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Abstract

Accuracy plays a central role in developing models of continuous physical
systems, both in the context of developing a new model to fit observation
or approximating an existing model to make analysis faster. The need for
simple yet sufficiently accurate models pervades engineering analysis, design,
and diagnosis tasks. The central problem is determining when a model will
be sufficiently accurate for a given task in a way that is simple and doesn’t
overwhelm the benefits of having a simplified model. This work presents cred-
tbility extrapolation, an inference procedure for using experience to sanction
the use of approximations. It uses the accuracy measure obtained from prior
(analytic or empirical) observations to project an accuracy bounds on the
proposed model for a given setting prior to its use. This allows validation
of the model without resorting to more expensive measures such as search or
empirical confirmation. We then describe representation methods that make
the storage and retrieval process efficient. The technique is illustrated on a
moderate sized example.

1 Introduction

When using an approximate model to predict the behavior of some physical system,
how can its approximations’ appropriateness be determined? For some approxima-
tions, general-purpose rules of thumb may be consulted [1, 7] (e.g., Biot modulus,
Mach number, etc. [10, 14]). Alternatively, a common answer to this question is that
you should empirically or analytically confirm the derived result [3, 1, 17, 21, 13].
Though an important part of modeling, this 1sn’t done for every behavior derived
from the simplified model; there would be little point in having made the simpli-
fication. Some approaches suggest a search paradigm, trying one model and then
another until a useful one is found [1, 22]. Yet, clearly an experienced engineer
knows a lot about the available models and rarely searches. Missing from these
accounts is this experience factor. One of an engineer’s most oft used skills is the
ability to retain and reason from past analyses and observations. Knowledge of a
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Figure 1: What is the temperature, within 5%, at the gate valve outlet?

model’s accuracy at some points can be used, often in quite simple ways, to bound
its accuracy as it is applied to different parts of the behavior space.

This paper examines the issues that arise when trying to incorporate experience
into an automated modeling framework. It describes methods for model representa-
tion that eliminate the complex indexing and retrieval problems normally associated
with experiential systems. The core rule of inference, credibility extrapolation, uses
the error measured (analytically or empirically) in prior situations to bound the
error of the approximate model for the current problem description. In the case of
a beam loaded at one end (the valve lever in Figure 1), if its deformation was found
to be insignificant under a load of 5 N, then clearly, “all else being equal”, 1t will
be insignificant if the current problem specifies a load of 3 N and the beam may be
safely treated as a rigid body. Further, this information applies to any situation in
which an object is subject to the same distribution of forces and is not specific to
the valve lever. No search or complex validation analysis is necessary. However, we
must address the fact that rarely will all else be equal.

The paper begins by establishing some basic primitives and presenting the core
credibility extrapolation inference procedure. Section 4 looks at representational
and memory issues aimed at reducing complexity and increasing adaptability to
new situations. The valved heat exchanger example 1s used for illustration.

2 Models and their accuracy

For what follows, it is important to understand the larger context. We assume an
external automated modeling system designed to formulate an appropriate model
to answer a given query (e.g., [7]). It must search a space of candidate models
differing in perspective, resolution, and accuracy, weighing the relative costs and
benefits in the process. This paper focuses solely on the accuracy dimension. The
subtask being examined takes as given a relevant model and a query. Its function
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is to determine if the accuracy of the model satisfies the conditions imposed by the
query.

A model M contains a set of (algebraic and ordinary differential) equations
E describing the behavior of some physical system in terms of variables V' =
{t,¥2,- . Yk—1,Dk, .- -, Pn}, Where y; represents a dependent variable, and p; rep-
resents a constant, model parameter (i.e., p; is a function of elements external to
the model).! At most one varying independent variable t is allowed (which typi-
cally denotes time). Each model also has an associated set of logical preconditions,
as described in [7]. We make the simplification that all analyses occur in a single
operating region (i.e., the status of the preconditions does not change and thus can
be ignored for the purposes of this paper).

A behavior is a vector v = [vq,...,v,] of assignments to V' as a function of ¢
over the interval ¢t € [0,t]. A set of boundary conditions B specify values for ty,
the model parameters, and enough values for y;(¢;) such that B and M uniquely
specify a behavior v = BEHAVIOR(M,B).

