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Abstract
Qualitative reasonershave been hamstrungby the inability to an-

alyze large models. This includes self-explanatorysimulators, which

tightly integratequalitativeandnumerical modelsto provi(le both pre-
cision and explanatorypower. While they have important J)otelltial
applicationsin training, instruction, and conceptualdesign, a critical
step towardsrealizing this potential is the ability to build simulators
for medium-sizedsystems(i.e., on the order of ten to twenty indepen-
dentparameters).This paperdescribesa new method for developing
self-explanatorysimulatorswhich scalesup. While our methodin volves

qualitativeanalysis,it doesnot rely on envisioningor any other form of
qualitativesimulation. We describethe results of an implementedsys-
tent which uses this method,and analyzeits liniitations and potential.
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1 Introduction

While qualitativerepresentationsseemusefulfor real-worldtasks(c.f. [2, 16]),
the inability to reasonqualitatively with largemodelshaslimited their utility.
For example,usingenvisioningor otherformsof qualitativesimulationgreatly
restrictsthe sizeof model which can be analyzed[15, 7]. Yet the observeduse
of qualitative reasoningby engineers,scientists,andplain folks suggeststhat
tractablequalitativereasoningtechniquesexist. This paperdescribesonesuch
technique: a new method for building self-explanatorysimulators [12] which
has been successfullytested on models far larger than previous qualitative

reasonerscan handle.

A self-explanatorysimulation combinesthe precision of numericalsimu-
lation with the explanatorypower of qualitative representations.They have
three advantages:(1) Better explanations: By tightly integrating numerical
and qualitative models,behaviorcan be explainedas well as predicted,which

is useful for instruction and design. (2) Improvedseif_montoring: Typically
most modeling assumptionsunderlying today’s numerical simulatorsremain
in their author’s heads. By incorporating an explicit qualitative model, the
simulator itself can help ensurethat its resultsare consistent. (3) Increased
automation: Explicit domain theoriesand modeling assumptionsallow the
simulation compiler to shouldermoreof the modelingburden(e.g., [8]).

Applying theseideasto real-worldtasksrequiresasimulationcompilerthat

can operateon useful-sized-examples.In [12], our accountof self-explanatory
simulatorsrequired a total envisionmentof the modeledsystem. Sinceenvi-
sionmentstend to growexponentiallywith the sizeof the systemmodeled,our
previoustechniquewould not scale.

This paper describesa new techniquefor building self-explanatorysimu-
lations that providesa solution to the scale-upproblem. It does not rely on

envisioning, nor even qualitative simulation, Instead,we more closely mimic
what an idealized human programmerwould do. Qualitative reasoningis
still essential,both for orchestratingthe use of numerical modelsand pro-
viding explanations. Our key observation is that in the task of simulation
writing reification of global state is unnecessary. This suggestsdeveloping
moreefficient local analysis techniques.While thereis room for improvement,
SIMGEN.Mi<2 can already write self-explanatorysimulationsfor physical
systemswhich no existing envisionercan handle.

Section 2 outlines the computationalrequirementsof simulation writing,
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highlighting related research. Section 3 uses this decompositionto describe
our new method for building self-explanatorysimulations. Sections4 and 5
discussempirical results. We use Mi~1below to refer to the old method and
implementationand Mi2 to refer to the new.

2 The task of simulation writing

Wefocushereon systemsthat can bedescribedvia systemsof ordinary differ-
ential equationswithout simultaneities.Writing a simulationcan be decom-
posedinto severalsubtasks:

1. Qualitative Modeling. The first step is to identify how an artifact is

to be described in termsof conceptualentities. This involves choosingap-
propriateperspectives(e.g., DC versushigh-frequencyanalysis)anddeciding
what to ignore (e.g., geometricdetails, capacitivecoupling). Existing engi-
ileering analysistools (e.g., NASTRAN, SPICE,DADS) provide little support for
this task. Qualitativephysicsaddressesthis problemby the idea of a domain
theory (VT) whosegeneraldescriptionscan be instantiatedto form modelsof
specific artifacts (e.g., [8]).

