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ABSTRACT

We presenta simple but potentially extremelypowerful technique
for associatingdegreesof commitmentto the possiblebehaviourspro-
ducedby qualitative simulation algorithms. The ‘distance’ betweenthe
predictedsuccessorstatesand thosedeterminedfrom local propagation
through the constraintsis used to determinethe most likely state and
henceprioritise the behaviours. The method forms a basis for a tech-
nique for performingprogressivereasoningto copewith real-time con-
straints. In this manner,the most likely solution is generatedfirst and
the subsequent behaviours are only generated if higher priority
behavioursfail. Ultimately all possiblebehavioursare generated,as in
current algorithms, and the soundnessof qualitative predictions is
guaranteed.The approachis applicableto any non-constructivesimula-
tion algorithm (e.g. QSIM andits derivatives).

1, Introduction

The major goal of qualitative simulation researchis to develop techniquesfor
generatinga description of the behaviourfrom a structural model that capturesonly
those distinctions that are necessaryfor the purposefor which the qualitative model
has been constructed. Such distinctions determine the necessaryprecision of the
descriptionof a system’sbehaviour. Models that generatebehaviours(solutions)with
less precision than that of a given referencemodel have been called abstraction
models [9, 17]. In which case, qualitative models are abstractionsof real-valued
modelsand form a major contribution that Al is currently making to the modellingof
physical systems. However, otherpropertiesof behaviourscan also be defined. In
particular, the accuracyof the behaviour, with respectto a referencebehaviour,can
also be alteredby generatingapproximatemodels. Suchmodels can be obtainedby
either intentionally reducing the number of variables containedin the model or by
replacingknown functional relationshipswith simplier approximateones. Whilst this
approachhasbeenextensivelydevelopedwithin conventionaldynamic(numerical)sys-
tem theory it hasnot yet beensignificantly exploredwithin qualitativereasoningtech-
niques. A third ‘dimension’ upon which behaviourscan be classified concernsthe
degreeof commitmentassociatedwith a given state,behaviouror, indeed,(constraint-
based)model. This degreeof commitmentis important in the representationof com-
plex and/orill-defined systems[11] as it allows inherentuncertaintyto be represented
explicitly. It is fundamentally different from modifying the precision through



abstraction. In abstractioncompletecertaintyis still assumedalbeit in a lower resolu-
tion quantity space. Whereas,in commitmentuncertaintiesin real-worldmodelling are
explicitly represented.In spiteof uncertaintybeinga majorattributeof Artificial Intel-
ligenceapproachesto knowledgerepresentation,it hasyet to be fully exploredwithin
approachesfor QualitativeReasoning.Up to date,only a few proposals[3, 4, 12, 13]
havebeenmadeincorporatinguncertaintywithin QualitativeReasoning.

Thosepropertiesof models pointed aboveare, in fact, independentand can be
usedto generatea spaceof potentialmodelsreflectingthe variation of the associated~
propertiesof the description of the behaviour. In our view the reasonthat the QR
community almost entirely focuses on abstractionoperations[19], is in the proper
preoccupationwith maintaining the formal propertiesof the simulation algorithm.
However, we argue,in this paper, that by incorporatinguncertaintywe can associate
degreesof commitmentto behaviourswhich offer very significant advantagesfor prac-
tical applications. Loosely speaking,we canusecommitmentto prioritise behaviours,
thereby making qualitative simulation more effective and practical approachese.g.
time-constrainedsimulationor model-baseddiagnosis[5, 10, 14] muchmore feasible.

In presentapproachesto qualitative simulation,except for FuSim [13], the worst
casesolution is alwaysassumed. That is, all theoreticallypossiblesuccessorstatesof
a presentstate are maintainedand, in fact, propagatedwith equal status. This, of
course,leadsto the generationof spuriousbehavioursthat discreditsqualitative simula-
tion in the eyesof application engineers,in that, suchmultiple behaviourpredictions
are at variancewith the uniquenessof the behaviourof the physical world. However,
attachingan uncertaintymeasurementto thosepotential successorstates,and hencea
commitmentto an associatedbehaviour,allows prioritised generationof behavioursor
an efficient mechanismfor their usewithin applicationse.g. diagnosis. This allows a
progressive approachto reasoningthat first generatesor utilises the ‘most likely’
behaviourand only progressesto other less committedbehavioursif the behaviours
consideredfail to meet the purposeof the application system. Thus, ultimately, the
soundnessof the algorithm is still retained,however, a significant improvementin
efficiency is possibleby exploringthe higherpriority behavioursfirst.