In this paper, we treat errors as arising from only two types of approximation —
physical idealization of the phenomenon (e.g., frictionless motion) and mathematical
approzimation of a function (e.g., linear discretization, polynomial expansion, etc).?
An idealization assumes that some physical property is sufficiently close (in the
current context) to a limit value (e.g., 0, 1, or o0) to render the associated aspect
of the model negligible and thus ignorable.®

The error function e of an approximate model M* is taken to be with respect
to some base model M2, which may denote the physical system being analyzed or
an equational model we wish to approximate. A base behavior vB will typically
be referred to in a virtual sense as being that behavior which would be observed
if measurements of M®Z were taken. Drawing upon standard practice in numerical
analysis for measuring an approximation’s quality [3], we express the error function
e of an approximate behavior v* as an appropriate scalar norm e = || v* — v& ||
The results are independent of the particular norm. In the examples we will use the
maximum (L ) norm:

ei(vn MP) = max | wi(e) = o7()|
where e, € e = [e1,..., €x] is the error norm for variable v;.

Intuitively, a model M* is an approximation of model M if V* C V| E* is simpler
than E (e.g., of lower order), and critically, the error norm for M*’s behaviors will
tend to be greater than for M’s behaviors.

1This is also known as an ezogenous variable in the economics and Al literature. Throughout,
we will try to use standard engineering terminology and indicate synonyms.

20f course, errors can arise from many other sources as well, such as numeric instability and
unexpected phenomena. We ignore these factors for the present.

3The idealization / approximation distinction is standard in the engineering literature. Ideal-
izations with a specific property are called fitting approzimations in [21], which shows how this
property can be exploited to refine an approximate model found to deviate from observation.
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A query Q = (W, Q, B, T) has four elements, where

e W is a set of variables. The model used to answer Q must satisfy W C V.

@ is (1) a relation between variables in W (e.g., equality, inequality) whose
status we wish to test or (2) a request for each variable in W as a function of
t, for t in [0,¢/].

B is a set of boundary conditions.

e T is a vector of error tolerances T = [, ..., 7], where 7; € RT specifies that
e;(v;, MB) < r; must hold for every v; € W. This condition is abbreviated
e(v*, MB) < T, where the tolerance for the unconstrained variables V — W
is taken to be infinity. The type and magnitude of the tolerance (e.g., abso-
lute or relative) depends on the goals of the task. To simplify the remaining
presentation, we will write VARS(T) in place of W.

Tolerance T' is weaker than tolerance 7 if VARS(7T') C VARS(7T) and 7/ > =
for every v; €VARS(7'). This relationship enables a more general formulation for
comparing the results of different queries.

The standard definition of model credibility with respect to a tolerance and error
norm [3] may be expressed as follows:

Definition 1 (model credibility) A behavior v* is credible with respect to
base M® and tolerance T, written CREDIBLE(v*, MZ T), if e(v*, MB) < T.
A model M is credible for query Q = (W, Q, B, T), written CREDIBLE(M, M5,
Q), if v* = BEHAVIOR(M, B) and CREDIBLE(v*, MB 1)

3 Credibility extrapolaf,ion

Our basic goal in evaluating the credibility of an approximate model for some query
1s to determine if e<7 holds. However, e can be quite expensive to compute. Luckily,
this is often unnecessary. Given that a model’s accuracy is known at some points,
we can often use knowledge of the error’s qualitative behavior to bound its accuracy
at new points. We call this process credibility eztrapolation. Importantly, only
knowledge of the behavior of the error is required, not its specific valuation. In fact,
it isn’t necessary in principle that the error function itself be known (e.g., when
there is no base equational model, only empirical data). The more that is known
about its behavior, the greater the inferential power in determining the credibility
of a model.

3.1 Proof by reduction

One approach is to directly compare the current prediction problem to a single
prior behavior and show the credibility of M at v, given the credibility of M at
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Voa. This approach is particularly suited to low-experience settings, as in when e
is known at only a single point.

Proposition 1 (Reduction by measurement) Let T be a tolerance vector. Let
v’ and v be behaviors derived from M such that the value of e;(vl, MB) is known
for vi € VARS(T). Let Ae = e(v, MB) — e(v', MB).

Ife(v/, MB) < T and Ae < 0, then CREDIBLE(v, MB T).

