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ABSTRACT

We present a simple but potentially extremely powerful technique
for associating degrees of commitment to the possible behaviours pro-
duced by qualitative simulation algorithms. The ‘distance’ between the
predicted successor states and those determined from local propagation
through the constraints is used to determine the most likely state and
hence prioritise the behaviours. The method forms a basis for a tech-
nique for performing progressive reasoning to cope with real-time con-
straints. In this manner, the most likely solution is generated first and
the subsequent behaviours are only generated if higher priority
behaviours fail. Ultimately all possible behaviours are generated, as in
current algorithms, and the soundness of qualitative predictions is
guaranteed. The approach is applicable to any non-constructive simula-
tion algorithm (e.g. QSIM and its derivatives).

1. Introduction

The major goal of qualitative simulation research is to develop techniques for
generating a description of the behaviour from a structural model that captures only
those distinctions that are necessary for the purpose for which the qualitative model
has been constructed. Such distinctions determine the necessary precision of the
description of a system’s behaviour. Models that generate behaviours (solutions) with
less precision than that of a given reference model have been called abstraction
models [9, 17]. In which case, qualitative models are abstractions of real-valued
models and form a major contribution that Al is currently making to the modelling of
physical systems. However, other properties of behaviours can also be defined. In
particular, the accuracy of the behaviour, with respect to a reference behaviour, can
also be altered by generating approximate models. Such models can be obtained by
either intentionally reducing the number of variables contained in the model or by
replacing known functional relationships with simplier approximate ones. Whilst this
approach has been extensively developed within conventional dynamic (numerical) sys-
tem theory it has not yet been significantly explored within qualitative reasoning tech-
niques. A third ‘dimension’ upon which behaviours can be classified concerns the
degree of commirment associated with a given state, behaviour or, indeed, (constraint-
based) model. This degree of commitment is important in the representation of com-
plex and/or ill-defined systems [11] as it allows inherent uncertainty to be represented
explicitly. It is fundamentally different from modifying the precision through




abstraction. In abstraction complete certainty is still assumed albeit in a lower resolu-
tion quantity space. Whereas, in commitment uncertainties in real-world modelling are
explicitly represented. In spite of uncertainty being a major attribute of Artificial Intel-
ligence approaches to knowledge representation, it has yet to be fully explored within
approaches for Qualitative Reasoning. Up to date, only a few proposals [3, 4, 12, 13]
have been made incorporating uncertainty within Qualitative Reasoning.

Those properties of models pointed above are, in fact, independent and can be
used to generate a space of potential models reflecting the variation of the associated-
properties of the description of the behaviour. In our view the reason that the QR
community almost entirely focuses on abstraction operations [19], is in the proper
preoccupation with maintaining the formal properties of the simulation algorithm.
However, we argue, in this paper, that by incorporating uncertainty we can associate
degrees of commitment to behaviours which offer very significant advantages for prac-
tical applications. Loosely speaking, we can use commitment to prioritise behaviours,
thereby making qualitative simulation more effective and practical approaches e.g.
time-constrained simulation or model-based diagnosis [5, 10, 14] much more feasible.

In present approaches to qualitative simulation, except for FuSim [13], the worst
case solution is always assumed. That is, all theoretically possible successor states of
a present state are maintained and, in fact, propagated with equal status. This, of
course, leads to the generation of spurious behaviours that discredits qualitative simula-
tion in the eyes of application engineers, in that, such multiple behaviour predictions
are at variance with the uniqueness of the behaviour of the physical world. However,
attaching an uncertainty measurement to those potential successor states, and hence a
commitment to an associated behaviour, allows prioritised generation of behaviours or
an efficient mechanism for their use within applications e.g. diagnosis. This allows a
progressive approach to reasoning that first generates or utilises the ‘most likely’
behaviour and only progresses to other less committed behaviours if the behaviours
considered fail to meet the purpose of the application system. Thus, ultimately, the
soundness of the algorithm is still retained, however, a significant improvement in
efficiency is possible by exploring the higher priority behaviours first.

In this paper, we present a basically simple technique for assigning commitment
to states and hence priorities to behaviours. The approach is not restricted to tech-
niques that utilise uncertainty in the definition of the quantity space such as FuSim, but
can easily be incorporated within any non-constructive ‘crisp’ simulation algorithm
(zero uncertainty) e.g. QSIM [7], HR-QSIM [18], etc. The following sections give
formal definitions of our approach to assigning commitment to states and to describing
methods for propagating priority measures for a particular behaviour. We then outline
the potential uses of the technique which appear to us to be very significant indeed.
Finally, we conclude and suggest some of the many possible extensions to the method.