2. Finding relevant quantitative models. The conceptualentities and
relationshipsidentified in qualitative analysisguide the searchfor more de-
tailed models. Choosingto include a flow, for instance,requiresthe further
selection of a quantitativemodel for that flow (e.g., laminar or turbulent).
Typically any qualitative modelhasseveralquantitativemodels. Currenten-
gineeringanalysistools provide assistancehereby supplying libraries of stan-
dard equationsandapproximations,although again the choiceof model rests
with the engineer.Relevant Al work includes [3, 8, 17].

3. From equationsto code. The selectedmodelsmust be translatedinto
an executableprogram. RelevantAl work includes[1, 21].

4. Self-Monitoring. Hand-built numerical simulations are typically de-
signedfor narrow rangesof problemsand behaviors,and rarely provide any
indication when their output is meaningless(e.g., negativemasses). Even
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simulation toolkits tend to have this problem, relying on the intuition and
expertiseof a humanuser to detecttrouble. Forcing anumericalmodel to be
consistentwith aqualitative model can provideautomaticandcomprehensive
detectionof many suchproblems[12].

5. Explanations. Most modernsimulation toolkits provide graphicalout-
put,but the burdenof understandingstill restson theuser. Qualitativephysics
work on complexdynamics[19, 11, 20] can extractqualitativedescriptionsfrom
numericalexperiments. But sincethey require thesimulator (or equations)as
input andso far are limited to systemswith few parametersthey are inappro-

priate for our task. The tight integration of qualitativeandnumericalmodels
in self-explanatorysimulators provides better explanationsfor most training

simulators and many designandanalysistasks.

3 Simulation~building by local reasoning

Clearlyenvisionmentscontainenoughinformationto supportsimulation-building;
Theproblem is theycontain too much. The authorof aFORTRAN simulator
neverenumeratesthe qualitatively distinct global statesof a complexartifact.
Insteadsheidentifies distinct behaviorregimesfor piecesof the artifact (e.g.,
whethera pump is on or off, or if a piping systemis aligned) andwrites code
for eachone. Our new simulation-buildingmethodworksmuch the sameway.

Here we describethe methodandanalyzeits complexity and trade-offs. We
use ideasfrom assumption-basedtruth maintenance(ATMS) [5], Qualitative
Processtheory [9], CompositionalModeling [8], and QPE [10] as needed.

3.1 Qualitative analysis

Envisioning wasthe qualitative analysismethod of MK1. The stateof a self-
explanatorysimulatorwasdefinedas apair (Ar, Q), with Al avectorof contin-
uousparameters(e.g.,mass(B)) andbooleanscorrespondingto preconditions
(e.g., Open(Valve23)),and Q rangedoverenvisionmentstates.

Envisioning tendsto be exponentialin the size of the artifact A. Many of
the constraintsapplied are designedto ensureconsistentglobal statesusing
only qualitative information. For example,all potential violationsof transitiv-
ity in ordinal relationsmust be enumerated.The computationalcost of such
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constraintscan besubstantial.Forour tasksuch effort is irrelevant; theextra
detail in the numericalmodel automaticallypreventssuch violations.

The domain theory VT consistsof a set of model fragments,eachwith a
set of antecedentconditionscontrollingtheir useandaset of partial equations
defining influences[9] on quantities. The directly influencedquantitiesare de-

fined as a summation of influences on their derivative dQ0/dt = ~Jnf(Q
0

) Qi
and the indirectly influencedquantities are defined as algebraicfunctions of
other quantities Qo = f(Q~,...,Q,~). The qualitative analysis identifies rel-

evant model fragments,sets of influences,and transitions where the set of

applicablemodel fragmentschanges.The algorithm is:

1. Establish a dependencystructureby instantiating all applicablemodel
fragmentsinto the ATMS. The complexity is proportional to VT and.4.

2. Deriveall minimal, consistentsetsof assumptions(calledlocal states)un-
der which eachfragmentholds (i.e., their ATMS labels). The labelsenumerate
the operatingconditions (ordinal relationsand other propositions) in which
eachmodel fragmentis active.

3. For eachquantity, computeits derivative’ssign in eachof its local states
when qualitatively unambiguous(QPT influenceresolution), This information
is usedin selectingnumericalmodelsand in limit analysisbelow. The com-
plexity for processingeachquantity is exponentialin the numberof influences
on it. Typically there are less than five, so this step is invariably cheapin
practice.