This bases a model’s credibility directly on the available datapoints and is the
typical mode of inference. However, there may be situations in which only the
relative error is known, such as when a model’s credibility for behavior v’ is asserted
directly, without an explicit error value. Useful inferences may still be drawn using
the following rule.

Proposition 2 (Reduction by transitivity) Let 7' and 7 be tolerances. Let v'
and v be behaviors derived from M. Let Ae = e(v, MB) < T —e(v/, MB) < T.

IfCREDIBLE(V/, MB T'), Ae <0, and T is weaker than T', then CREDIBLE (v, MZ ).

Note that by using reduction to a previous case, the credibility of M for query Q
can be determined priorto consuming resources to derive a behavior using M simply
by examining perturbations in e caused by changes in the boundary conditions.
This 1s 1n contrast to even the use of standard applicability constraints (e.g., Biot
modulus), which often can only be checked after spending resources to derive a
behavior.

The task is then to determine the sign of Ae given some Av. This is a special-
case of the problem of multivariate large-change sensitivity analysis [2, 19]. Note
that the problem here is much simpler; we seek only the direction of change in
e, not a specific sensitivity coefficient.* There are a variety of methods, including
qualitative comparative analysis [20], inequality reasoning over the interval Av and
the magnitudes of Oe/Jv; (e.g., BOUNDER [16]), or examination of the system’s
higher-order derivatives (i.e., its Jacobian and Hessian matrices). Here we illustrate
for the simple (but not uncommon) class of monotone error functions, in which e is
monotone in each variable in Av.

Example The valve lever mechanism in Figure 1 can be modeled such that the
valve aperture a 1s a function of the lever position p and deformation Ay

a=7p+ Ay

The deformation can be modeling in the following two ways. The first is a standard
elastic model:

kpL3
3EI

“For many cases, this computation is quite trivial. However, it can become quite complex.
Being able to predict its efficiency is an important, but open problem.

Ay =
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The second ignores its deformation under load and makes a rigid body idealization:
Ay =0

The measured error in the estimation of valve aperture using the rigid body ideal-
ization is 5% for p = 0.15. Suppose we wish to analyze the same situation with a
new position p = 0.12. In this simple case, a purely qualitative argument suffices:

exgr p N Ap<0 — Ae<0

Because M was credible in the first analysis and Ae < 0, M is credible for the
current analysis as well.

4 Model Composition and Reuse

Credibility extrapolation’s efficiency and ability to flexibly apply experience in one
setting to different settings is largely affected by the models’ structure. One enhance-
ment is to split up the problem and convert an analysis of one large model into sep-
arate analyses of its pieces. We do this by placing it in the context of compositional
modeling [6, 7], a framework for organizing and formulating appropriate models in
response to analytic goals. Another way is to reduce the model’s dimensionality
(the size of V) by precomputing algebraic aggregates V' = f(V), |V'| < |V]| and
performing sensitivity comparisons using the more compact model F'(V'). These
topics are discussed in the following subsections.

4.1 Compositional models

A model and the physical system it models is typically an interconnection of
primitive modules C = {c1,...,c,}, where a module may be a component, process,
bond-graph element, or other conceptual primitive phenomenon. Explicit recogni-
tion of this in the modeling framework is important for flexibility, reuse, and storage
efficiency. Though not further decomposable, physically a module may correspond
to some aggregate or arrangement of parts. We compose a model M from a set
of model fragments M = {my,... ,m,}, each of which contains a set of equations
(partially) describing some module. For example, one model fragment may repre-
sent the general Bernoulli equation for flow through some plumbing, while others
may specify different functions for the frictional losses within that low. We require
that each model fragment be associated with a single module such that there exists
an onto function F': M — C. In the valved heat exchanger example, the modules
are the tank, levered valve, plumbing;, heat exchanger, plumbing,, and temperature
gauge (see also Figure 2).