2. Priorities of Qualitative Behaviours

A behaviour of a system variable within qualitative simulation is described by a
sequence of temporally ordered qualitative states of that variable no matter whether the
behaviour is a complete or a partial one. Thus, the determination of the priority asso-
ciated with a behaviour will then be dependent upon the commitment associated with
all the states that the behaviour consists of. In this section the state priority and the
algorithm for computing state priorities are therefore discussed first. Based on this,
techniques for computing the priorities of qualitative behaviours are then presented.



2.1. State Priority

Over the last few years a family of qualitative simulation algorithms [1, 13, 18]
have been developed from the seminal work of Kuipers [7]. This proposed a highly
innovative non-constructive approach to the propagation of system states. In this
method, the system model, usually a set of (qualitative) constraints, is used within a
non-constructive ‘generate-and-test’ procedure that first determines all possible succes-
sor states based on assuming continuity of system variables and then removes those
states that are inconsistent with the system model and other known system properties.
This has the very great advantage that the quantity space remains finite but suffers
from the inevitable problem that, due to the inherent ambiguity of the underlying qual-
itative calculi [15], not all physically impossible behaviours are removed. This results
in a set of behaviours that contain the qualitatively correct behaviour but also other
spurious behaviours that do not reflect any real situations. Spurious behaviours often
tend to obscure the ‘real’ behaviour hence making qualitative simulation less attractive
to application engineers, though much progress has been made in developing so-called
global filters [6, 8, 16] that can reduce the number of such behaviours.

To formalise the presentation, without losing generality, it is assumed that a finite
set of possible states for each variable survive all possible filterings and that this set is
denoted by S = {5, 4, ..., 5, }. Apparently, even in the worst case where no possible
next states produced by the use of continuity are filtered, the cardinality of this set, n,
is a small number. For instance, in QSIM, HR-QSIM, and FuSim n cannot be larger
than 3, 4, and 6 respectively. Within this set, each element s;,i =1,2, .., n,
represents a pair of qualitative magnitude and qualitative rate-of-change and can be
denoted by (4;, B;). With the exception of FuSim, all other qualitative simulation
algorithms treat the successor states that remain after constraint filtering as equally
likely and, hence, propagate each state with equal priority. If any possible successor
state intersects with the constraints it is retained; no information about the degree of
matching is utilised or indeed generated. However, intuitively, those states that maxi-
mally intersect with the constraints can be considered as more likely and therefore can
be given a higher degree of commitment and hence priority in further processing. We
propose that the commitment of a particular state within such a set of possible states
can be determined by a metric function that can faithfully represent certain preference
criteria. Notationally, for each possible new state s; the priority is represented by
p(s;), where p(s;) = j, j £ n, indicates that s; is the jth preferable state, namely the
ith state is of the jth priority.

For convenience, in the following discussion, those possible states of a system
variable generated by following the possible state transition tables and/or rules (based
on continuity) [7, 13, 18] are called predicted states of the variable and those obtained
by performing local propagation of the predicted states of other system variables
throughout a set of constraints or the system model are termed propagated states. The
basic criterion used herein is to assign the highest priority to a predicted state that
maximises the possibility degree to which the state is considered to be the actual one.
A predicted state of a particular variable is said to be the most possible actual state of
the variable if it results in the shortest distance between all the predicted states of the
variable and their corresponding propagated states. This can be better understood by
considering the following simple example based on the 4-tuple parametric representa-
tion [a, b, o, B] of the fuzzy number used in FuSim. However, we emphasise that the
development 1s not restricted to fuzzy quantity space but is applicable to any ‘crisp’




interval based non-constructive algorithm.