4. Find all limit hypothesesinvolving single inequalities (from QPT limit
analysis).Thesepossibletransitionsareusedto derivecodethat detectsstate
transitions.This stepis linear in the numberof ordinal comparisons.

This algorithm is a subsetof what anenvisionerdoes. No global statesare
createdandexponentialenumerationof all globally consistentstatesis avoided
(e.g., ambiguousinfluencesare not resolvedin step3 and no limit hypothesis
combinationsare precomputedin step 4). Only Step 2 is expensive: worst
caseexponential in the numberof assumptionsdue to ATMS label propaga-
tion. We found two ways to avoid this cost in practice. First, we partially
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rewrote the qualitative analysisroutines to minimize irrelevant justifications
(e.g., transitivity violations). This helped,but not enough.

The secondmethod(which worked) usesthe fact that for our task, thereis
astrict upperboundon the sizeof relevantATMS environments.Many large
environmentsare logically redundant[6]. We use labelsfor two purposes: (1)
to determine which model fragmentsto use and (2) to derive code to check
logical conditionsat run-time. For (1) havinga non-emptylabel suffices,and
for (2) shorter, logically equivalent labels producebetter code. By modifying
the ATMS to nevercreateenvironmentsovera fixed size ~‘mar~ we reducedthe
numberof irrelevantlabels. The appropriatevaluefor Emal. can beascertained
by analyzingthe domain theory’s dependencystructure.1 Thus,while Step 2

is still exponential,the useof Emax greatly reducesthe degreeof combinatorial
explOsiOn 2

A new definition of statefor self-explanatorysimulatorsis requiredbecause
without an envisionment, Q is undefined. Let Al be a vector of numerical
parameters,and let B beavectorof booleanparametersrepresentingthe truth
value of the non-comparativepropositionswhich determinequalitativestate.
That is, B includesparametersrepresentingpropositionsandthestatusof each
model fragment,but not comparisons.(Ordinal information can be computed
directly from Al as needed.)The stateof a self-explanatorysimulator is now

definedas tile pair (Al, B). In effect, eachelementof Q can be representedby
somecombinationof truth valuesfor B.

3.2 Finding relevant quantitative models

Tile qualitative analysishasidentified tile quantitiesof interest and provided
a full causalordering on the set of differential and algebraicequations.How-
ever, becausethe influenceson a quantity can changeover time, a relevant
quantitative model must be found for eachpossiblecombination.

This aspect of simulation-buildingis identical with MK1. Tile derivative
of a directly influencedparameteris the sum of its active influences.For indi-
rectly influencedparameters,a quantitativemodel must be selectedfor each
consistentcombinationof qualitativeproportionalitieswhich constrainit For

‘Empirically, setting emax to double the maximum sizeof the set of preconditionsand

quantity conditions for VT always providesaccuratelabels for the relevantsubset of the
ATMS. The factor of two ensuresaccuratelabelswhen computinglimit hypotheses.

2Under sometradeoffsnon-exponentialalgorithmsmay be possible: SeeSection5.
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instance,when a liquid flow is occurring its rate might dependon tile source
and destinationpressuresand tile conductanceof the path. Tile numerical

model retrievedwould be

FluidCondnctance(?path) x (Pressure(?so’urce)-Pressure(?dest))
If N qualitative proportionalities constrain a quantity there are at most

2
N distinct combinations. This worst casenever arises: typically there are

exactly two consistentcombinations: 110 influences(i.e., tile quantity doesn’t
exist) and the conjunction of all N possibilities (i.e., the model found via
qualitativeanalysis). N is always small so the only potentially costly aspect
hereis selectingbetweenalternatequantitativemodels(SeeSection5).

Tile only potential disadvantagewith usingB over Q in this computation
is tile possibility that a combination of qualitative proportionalitiesmight be
locally consistent,but neverpart of any consistentglobal state. This would
result iii tile simulatorcontaining deadcode, which doesnot seemserious.