Model fragments define the granularity of the modeling building blocks. This
decomposition provides significant leverage in two ways. First, it decomposes expe-
rience with one large model into experience with its constituent model fragments,
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Figure 2: Error in a module’s output results from transmission of input error and gener-
ation of internal error.

each of which may be subsequently used in contexts very different from the setting
in which the experience was acquired. For example, information gained about the
error function for the rigid-body idealization of the levered valve is independent of
the specific heat exchanger context in which the valve is currently placed (although
its effects on other parts of the system are of course dependent on context). Second,
it decomposes error analysis; the composite error of a model M is a function of
the internal errors introduced within each module’s model and the external errors
transmitted through each module’s model. For example, in Figure 2, the levered
valve module passes input errors (e.g., the length of the lever) on to its outputs.
This error propagation is performed using standard error analysis techniques [3, 18].
At the same time, its idealized model F* introduces new, additional errors to its
outputs. This error is bounded using credibility extrapolation.

4.2 Case storage and retrieval

Structuring the domain theory in this manner makes the issues surrounding the
storage and retrieval of experience straightforward. Importantly, much of the reg-
uisite storage, retrieval, and adaptation functionality comes at low computational
cost.

Storage of a validated analysis (i.e., one whose error has been explicitly eval-
uated), i1s simple. First, the scenario 1s maximally decomposed into a set of lin-
earizable aggregate modules. Typically, this decomposition will correspond to the
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scenario’s original decomposition. However, for some scenarios, there may be mod-
ules’ which are not separable (e.g., they form a system of nonlinear simultaneous
equations). For the valved heat exchanger, the decomposition results in the following
modules:

{tank} {lever valve} {plumbing;, heat exchanger, plumbing,} {temperature gauge}

Because of the interdependencies between the mass flow and heat transfer rates of
the plumbing and heat exchanger, these modules cannot be separated.®

Second, the behavior (and associated error) of each aggregate module is stored
with the module definition and the conjunction of the modeling assumptions asso-
ciated with that module’s model fragments.

Case retrieval has two aspects. First, given a query and a candidate model
for answering it, find a set of relevant cases from which to extrapolate the model’s
credibility. This too is simple because prior usage is stored directly with the modules.
Second, from the set of relevant cases, select one from which to bound the model’s
error. For this we draw upon the intuition that from the current (unknown) point
on the error surface, we want to look “uphill” (Ge/dv > 0) to find cases that might
have greater error. We seek the point v’ that minimizes the weighted Euclidian

distance
Do vl =i P
v, eV

where w; = 1 if 9e/0v; > 0 and w; = 0.5 if Oe/Ov; < 0.6 More experimentation is
needed to evaluate the impact of specific weight assignments. If the error function
is known to be monotone in each of its variables, then an even simpler technique is
possible. For each point (dy,...,d,) at which the error is known, produce a rule of
the form

If viopydi N oA vy 0p,dy —  €pew < €414

where op; is < (>) if e is monotone increasing (decreasing) in v;.”

4.3 Changes in topology

Credibility extrapolation as presented in Section 3 assumed a fixed set of equations;
only the model parameters are allowed to change. While useful, it captures a some-
what limited view of experience. To the degree possible, we would like to extend
experience with one situation to distinct, yet similar situations.

This is done in two ways. First, as described above, experience is tied to the
modules and their model fragments, not the complete scenario model. Second, we

A standard Newton-Raphson iterative technique is used to compute these values, while the
Jacobian of the system is used to propagate input error through the system.

This selection of weights is arbitrary, but matches the intuition that more weight should be
given to dimensions in which the error is known to decrease. A more principled weighting is being
sought.

"Currently unimplemented.
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Figure 3: A block slides down an inclined plane. Need we model sliding friction, air drag,
or both?

use influences to specify elements of composable functions (e.g., 3, [1) in a modular
manner |9, 7]). For example, the frictional (head) loss in the plumbing due to elbows
and other fixtures was modeled as a summation of the individual loss introduced
by each fixture. Influences provide modularity at the function level; the effects of
including or ignoring an influence can be determined in cases where no experience
with that specific influence exists and enables credibility extrapolation even when
the scenario topology changes. For example, experience obtained during analysis
of a system containing four elbows can be used to place a bound on the error
due to ignoring fixture losses in the two elbow configuration shown in Figure 1.
Because these frictional losses are combined via influences, and there are fewer in
this scenario, we can determine that the error due to ignoring losses in these fixtures
will be less (given a lower or equal flow velocity), even though the configuration of
fixtures is different.