Suppose that a system has three system variables {a, b, ¢} related by the addi-
tion constraint ¢ = a + b and that these variables take values from a fuzzy quantity
space. Consider that, based on continuity, two possible successor states are predicted
as follows:

{([10, 12, 0101] [4, 5, 0.1, 0.1,
({3, 4, 0.2, 0.2], [6, 7, 0.2, 0.2]),
([13.5, 16.5, 0.3, 0.3], [10, 12, 0.3, 0.3])},

{10, 12, 0.1, 0.1], [4, 5, 0.1, 0.1]),
(3, 4, 0.2, 0.2], [6, 7, 0.2, 0.2]),
([4, 13, 0.3, 0.3], [10, 12, 0.3, 0.3},

where, for instance, ([3, 4, 0.2, 0.2], [6, 7, 0.2, 0.2]) denotes a fuzzy qualitative state
of the variable b with [3, 4, 0.2, 0.2] and [6, 7, 0.2, 0.2] representing the qualitative
magnitude and the qualitative rate-of-change of b at this state, respectively. Evaluating
the constraint a propagated state for the wvarnable ¢, ([13, 16, 0.3, 0.3],
[10, 12, 0.3, 0.3]), can be obtained since

[13, 16, 0.3, 0.3] = [10, 12, 0.1, 0.1] + [3, 4, 0.2, 0.2],
[10, 12, 0.3,0.3] = [4, 5, 0.1, 0.1] + [6, 7, 0.2, 0.2].

Clearly, both predicted states will survive the constraint filtering as shown in figure 1
(where two dotted fuzzy numbers denote the predicted qualitative magnitude values of
the variable ¢ and the highlighted one expresses the propagated qualitative magnitude)
and also reflected by the following:

[13.5, 16.5, 0.3, 0.3] ~ [13, 16, 0.3, 0.3] = @,
and

[4, 13, 0.3, 0.3] n [13, 16, 0.3, 0.3] = O;

with both predicted rates of change being equal to the propagated one.
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Figure 1. Intersections berween Predicted and Propagated Values

Although  maintaining both  ([13.5, 16.5, 0.3, 0.3], [10, 12, 0.3, 0.3]) and
(I4, 13, 0.3, 0.3], [10, 12, 0.3, 0.3]) as the possible states of ¢ guarantees the sound-
ness of the algorithm, only one of the two states actually reflects the correct qualitative
abstraction of the real behaviour. From this example, it seems intuitive that the
predicted state ([13.5, 16.5, 0.3, 0.3], [10, 12, 0.3, 0.3]) of the variable ¢ is much
closer to the propagated state and hence more likely to corresponds to the real state
than ([4, 13, 0.3, 0.3], [10, 12, 0.3, 0.3]). If this distance information is not evaluated
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and recorded it is lost and cannot subsequently be used to compare the possible
behaviours. In this example, the predicted and propagated values of the rates of
change of the variables match. This simplifies the above discussion but is not a neces-
sary condition and will be removed in later developments.

2.2. Distance Metric

In order to determine the state priority, an explicit distance metric that is able to
measure the difference between two qualitative values and further between two qualita-
tive states is required. Of course, the concrete representational form of such a metric
is dependent upon the detailed representation of the physical quantities or the quantity
space adopted by a particular qualitative simulator. However, the following three basic
properties of a ‘metric’ D (.,.) must be held, where s, and s, are used to describe the

predicted qualitative states and §; and §, represent their corresponding propagated
qualitative states of a single variable:

1) Ifsyequals§y, D(sy, §y)=0.

2) If s, does not equal §y, D (s, §;) > 0.

3) Inanycase, D(sy,§)) =Dy, 5y),and D (s, $9) SD (s, §1) + D (s, §5).
Apparently, this is an analogue of the axioms of a classical metric. Various distance
metrics can be defined for this purpose and each reflects a different emphasis of both
the simulator used and the criteria for priority determination. For instance, we utilise a
distance metric already proposed by the authors to realise the approximation principle
within the FuSim algorithm. In fact, this metric is general enough to be used for
‘crisp’ algorithms, however, other metric functions may also be developed and utilised
in such cases. Within FuSim a distance function d(.,.), used to find the difference
between any two fuzzy qualitative values A and A, is given as the following:

1
d(A, A) = [(Power (A) — Power (A))? + (Centre (A) — Centre (AN 2,

where , for 4-tuple parametric fuzzy numbers,
Power([a, b, o, B]) = —:12—[2(19 —a)+ o+ Bl,

Centre([a, b, o, B]) = —12—[a +b].

For simplicity, the common coefficient, 1/2, on the right hand side of the above two
expressions can be omitted when substituting these expressions into the distance
expression [13].