3.3 Code Generation

Tile simulation proceduresin a self-explanatorysimulator are divided into
evolversand transition procedures.An evolverproducesthe next state,given
an input stateandtime stepdt. A transitionproceduretakesa pair of states
and determineswhether or not a qualitatively important transition (as in-
dicatedby a limit hypothesis)has occurredbetweenthem.3 In MI<1 each
equivalenceclassof qualitativestates(i.e., sameprocessesand Ds values)had
its own evolverand transition procedure. In MK2 simulatorshavejust one
evolverandone transitionprocedure.

An evolver looks like a traditional numericalsimulator. It containsthree
sections:(1) calculatethe derivativesof illdependentparametersandintegrate
them; (2) updatevaluesof dependentparameters;(3) updatevaluesof boolean
parametersmarking qualitativechanges.Let the influencegraphbe the graph
Wilose nodes are quantitiesandwhose arcsthe influences(direct or indirect)
implied by a model (note that many can’t co-occur). We assumethat the

subsetof tile influencegraph consistingof indirect influence arcsis loop-free.
This unidirectional assumptionallows us to updatedependentparametersin
a fixed global order. While we may haveto checkwhether or not to update

3Transition proceduresalso enforcecompletenessof the qualitativerecord by signalling
when the simulatorshould “roll back” to find a skippedtransition [121.
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Sample of direct influence update code

(sETF (VALUE—OF(0 (HEAT (C-s WATERLIQUID F))) AFTER) 0.0)

(WHEN (EQ (VALUE-OF (ACTIVE PlO) BEFORE) ‘:TRUE)
(5ETF (VALUE—OF(0 (HEAT (C—s WATER LIQUID F))) AFTER)

(— (VALUE—OF (D (HEAT (C—s WATERLIQUID F))) AFTER)

(VALUE—OF (A (HEAT-FLOW-RATE PlO)) BEFORE))))

(WHEN (EQ (VALUE—OF (ACTIVE P11) BEFORE) ‘ TRUE)
(5ETF (VALUE—OF(D (HEAT (C-s WATERLIQUID F))) AFTER)

(+ (VALUE-OF (D (HEAT (C—s WATERLIQUID F))) AFTER)

(VALUE-OF (A (HEAT—FLOW—RATEP11)) BEFORE))))

(5ETF (VALUE-OF (A (HEAT (C-s WATERLIQUID F))) AFTER)
(+ (VALUE—OF(A (HEAT (C—S WATERLIQUID F))) BEFORE)

(* DELTA-T
(VALUE-OF (D (HEAT (C-S WATERLIQUID F))) AFTER))))

Sampleof indirect influenceupdatecode

(COND ((EQ :GREATER—THAN
(COMPUTE—SIGN—FROM—FLOAT
(VALUE—OF (A (AMOUNT—OF—INWATERLIQUID F)) BEFORE)))

(5ETF (VALUE-OF (A (LEVEL (C-s WATERLIQUID F))) AFTER)
(/ (VALUE-OF (A (AMOUNT-OF (C-S WATERLIQUID F))) AFTER)

(* 31.353094 (VALUE-OF (A (DENSITY WATER)) AFTER)
(* (VALUE-OF (A (RADIUS F)) AFTER)

(VALUE—OF (A (RADIUS F)) AFTER)))))
(sETF (VALUE-OF (D (LEVEL (C-S WATERLIQUID F))) AFTER)

(- (VALUE—OF (A (LEVEL (C-S WATERLIQUID F))) AFTER)
(VALUE—OF (A (LEVEL (C-s WATERLIQUID F))) BEFORE))))

(T (5ETF (VALUE—OF(A (LEVEL (C—s WATERLIQUID F))) AFTER)

(VALUE-OF (A (LEVEL (C-S WATERLIQUID F))) BEFORE))
(sETF (VALUE-OF (D (LEVEL (C-s WATERLIQUID F))) AFTER)

0.0)))

Sampleof booleanupdatecode

(SETF (VALUE—OF(ACTIVE PlO) AFTER)

(IF (AND (EQ :GREATER-T1{AN

(COMPUTE-INEQUALITY—FROM-FLOATS
(VALUE-OF (A (PREsSURE (C-S WATERLIQUID F))) AFTER)

(VALUE—OF(A (PRESsURE (C-s WATERLIQUID G))) AFTER)))

(EQ (VALUE-OF (ALIGNED P1) AFTER) ‘:TRUE))
‘:TRUE ‘:FALSE))

Figure 1: Code fragmentsproduced by Mi<2. Left: a directly influenced

parameter;Right: an indirectly influencedparameter.