4.4 Feature reduction

As a second example, consider the case of a block sliding down an incline (Fig-
ure 3). If drag was found to be insignificant at 20 km/h, then clearly, “all else being
equal”, it will be insignificant if the current problem specifies a speed of 10 km/h.
This problem can be posed as the task of determining Ae given changes to the three
variables [a4, ay, aq]. However, it could just as easily be posed as the task of deter-
mining Ae given changes to the ten variables [W, L, H, Pyock, 9, 9, £ts» CD, Pair, V)-
Each time a comparison to experience is made, we must compare a vector Av of
length N. Much depends on N. First, the complexity of sensitivity analysis in credi-
bility extrapolation goes up with N. Second, the likelihood of a definitive credibility
evaluation diminishes with N, due to increased chance of unresolved ambiguity. Fi-
nally, if approximate credibility evaluation algorithms are used (e.g., curve fit), the
likelihood of an incorrect result goes up with N. Thus, it is important to minimize
N. We do this reduction via algebraic aggregation of the variables into fewer terms.
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For example, the block’s acceleration (Figure 3) can be computed in several ways:

a = fl(W7L7Hapblock79,g»#uC&Pair,v)
a = f?(AvM’97gnusaCD1pair7v) (‘AZWHaM:LWHpblOCk)

a = filag, ay,aq)

Using f1, the change in error due to an increase in block density and a decrease in
block length would have to be resolved. Alternatively, using f;, a change in density
and length results in a single (potentially zero) change in mass M — a much easier
problem. In general, minimizing N is a significant step in addressing the “all else
being equal” problem mentioned in the introduction and, in the same vein, is of
course one of the main points of dimensional analysis and the theory of similitude
(11, 23].

Finding the optimal reformulation of the variables is beyond the scope of this
paper. However, two simple reduction rules have provided significant leverage.
First, if the function is a summation of influences, we treat each influence as a
separate parameter to the function (c.f., f3). This is why example 1 was posed
as a change to the three variables [a,, af,a4]. Second, we aggregate model pa-
rameter products for which the function is invariant (i.e., f(p;,p2) = f(p2,p1) or

f(p1,1/p2) = f(1/p2,p1)). Thus,
f(M,E I,dv/dz) = M[1 + (dv/dz)?*?/EI

would become
f'(S,dv/dz) = S[1 + (dv/dz)*]®/?
where S = M/EI.

5 Related Work

This work builds directly from prior work with Shirley [17] and Forbus [7] and is
intended to complement some of the existing approaches to reasoning about approx-
imate models. In discrepancy-driven refinement [1, 17|, an observation is used to
find a model that fits. Credibility extrapolation can then tell if the model can still
be used in subsequent analyses, thus allowing it to be used for prediction. Similarly,
one could use bounding abstractions [22] to identify models that overestimate and
credibility extrapolation to provide a bounds on the amount of overestimation and
. thus reduce or eliminate search.

Our approach is much like the caching that occurs in an ATMS [4], in which
partial results obtained in one context are transparently reused in other contexts due
to the underlying granularity of assumption maintenance. The complex memory and
mapping issues that dominate treatments of analogy and case-based reasoning (8, 12,
15] do not arise. We achieve indexing and adaptation via the granularity inherent in
the domain theory (the model fragments), rather than via partial situation matching
and similarity-driven adaptation procedures.
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6 Discussion

Analysis grounded in experience i1s fundamental to modeling due to the inherent un-
certainty of equational models and the numerical methods which manipulate them.
Given prior use of an approximate model, credibility extrapolation provides a mech-
anism for bounding the error of a model prior to its use. Further, by explicitly
matching on model fragments, it ehminates the complex indexing and retrieval nor-
mally associated with experiential reasoning approaches like analogy and case-based
reasoning. At the same time, the model fragments’ granularity enables transfer of
experience to different settings that make use of the same model fragments.

Credibility extrapolation allows for the observation to be generated analytically
by sampling points in the more accurate model’s domain (presumably at extrema
conditions). A companion technique, called credibility domain synthesis [5], takes
this to its natural extreme. It generates approximations of a given model by analyz-
ing its domain and identifies explicit constraints for the most prevalent situations
based on variance. Current work includes examining their relative merits.

The approach is currently implemented in pieces, with the model representation
and storage occurring in our existing implementation of compositional modeling and
most of the analysis occurring in Mathematica. I am currently working to connect
the two systems.
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