hessian matrices). Here weillustrate

for the simple (but not uncommon) class of monotone error functions, in which e is
monotone in each variable in ~v.

Example The valve lever mechanism in Figure 1 can be modeled such that the
valve aperturea is a function of the lever position p and deformation t~y

a=p+~y

The deformation can be modeling in the following two ways. The first is a standard

elastic model:
kpL3

~3EI
4For many cases,this computation is quite trivial. However, it can becomequite complex.

Being ableto predict its efficiency is an important, but openproblem.
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The secondignores its deformation under load and makesa rigid body idealization:

~y=0

The measurederror in the estimation of valve aperture using the rigid body ideal-
ization is 5% for p = 0.15. Suppose we wish to analyze the samesituation with a

new position p = 0.12. In this simple case,a purely qualitative argumentsuffices:

e o~~+p A ~p < 0 —~ ~e < 0

BecauseM was credible in the first analysis and ~e < 0, M is credible for the

current analysisas well.

4 Model Composition and Reuse

Credibility extrapolation’s efficiency and ability to flexibly apply experiencein one

setting to different settingsis largely affectedby the models’ structure. Oneenhance-
ment is to split up the problemand convertan analysisof onelarge modelinto sep-
arate analysesof its pieces. We do this by placing it in the contextof compositional

modeling [6, 7], a framework for organizing and formulating appropriate models in

responseto analytic goals. Another way is to reducethe model’s dimensionality

(the size of V) by precomputing algebraic aggregatesV’ = f(V), V’I < ~ and
performing sensitivity comparisonsusing the more compact model F’(V’). These

topics are discussedin the following subsections.

4d Compositional models

A model and the physical systemit models is typically an interconnectionof
primitive modulesC = {c,,. . . , c,~},where a module may be a component,process,

bond-graph element,or other conceptualprimitive phenomenon. Explicit recogni-

tion of this in the modeling framework is important for flexibility, reuse,andstorage

efficiency. Though not further decomposable,physically a module may correspond

to some aggregateor arrangementof parts. We composea model M from a set
of model fragments M = {m,,.. . ,m,~},each of which contains a set of equations

(partially) describing some module. For example, one model fragment may repre-

sent the general Bernoulli equationfor flow through some plumbing, while others
may specify different functionsfor the frictional losseswithin that flow. We require
that eachmodelfragmentbe associatedwith asingle module such that there exists

an onto function F : M —+ C. In the valved heatexchangerexample, the modules
are the tank, leveredvalve,plumbing,,heatexchanger,plumbing2,andtemperature
gauge(seealso Figure 2).

Model fragmentsdefine the granularity of the modeling building blocks. This
decompositionprovidessignificant leveragein two ways. First, it decomposesexpe-
riencewith one largemodel into experiencewith its constituentmodel fragments,
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Figure 2: Error in a module’s output results from transmission of input error and gener-
ation of internal error.

eachof which may be subsequently used in contexts very different from the setting
in which the experience was acquired. For example, information gained about the

error function for the rigid-body idealization of the levered valve is independent of
the specific heat exchanger context in which the valve is currently placed (although

its effects on other parts of the system are of course dependenton context). Second,

it decomposeserror analysis; the composite error of a model M is a function of
the internal errors introduced within each module’s model and the external errors
transmitted through eachmodule’s model. For example, in Figure 2, the levered
valve module passesinput errors (e.g., the length of the lever) on to its outputs.

This error propagationis performedusing standarderror analysistechniques[3, 18].

At the same time, its idealized model F* introduces new, additional errors to its

outputs. This error is bounded using credibility extrapolation.

4~2 Case storage and retrieval

Structuring the domain theory in this mannermakes the issuessurrounding the
storageand retrieval of experiencestraightforward. Importantly, much of the req-

uisite storage, retrieval, and adaptationfunctionality comesat low computational

cost.