It is important to notice that this distance function produces a distance measure
between two qualitative values. However, each qualitative state within a qualitative
simulation algorithm is denoted by a pair of two qualitative values, one representing
the qualitative magnitude and the other describing the qualitative rate-of-change. For
two qualitative states (A, B) and (/i , é), distance between the values of their qualita-
tive magnitudes d (A, A) and that between their rates of change d(B, B) are usually
different. To ensure a correct commitment to the possible states, the following syn-
thesised distance D (), based on the function d(.,.) is used to measure the difference
between two states (A, B) and (A s B ):



D((A,B), (A, B))=max {d(A,A), d(B, B))}.

It is straightforward to prove that D (.,.) satisfies the three basic properties of a distance
metric given previously.
Using such a distance function, the distances between the predicted states,

5.1 = ([13.5, 16.5, 0.3, 0.3], [10, 12, 0.3, 0.3])

and
5.0 = ([4, 13, 0.3, 0.3], [10, 12, 0.3, 0.3]),

and the propagated state,
§.1=35.9=([13, 16, 0.3, 0.3], [10, 12, 0.3, 0.3]),

of the variable ¢ in the example given in the preceding sub-section can be computed
such that:

D(sqq, 8.1 =1,
D (SC2, §C2) = 288.

Based on this, it is considered that s.; is much more likely to include the actual ‘real’
state and, therefore, a higher commitment can be assigned to it.

It is important to emphasise that the above-shown distance metric is also suitable
for determining distances between (crisp) interval-valued qualitative states. This is due
to the fact that if the parameters o and B within the 4-tuple representation of a fuzzy
qualitative value (i.e., a fuzzy number) [a, b, o, B] are both assigned to be O this
fuzzy number degenerates to an ordinary real interval.

2.3. Computational Method for State Priority

Having defined a distance metric D (.), the priority of a state can then be
assigned. A general computational method for this purpose will be presented later in
this sub-section. To better understand the technique for determining state priority, let
us investigate a simplest case first. Suppose that only one constraint, z =x +y,
within a system model involves the variable z and that, after local filtering, the follow-

ing N three-tuples of qualitative states remain as the possible new state combinations
of the variables x, y, z:

{(Axi’ Bxi)’ (Ayi’ Byi)’ (Azi’ Bzi)}’ l = 1, 2, cery N

From this, a set of propagated states (A, ézi) for the variable z can be obtained,
resulting from summing the respective predicted possible qualitative magnitudes and
rates of change of the variables x and y, namely,

-~

AAzi = Axi + Ayi’

Bzi :Bxi+Byi'

Using the given distance metric, for each [,i =1, 2, .., N, the distance between
(A, B,;) and (A,;, B,;) can be calculated.

With respect to a particular quantity space, both states (A,;, B,;) and (/izi,

should ideally be identical to each other, or, equivalently, D ((4,, B,;), (A

ézi)
‘ézi))
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should be equal to O (if they both are supposed to reflect the underlying unique ‘real’
state of the variable z). However, due to the nature of (fuzzy) interval algebra or
theoretically unavoidable qualitative ambiguity, this cannot be always satisfied. This
leads to a difference between the two and the difference is directly represented by the
measured distance D ((4,;, B;;), (/iu-, éz,-)). Intuitively, the larger this distance is the
less likely the state (4,;, B,;) will be the actual one and, hence, the lower the degree
of the commitment that should be assigned to this state. From this point of view, any
monotonically decreasing function of the distance metric can be used to measure the
degree of commitment that a particular state is associated with provided that the mono-
tonical function employed maps O to full commitment. Notice that, however, generat-
ing degrees of commitment to different possible qualitative states is aimed at prioritis-
ing such states in order to perform progressive simulation from the most likely state.
Thus, information embedded in the distance metric function itself is sufficient for the
purpose of determining state priorities. We shall, therefore, omit the discussion about
the concrete forms of the monotonical decreasing functions (which may be instantiated
in an infinite number of ways) but exploit the distance metric to meet the same end.

Different tuples of predicted states associated with the variables x, y, and z usu-
ally result in different distances between the predicted states of z and their correspond-
ing propagated ones. This forms the very basis to prioritise the predicted possible
states. In fact, when distances between s; =(A,,B,) and § = (/iz,-, ézi )s
i =1,2,.. N, are obtained, the state priorities can then be determined such that
p(s;) = p((Ay, By)) = J if

D(Si, fl)z min{{D(Sk, fk) ‘ k = 1, 2, ,N} - {D(SI, S:l) | l <j}}

Following this rule, for example, the state with the highest priority (p((4,, B,)) =1)
will be the one that satisfies:

D((4,, B,), (4,, B,)) = min{D (Ay, By), Ay, Bu) 1k =1,2, ., N}.