29



a quantity (e.g., tile level of a liquid which doesn’t exist) or calculate whicil

poteiltial direct influences are releVailt (e.g., whicil flows illtO and out of a

containerare active),we never llave to changethe order ill which we updatea

pair of parameters(e.g., we neverhave to update level usingpressureat one
time and update pressureusing level at another within one simulator). The
codegeneration algorithm is:

1. Analyzethe influencegraph to classifyparametersas directly or indirectly
influenced,andestablisha global order of computation.

2. Generatecodefor eachdirectly influencedquantity. Updateorder is irrel-

evant becausethe codefor eachsumillation term is independent.

3. Generate code to update indirectly influenced quantities using tile quail-

titative models found earlier. Updatesare sequential, based on tile ordering

imposedby tile influencegraph.

4. Generatecode to updateB, using label anddependencyinformation.

Figure 1 showspart of an evolverproducedthis way. Step 1 is quadratic
in tile number of quantitiesand tile rest is linear, so the algorithm is efficient.
Tile codegenerationalgorithm for transition proceduresis linear ill thenumber

of comparisons:

1. Sort limit hypothesesinto equivalenceclassesbasedon what tlley corn-

pare. For instance,tile hypothesistilat two pressuresbecomeunequaland tile

hypothesis that tiley becomeequal both concern the samepair of numbers

and so are groupedtogether.

2. For eachcomparison,generatecodeto test for tile occurrenceof tile hy-
pOtileses and for transition skip (see [12] for details). To avoid numerical

problems, place testsfor equality first wheneverneeded.

3,4 Explanation generation

Explanations in Mi< 1 were cileap to computebecausetile envisionmentwas

part of tile simulator. Tile value of Q at any time provided a completecausal

structureand potential state trailsitiollS. In Mi<2 every self-explanatorysim-
ulator 110W nlaintains imlsteada concise history [18] for eachbooleanin B. Tile
temporal boundsof each interval are tile time calculatedfor tilat interval ill
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the simulation. Elementsof Al can also be selectedfor recordingas well, but
theseareonly necessaryto provide quantitativeanswers.A compactstructured

explanationsystem,which replicatesthe ontology of tile original QP model, is
included in tile simulator to provide a physical interpretation for elementsof

B in a dependencynetwork optimized for explanationgeneration.

Surprisingly, almostno explanatory power is lost in moving from enVision-

ments to concise ilistories. For instance, histories suffice to determinewhat

influencesand what mathematicalmodelshold at any time. What is lost is tile

ability to do cheapcounterfactuals:e.g., asking “what might havehappened

instead?”. Envisionnlentsnlakesuchqueriescheapbecauseall alternatestate
transitions areprecomputed.Such queriesnlight be supportedin MK2’s sim-
ulators by incorporating qualitative reasoningalgorithms that operatedover

the structuredexplanationsyStelll.

3.5 Self-Monitoring

In Mi1 clasiles between qualitative and quantitative models were detected

by a simulatorproducing all inconsistentstate: i.e., wilen Al could not satisfy

Q. This stringent self-monitoring is impossibleto achievewithout envisioning.

To scaleup we must find a good compromisebetweenstringency and perfor-

mance. Our conlpromiseis to searchtile nogood databasegeneratedby the

ATMS during the qualitative analysisphasefor useful local consistencytests.
Thesetestsare thenproceduralizedinto a nogoodcheckerwhich becomespart
of tile simulator. Empirically, few nogoodsare usefulsincethey rule out com-
binationsof beliefswhicil cannothold, given that B is computedfrom Al. Thus
so far nogoodcheckersilave tendedto besmall. How much self-monitoringdo
we lose? At worst MK2 producesno extra internalconsistencychecks,making
it no worse than many hand-written simulators, This is a small price to pay
for the ability to producecodefor largeartifacts.