Storageof a validated analysis (i.e., one whose error has been explicitly eval-

uated), is simple. First, the scenario is maximally decomposedinto a set of lin-
earizable aggregatemodules. Typically, this decomposition will correspondto the

rlumbingi ~~jTemP~r~tnre G~ug
1
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scenario’soriginal decomposition.However, for somescenarios,theremay be mod-
ules’ which are not separable(e.g., they form a systemof nonlinear simultaneous
equations). Forthe valvedheatexchanger,the decompositionresults in the following

modules:

{tank} {lever valve} {plumbing1, heat exchanger,plumbing2} {temperaturegauge}

Becauseof the interdependenciesbetweenthe mass flow andheat transferratesof
the plumbing andheat exchanger,thesemodulescannot be separated.5

Second,the behavior (and associatederror) of eachaggregatemodule is stored
with the module definition andthe conjunctionof the modeling assumptionsasso-
ciated with that module’smodel fragments.

Case retrieval has two aspects. First, given a query and a candidatemodel
for answeringit, find a set of relevantcasesfrom which to extrapolatethe model’s
credibility. This too is simplebecauseprior usageis storeddirectlywith the modules.
Second,from the set of relevant cases,select onefrom which to bound the model’s
error. For this we draw upon the intuition that from the current (unknown) point
on the error surface,we want to look “uphill” (3e/8v > 0) to find casesthat might
havegreatererror. We seek the point v’ that minimizes the weighted Eucidian

distance _________________

v~— v~2

V v,EV

wherew~= 1 if 8e/9v~> 0 andw, = 0.5 if Ue/i9v, < 0.6 More experimentationis

neededto evaluatethe impact of specific weight assignments.If the error function
is known to be monotonein eachof its variables,then an evensimpler techniqueis
possible. For eachpoint (d,,... , d,~)at which the error is known, producea rule of

the form
If v1 op, d, A . . . A v~op~d,~ —~ enew < e~

where op, is < (>) if e is monotoneincreasing(decreasing)in v~.7

4~3 Changes in topology

Credibility extrapolation as presentedin Section3 assumeda fixed set of equations;
only the model parametersare allowed to change.While useful, it capturesa some-
what limited view of experience.To the degreepossible,we would like to extend
experiencewith onesituation to distinct, yet similar situations.

This is done in two ways. First, as describedabove, experienceis tied to the
modulesand their model fragments,not the completescenariomodel. Second,we

‘A standardNewton-Raphsoniterative technique is used to computethese values,while the
Jacobianof thesystem is used to propagateinput error throughthe system.6This selection of weights is arbitrary, but matchesthe intuition that more weight should be

givento dimensionsin which the error is known to decrease.A more principled weighting is being
sought.

7Currently unimplemented.
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Prior Data

t~ p ,

V~
9

fd 13 15,2074 -4.91137 -081007

13 151648 -4.9451 -0.82418

!Vigf e -0.04213 0.0284 0.01411

~=ag+af±ad ~=a9+af
~2—v ~P—v
dt dt

Gravity: ag = gsin9
Sliding Friction: af = —/.L~gcosOsgn(v)

Air Resistance: a~j= —C~p0~~L2v2sgn(v)/2M

Figure 3: A block slidesdown an inclined plane. Need we model sliding friction, air drag,
or both?

use influencesto specifyelementsof composablefunctions (e.g.,~, fl) in amodular
manner[9, 7]). Forexample,the frictional (head) lossin the plumbing dueto elbows

and other fixtures was modeled as a summation of the individual loss introduced

by each fixture. Influences provide modularity at the function level; the effects of
including or ignoring an influence can be determined in caseswhere no experience
with that specific influence exists and enables credibility extrapolation even when

the scenario topology changes. For example, experience obtained during analysis

of a system containing four elbows can be used to place a bound on the error
due to ignoring fixture lossesin the two elbow configuration shown in Figure 1.
Becausethese frictional lossesare combined via influences, and there are fewer in
this scenario, we can determine that the error due to ignoring lossesin thesefixtures

will be less (given a lower or equal flow velocity), even though the configuration of

fixtures is different.