The above discussion is based on the simplified case where only one constraint
within the system model involves the variable z. When there are several constraints
sharing this variable the corresponding computational method will, of course, become
more complex. To extend this to a general situation, it requires a clarification of two
basic notions, constrained variables and constraining variables, regarding the position
at which a particular variable appears in a given constraint. Informally speaking, a
single variable on one side of the given constraint is termed the constrained variable
while those appearing on the other side are called constraining variables. With respect
to such a distinction amongst system variables, it should be emphasised that causal
implications are not used in the generation of the behaviours but rather the notions of
constrained and constraining variables are only used in the calculation of the distance
metric and hence for the associated priority. As discussed in [13, 15], if the values of
the constraining variables are known, the value which the constrained variable should
take can be obtained by performing the operation on the values of the constraining
variables. However, in general, an unknown value of a constraining variable cannot be
found by solving the equation as it can be done in solving numerical equations (e.g.,
via transposition) due to the lack of inverse operations. Fortunately, this problem is
avoided within a qualitative simulation process since, there, each variable has a set of
known wvalues (generated by continuity) and constraints are used to check for the




consistency amongst values taken by different variables instead of propagating them to
find unknowns. However, difficulty arises when trying to obtain the locally propagated
state of a constraining variable for determining the distance measure to assign state
commitment. It is necessary, therefore, to separate these constraints into two groups,
one consisting of those with the shared variable being constrained and the other con-
taining the constraints within which the shared variable acts as a constraining variable.
For each constraint of the first group, a set of distances can be obtained in the same
way as explained above for the special case. For any constraint belonging to the
second group, the following approximate method is utilised. For a tuple of predicted
states associated with the corresponding constraint, find the distance between the
predicted state and the propagated state of the constrained variable within this con-
straint and, then, treat such a distance measure as that of each of the constraining vari-
able.

Once the distance measures, of a variable, associated with each constraint have
been determined the overall priority of a particular state of the variable can then be
easily adjudged by ordering all the distance measures from the smallest to the largest
and assigning the state attached with the smallest distance to the highest priority while
that with the largest distance to the lowest priority. Summarising the discussion
presented above results in a basic algorithm for computing the state priorities of sys-
tem variables. In principle, for computational efficiency, the determination of state
priority can be carried out while performing the constraint filtering through the use of
the Waltz filter [7, 13, 18]. However, for the sake of clearer presentation, the algo-
rithm outlined below is to be executed after accomplishing local filtering.

Step 1)  For each variable x find all constraints relating to it.

Step 2) When x is the constrained variable within a constraint, find the N propagated
qualitative states of the x {(Ai, 1§‘-) li=1,2,..,N} by operating on the
values of constraining variables; where N is the number of the tuples of the
predicted possible states associated with this constraint; find the distances
between (4;, B;) and (/i,-, éi) respectively:

(D((A;, B), (A,,B) 1i=1,2,.,N},
or
(max{d(4;, 4;), dB;,B)} i =1,2, .. N};

then, attach each resulting distance measure to its corresponding predicted
possible state of x and go to Step 4.

Step 3) When x is a constraining variable, for each of its possible states within the
set of predicted state combinations (i.e., the tuples of possible states associ-
ated with the constraint) find the propagated state of the constrained variable
(not the x) within the constraint and then the distance between this pro-
pagated state and its respective predicted state; attach so resulting distance to
the possible state of the constraining variable x.

Step 4) Redo Step 2 or Step 3 until all the predicted states associated with all the
constraints that are related to x have been attached with distance measures.

Step 5) Prioritise the states of x such that p((4;, B))) =/, i =1,2, ., M, if
D;=min{{D, lk=1,2,. ., M}— (D, l k <j}),



where D;, i =1, 2, .., M, is the distance label attached with state (A;, B;)
and M is the total number of possible states of the variable x associated with
all the constraints.