4 Examples

Theseexampleswererun on an IBM RS/6000,Model 530, with 128MB of

RAM running Lucid CommonLisp. Table4 reportsthe Mi<2 runtimeson the
examplesof [12]. Here, Mi<2 is much faster than humail coders. To explore
Mi<2’s performanceOfl largeproblemswe testedit on amodel containingnine
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Table 1: MK2 OIl small examples
All times in seconds.The envisioning time is includedfor comparisonpurposes.

Example Qualitative Code Envisioning
Analysis Generation

Two containers 19.4 3.4 40.2
Boiling water 21.8 3.4 45.6
Spring-Block 4.9 1.5 6.2

coiltaillers connectedby twelvefluid patils (i.e.,a 3 x3 grid). Tile liquid in each
container(if any) ilaS two independentvariables(massand internal energy)

and three dependentvariables (level, pressure,amId temperature). 24 liquid
flow processeswere illstantiated, eacil illcluding ratesfor transferof massalld

energy.We estimatea total envisionmentfor tiliS situationwould containover
1012 states, clearly beyondexplicit generation. Tile qualitative analysistook
16,189 seconds (over four hours), which is slow but Ilot forever. Generating
tile codetook only 97.3 seconds(under two Illillutes), which seemsreasonably
fast.

5 Analysis

Tile examplesraise two interestingquestions: (1) why is code generationso
fast and (2) can the qualitative analysisbemadeevenfaster?

Code generationis fast for two reasons. First, in programmingframing
tile problem takesa substantialfraction of the time. This job is doneby the
qualitativeanalysis, Transformingthe causalstructureinto a proceduregiven
matilematical models is easy,deriving the causalstructureto begin with is
not. The secondreasonis that our current implementationdoes not reason
about which mathematicalmodel to use. So far our examplesincluded only
one Ilumerical model per combinationof qualitative proportionalities.4 This
will not be unusualin practice,sincetypically eachapproximationilas exactly
one quantitative model (e.g., laminar flow versus turbulent flow). Thus the
ciloice of pilysical model typically forcestile choiceof quantitativemodel. On
theother hand,we currentlyrequirethe retrievedmodelto be executableas is,
anddo not attemptto optimizefor speedor numericalaccuracy(e.g. [1, 17]).

41f thereare multiple quantitativemodels the current MK2 selectsoneat random
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Tile qualitative amlalysis for large examplescould be sped up in several
ways. First, our current routilles are culled fronl QPE, henceare designed
for envisioning, not this task. .Just rewriting tilem to minimize irrelevant
dependencystructurecould result in substantialspeedups.Second,using an
ATMS (lesiglled to avoid internal exponentialexplosiomlscould help [6].

A more radical possibility is to not use an ATMS. Someof the jobs per-
formed usingATMS labelsin Section3 can be donewithout theni. Consider
tile problem of finding quantitative models for indirectly influenced param-
eters, which requirescombining labels for qualitative proportionalities. For
someapplicationsit might beassumedtilat if 110 qualltitativenlodel is knowml
for a combinationof qualitativeproportionalitiestilen tilat combinationcan-

not actually occur. Computing tile labelsof influences is unnecessaryin such
cases. Sometimesignoring labels migilt lead to producing code whicil would
never be executed(e.g., boiling iron in a steamplant). At worst speed in
qualitativeanalysiscan be traded off against larger (amId perilapsbuggy) sim-
ulation code; At the bestfaster reasoningtechniquescam~be found to provide
tile ~ami~eserviceas an ATMS but Witil lessoverlleadfor this task.

6 Discussion

SIM GEN . M 1<2 demonstratesthat qualitative reasoningtechniquescan scale
up. Building self-explanatorysimulatorsrequiresqualitativeanalysis,but does
not requirecalculatingevena simigle global state.By avoidingenvisioningand
otherformsof qualitativesimulation,we can build simulatorsfor artifacts that
no envisionment-basedsystemwould dare attempt. Although our implemen-
tatioml is not yet optimized,alreadyit outspeedshumanprogrammerson small
modelsanddoesreasonablywell on modelswithin the rangeof utility for cer-
tani applicationsill instruction,training, anddesign. Our next stepis to build
aversionof Mx2 wllicil can support conceptualdesignandsupply simulators
for procedurestrainersand integrationinto ilypermediasystems.
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