4.4 Feature reduction

As a secondexample,considerthe caseof a block sliding down an incline (Fig-

ure 3). If drag was found to be insignificant at 20 km/h, then clearly, “all elsebeing

equal”, it will be insignificant if the current problemspecifiesa speedof 10 km/h.
This problem can be posed as the task of determining ~e given changesto the three
variables [a9, af, ad]. However, it could just as easily be posed as the task of deter-

mining Z~egiven changes to the ten variables [W, L, H, Pblock, 9, g, j.t~,CD, Pair, v].
Each time a comparisonto experienceis made, we must compare a vector Z~.vof
length N. Much dependson N. First, the complexity of sensitivityanalysisin credi-
bility extrapolationgoesup with N. Second,the likelihood of a definitive credibility

evaluation diminishes with N, due to increasedchanceof unresolvedambiguity. Fi-
nally, if approximate credibility evaluation algorithms are used(e.g., curve fit), the

likelihood of an incorrect result goes up with N. Thus, it is important to minimize
N. We do this reduction via algebraicaggregationof the variablesinto fewer terms.
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For example, the block’s acceleration(Figure 3) can be computedin severalways:

a = f,(W, L, H, Pblock, 9, g, ~ CD, Pair, v)
a = f2(A,M,9,g,/23,CD,pair,v) (A = WH,M = LWHPbl0~k)

a = f3(ag,af,ad)

Using f,, the changein error dueto an increasein block densityand a decreasein
block lengthwould haveto be resolved. Alternatively, using f2, a changein density
and length results in a single (potentially zero) change in mass M — a much easier

problem. In general,minimizing N is a significant step in addressingthe “all else

being equal” problem mentioned in the introduction and, in the samevein, is of

courseone of the main points of dimensional analysis and the theory of similitude

[11, 23].

Finding the optimal reformulation of the variables is beyond the scopeof this
paper. However, two simple reduction rules have provided significant leverage.

First, if the function is a summation of influences, we treat each influence as a

separateparameterto the function (c.f., fe). This is why example 1 was posed

as a change to the three variables [ag, aj, ad]. Second, we aggregatemodel pa-

rameterproducts for which the function is invariant (i.e., f(pl,p2) = f(p2,pl) or

f(pl,1/p2) = f(1/p2,pl)). Thus,

f(M, E, I, dv/dx) = M[1 + (dv/dx)2]312/EI

would become

f’(S, dv/dx) = S[1 + (dy/dr)2]312

where S = M/EI.

5 Related Work

This work builds directly from prior work with Shirley [17] and Forbus [7] and is

intendedto complementsomeof the existing approachesto reasoningabout approx-

imate models. In discrepancy-drivenrefinement [1, 17], an observationis usedto
find a model that fits. Credibility extrapolationcan then tell if the model can still
beusedin subsequentanalyses,thus allowing it to be usedfor prediction. Similarly,
one could use bounding abstractions[22] to identify models that overestimateand
credibility extrapolation to provide a bounds on the amount of overestimationand

thus reduceor eliminatesearch.

Our approachis much like the caching that occurs in an ATMS [4], in which
partial resultsobtainedin onecontextare transparentlyreusedin othercontextsdue
to theunderlyinggranularityof assumptionmaintenance.Thecomplexmemoryand
mappingissuesthat dominatetreatmentsof analogyandcase-basedreasoning[8, 12,
15] do not arise. We achieveindexing andadaptationvia the granularity inherentin
the domaintheory (the modelfragments),ratherthanvia partial situationmatching
andsimilarity-driven adaptationprocedures.
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6 Discussion

Analysisgroundedin experienceis fundamentalto modeling dueto the inherent un-
certaintyof equationalmodelsandthe numericalmethodswhich manipulatethem.
Given prior use of anapproximatemodel, credibility extrapolation provides a mech-
anism for bounding the error of a model prior to its use. Further, by explicitly

matching on model fragments, it eliminates the complex indexing and retrieval nor-

mally associatedwith experiential reasoning approacheslike analogy and case-based
reasoning. At the sametime, the model fragments’ granularity enablestransfer of

experienceto different settingsthat makeuseof the samemodel fragments.

Credibility extrapolation allows for the observationto be generatedanalytically

by sampling points in the more accuratemodel’s domain (presumablyat extrema

conditions). A companion technique, called credibility domain synthesis[5], takes
this to its natural extreme. It generatesapproximationsof a given model by analyz-

ing its domain and identifies explicit constraints for the most prevalent situations
basedon variance. Current work includes examining their relativemerits.

The approachis currently implementedin pieces,with the model representation

andstorageoccurringin our existingimplementationof compositionalmodelingand
most of the analysis occurring in Mathematica. I am currently working to connect
the two systems.
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