It is worth emphasising that, within traditional qualitative simulation algorithms,
in order to guarantee the generation of the correct behaviour all the states of a variable
remaining after filtering (A, B),i =1, 2, ..., N, are treated equally likely so long as
the intersections between (A, B) and their respective (A:, é) are not empty (strictly
speaking, the intersections here should be those between A and A and those between
B and B). Further, as pointed out earlier, the method for determining state priority is
not restricted to simulation algorithms that can explicitly represent uncertainty within
qualitative states. Instead, it can be readily extended or modified to increase the simu-
lation effectiveness in crisp interval based techniques. Take QSIM as an example, the
above algorithm can be utilised within its simulation mechanism provided that the dis-
tance metric between two qualitative states, D (.,.), employed in the previous analysis
is substituted with the distance metric between two qualitative magnitude values i.e.
d(.,). This is due to the fact that the rates of change of a system variable only takes
three sign values and, therefore, there does not exist a measurable difference between
the predicted rate-of-change and the respective propagated rate-of-change after accom-
plishing local filterings. As a positive result of this, the calculations required for deter-
mining distances can be considerably reduced. Nevertheless, it should be noticed that
this is possible only in the case when the landmarks are represented by known real
numbers, or as in more recent reasoners like Q3 [1], when semi-quantitative informa-
tion is utilised.

2.4. Behavioural Priority

It is natural, with each possible new state having been prioritised, to generate a
system’s behaviour from the state assigned with the highest priority. A useful strategy
to perform effective qualitative simulation can then be described as follows. Start with
a given initial state and predict the next possible states. Then, find the highest priori-
tised state and perform further simulation from this state. Repeat this at each simula-
tion stage (of prediction and local filtering) unless at some stage the highest prioritised
state has an attached distance label less than that attached with the second highest
prioritised state at the previous simulation stages. In which case, the simulation will
carry on from the predicted state labeled with the second shortest distance measure
within one of the behavioural branches that were temporarily terminated earlier.

Such a strategy can be graphically illustrated in figure 2 through a simple exam-
ple. Without losing generality, suppose that the given initial state is represented by sg,
with p(sg;) = 1 and that three immediate successor states are produced: sy, Sy,, and
s13 that survive constraint filtering. If the distance measures associated with these
three states are 0.6, 0.8, and 0.9 respectively, their corresponding state priorities can
then be determined such that p(sy;) = 1, p(s12) =2, and p(sy3) = 3. From this, the
next possible states are first generated from state sy; and, as shown in the figure, we
have p(s41) =2, p(sy) =1, and p(s,3) = 3. From state s,,, currently the highest
prioritised one, two future states, s5; and 54, are obtained. However, the distances
(0.8 and 1.0) labeled with these two new states are both larger than that (0.7) attached
to the second highest prioritised state s,; and, thus, further prediction from s,, is

halted, although states s5; and s4, can still be prioritised between themselves. The




simulation process will then carry on from state s, that was temporarily stopped as
the figure shows, producing the next highest prioritised state s 3.
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Figure 2. Progressive Simulation Strategy

Once the state priorities are determined the priority assigned to a particular
behavioural branch (such as the partial behaviour consisting of states sgy, 513, and s,
in the above example) can easily be adjudged. In fact, with respect to the above given
simulation strategy, at each simulation stage the ordering in which the partial
behaviour from the initial state to one of the present states is generated reflects the
priority of this partial behaviour. In terms of using the distance metric we can deter-
mine the behavioural priorities by the following method:

Method for computing behavioural priorities: For the partial behavioural branches
generated so far, B; (/ =1, 2, .., n), each of which consists of a sequence of
(predicted) states {s;q, 5;1, ..., ;v } and is consequently labeled with a sequence of
distance measures {D;, D;,, ..., Dy}, the behaviour B; is said to have the jth

priority if
cB;)=min{{cB,) lk=1,2, ..N} = {cB) l k <j}},
N
where ¢ (B;) = min{D;, }.
k=1

This method effectively constitutes a technique for realising progressive reasoning
within qualitative simulation. The simulation system will explore the behaviour with
the current highest priority thereby maximising the chance of producing a solution
within the minimum computation and hence time. If unsuccessful the next highest
priority behaviour will be explored and so on until, in the limit, all possible behaviours

are generated, ensuring the eventual soundness of the qualitative simulation algorithm
used.