In this paper,we presenta basically simple techniquefor assigningcommitment
to statesand hencepriorities to behaviours. The approachis not restrictedto tech-
niquesthat utilise uncertaintyin thedefinition of the quantity spacesuchasFuSim, but
can easily be incorporatedwithin any non-constructive‘crisp’ simulation algorithm
(zero uncertainty)e.g. QSIM [7], HR-QSIM [18], etc. The following sectionsgive
formal definitions of our approachto assigningcommitmentto statesand to describing
methodsfor propagatingpriority measuresfor a particularbehaviour. We thenoutline
the potential usesof the techniquewhich appearto us to be very significant indeed.
Finally, we concludeand suggestsomeof themanypossibleextensionsto themethod.

2. Priorities of QualitativeBehaviours

A behaviourof a systemvariable within qualitative simulation is describedby a
sequenceof temporallyorderedqualitativestatesof that variableno matterwhetherthe
behaviouris a completeor a partial one. Thus, the determinationof the priority asso-
ciated with a behaviourwill then be dependentupon the commitmentassociatedwith
all the statesthat the behaviourconsistsof. In this sectionthe statepriority and the
algorithm for computing state priorities are thereforediscussedfirst. Basedon this,
techniquesfor computing thepriorities of qualitative behavioursare thenpresented.



2.1. State Priority

Over the last few years a family of qualitative simulation algorithms [1, 13, 18]
have beendevelopedfrom the seminalwork of Kuipers [7]. This proposeda highly
innovative non-constructiveapproachto the propagation of system states. In this
method, the systemmodel, usually a set of (qualitative) constraints,is usedwithin a
non-constructive‘generate-and-test’procedurethat first determinesall possiblesucces-
sor statesbasedon assumingcontinuity of systemvariablesand then removesthose
statesthat are inconsistentwith the systemmodel and otherknown systemproperties.
This has the very great advantagethat the quantity spaceremainsfinite but suffers
from the inevitableproblemthat, due to the inherentambiguityof the underlyingqual-
itative calculi [15], not all physically impossiblebehavioursare removed. This results
in a set of behavioursthat contain the qualitatively correct behaviourbut also other
spuriousbehavioursthat do not reflect any real situations. Spuriousbehavioursoften
tend to obscurethe ‘real’ behaviour hence making qualitative simulation less attractive
to application engineers, though much progress has been made in developing so-called
global filters [6, 8, 16] that can reducethe numberof suchbehaviours.

To formalise the presentation,without losing generality,it is assumedthat a finite
set of possiblestatesfor eachvariablesurvive all possiblefilterings andthat this setis
denotedby S (si’ ~ ,,,~ Sn). Apparently,evenin the worst casewhereno possible
next statesproducedby the useof continuity are filtered, the cardinality of this set, n,
is a small number. For instance,in QSIM, HR-QSIM, and FuSim n cannotbe larger
than 3, 4, and 6 respectively. Within this set, each element s~,i 1, 2, ...,
representsa pair of qualitative magnitude and qualitative rate-of-changeand can be
denotedby (A1, B~). With the exceptionof FuSim, all other qualitative simulation
algorithms treat the successorstatesthat remain after constraint filtering as equally
likely and, hence,propagateeach statewith equal priority. If any possible successor
stateintersectswith the constraintsit is retained;no information about the degreeof
matching is utilised or indeedgenerated.However,intuitively, thosestatesthat maxi-
mally intersectwith the constraintscanbe consideredas more likely and thereforecan
be given a higherdegreeof commitmentand hencepriority in further processing.We
proposethat the commitmentof a particular statewithin sucha set of possible states
can be determined by a metric function that can faithfully representcertainpreference
criteria. Notationally, for each possible new states~the priority is representedby
p(s~),where p(s~)= j, j � n, indicatesthat 5~is the jth preferablestate,namely the
ith stateis of thejth priority,