It is interesting to notice that, within the Fuzzy Qualitative Simulation developed
by the authors, the behaviours generated have been implicitly assigned with certain
degrees of commitment using the distance metric shown earlier and further prioritised
through the use of the approximate principle [13]. Originally, this principle is utilised
to ensure the closure of the quantity space such that the resulting values from opera-
tions amongst qualitative values remain within the space. The application of the



approximate principle, of course, results in a reduction in the behaviours. However,
the ‘real’ behaviour may be missed, thereby losing the soundness property of qualita-
tive simulation. The technique for progressive reasoning based on explicit priorities
effectively extend our approach so that the most likely behaviour, as determined by the
approximate principle, is explored first.

3. Potential Application of Prioritised Behaviours

We have presented a basically simple but yet potentially very useful technique for
making qualitative simulation more efficient and hence more attractive for practical
applications. The potential uses include any application tasks for which efficiency is
important such as real-time model-based diagnosis of dynamic systems [5, 10, 14] and
real-time critical-event simulation [2]. We have not yet applied the proposed tech-
nique to any of our current applications but intend to do so in the very near future. At
this stage, therefore, we can only outline the potential for our technique.

For real-time critical event simulation we envisage using the technique within
FuSim to predict whether a particular critical event (state) will follow from the present
state of the system. Advanced warning of such a state can be very important to opera-
tion staff, allowing shut-down or corrective action to be initiated. Obviously, the pro-
cedures are usually time-critical. In such situations, exploring the most likely
behaviour first result in a possible reduction in computation time and hence maximis-
ing advanced warning, whilst still avoiding false negative predictions.

Within real-time model-based diagnosis of dynamic systems, the use of prioritised
behaviours offers several distinct advantages. In such applications qualitative simula-
tion is used to produce predictions of the evolution of a physical plant that are syn-
chronously compared to the evolution of the observations from the real plant to detect
discrepancies [10, 14]. If no discrepancy exists then the (normal) model currently
being simulated reflects the real operation condition of the plant and the plant is
assumed to be working normally. However, even in this case, the computation time of
the qualitative simulation is required to be fast enough so that the generation of the
next simulated system state occurs faster than the evolution of the real process. For
processes with relatively fast dynamics, say less than 1 second transient response, this
presents a problem even for current affordable computers. Prioritising the behaviour

generation allows progressive reasoning and thereby easing the time-criticality of the
simulation.

When fault conditions are present, i.e. the predicted behaviour does not match the
observed state, the plant model is modified until a new predicted state is generated that
does match the observed state and, hence, the possible fault associated with the
modified model (constraint) is identified. The key is, of course, to find a suitable
method for making model adjustments. The authors have proposed a method which
they call iterative search [10] that provides a systematic way of exploring model
adjustment that might result in a reduction of discrepancy between the observed and
predicted behaviours. An important advantage of this is that, in principle, it does not
require explicit fault models, although they may be used if available. However, this
potentially results in exploring a number of models, at different stages of prediction, an
an attemnpt to get the best match (that minimises discrepancy metric). The use of
prioritised behaviours offers the prospect of a significant reduction of the computation
required to realise this method. Whenever a predicted behaviour is explored that
obtains a matching between predicted and observed behaviours less than a prescribed




threshold of the discrepancy metric the search procedure could be halted, and the asso-
ciated fault reported as a possible cause. Further, the degree of commitment implied
by the priority can be combined with the value of the resultant discrepancy metric to
produce an ‘integrated’ measure reflecting both the likelihood of that behaviour being
the correct one (of the assumed underlying fault happening in the physical plant) and
the degree of correspondence between observed and predicted values. Such possibili-
ties seem to us to be a very exciting prospect for real-time applications of qualitative
simulation.

4. Conclusion

We have proposed a simple but potentially very powerful technique for prioritis-
ing the behaviours generated by qualitative simulation algorithms. Although the
presentation and associated examples utilise the fuzzy quantity space employed in
FuSim [13], this is not essential and, in fact, as discussed in the paper, the technique is
equally applicable to other non-constructive simulation algorithms [1, 7, 18]. The
method forms a basis for a technique for performing progressive reasoning to cope
with real-time constraints. In this manner, the most likely solution is generated first
and the subsequent behaviours are only generated if higher priority behaviours fail.
Ultimately all possible behaviours are generated, as in current algorithms, and the
soundness of qualitative predictions is guaranteed. The technique has relevance to any
application where computational resources are important.
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