For convenience,in the following discussion,those possible statesof a system
variable generatedby following the possiblestatetransition tables and/orrules (based
on continuity) [7, 13, 18] arecalledpredictedstatesof the variableand thoseobtained
by performing local propagationof the predicted statesof other system variables
throughouta set of constraintsor the systemmodel are termedpropagatedstates. The
basic criterion usedherein is to assign the highest priority to a predictedstate that
maximisesthe possibility degreeto which the stateis consideredto be the actual one.
A predictedstateof a particular variableis said to be the most possibleactual stateof
the variableif it results in the shortestdistancebetweenall the predictedstatesof the
variable and their correspondingpropagatedstates. This can be better understoodby
consideringthe following simple examplebasedon the 4-tupleparametricrepresenta-
tion [a, b, a, 13] of the fuzzy numberusedin FuSim. However,weemphasisethat the
developmentis not restrictedto fuzzy quantity spacebut is applicableto any ‘crisp’



interval basednon-constructivealgorithm.

Suppose that a system has three system variables (a, b, c) related by the addi-
tion constraint c = a + b and that these variables take values from a fuzzy quantity
space. Consider that, based on continuity, two possible successor states are predicted
as follows:

(([10, 12, 0.1, 0.1], [4, 5, 0.1, 0.1]),
([3, 4, 0.2, 0.2], [6, 7, 0.2, 0.2]),

([13.5, 16.5, 0.3, 0.3], [10, 12, 0.3, 0.3])),

(([10, 12, 0.1, 0.1], [4, 5, 0.1, 0.1]),
([3, 4, 0.2, 0.2], [6, 7, 0.2, 0.2]),

([4, 13, 0.3, 0.3], [10, 12, 0.3, 0.3])),

where, for instance, ([3, 4, 0.2, 0.2], [6, 7, 0.2, 0.2]) denotes a fuzzy qualitative state
of the variable b with [3, 4, 0.2, 0.2] and [6, 7, 0.2, 0.2] representingthe qualitative
magnitudeand thequalitativerate-of-changeof b at this state, respectively. Evaluating
the constraint a propagated state for the variable c, ([13, 16, 0.3, 0.3],
[10, 12, 0.3, 0.3]), can be obtained since

[13, 16, 0.3, 0.3] = [10, 12, 0.1, 0.1] + [3, 4, 0.2, 0.2],

[10, 12, 0.3, 0.3] = [4, 5, 0.1, 0.1] + [6, 7, 0.2, 0.2].
Clearly, both predicted states will survive the constraint filtering as shown in figure 1
(where two dotted fuzzy numbersdenotethe predictedqualitativemagnitudevaluesof
the variable c andthe highlightedone expressesthe propagatedqualitativemagnitude)
and also reflectedby thefollowing:

[13.5, 16.5, 0.3, 0.3] n [13, 16, 0.3, 0.3] �

and

[4, 13, 0.3, 0.3] n [13, 16, 0.3, 0.3] � D;

with both predicted rates of change being equal to the propagated one.

~i (c)

0 4 13 16

Figure 1. IntersectionsbetweenPredictedand PropagatedValues

Although maintaining both ([13.5, 16.5, 0.3, 0.3], [10, 12, 0.3, 0.3]) and
([4, 13, 0.3, 0.3], [10, 12, 0.3, 0.3]) as the possible statesof c guaranteesthe sound-
nessof the algorithm, only one of the two statesactually reflects the correctqualitative
abstractionof the real behaviour. From this example, it seems intuitive that the
predicted state ([13.5, 16.5, 0.3, 0.3], [10, 12, 0.3, 0.3]) of the variable c is much
closer to the propagatedstate and hencemore likely to correspondsto the real state
than ([4, 13, 0.3, 0.3], [10, 12, 0.3, 0.3]). If this distanceinformation is not evaluated
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and recordedit is lost and cannot subsequentlybe used to compare the possible
behaviours. In this example, the predictedand propagatedvalues of the rates of
changeof thevariablesmatch. This simplifies the abovediscussionbut is not a neces-
sarycondition and will be removedin laterdevelopments.

2.2. DistanceMetric

In order to determinethe statepriority, an explicit distancemetric that is able to
measurethe differencebetweentwo qualitativevaluesand furtherbetweentwo qualita-
tive statesis required. Of course,the concreterepresentationalform of sucha metric
is dependentupon the detailedrepresentationof the physicalquantitiesor the quantity
spaceadoptedby a particularqualitativesimulator. However, the following threebasic
propertiesof a ‘metric’ D (.,.) must be held, wheres~and ~2 areusedto describethe

predictedqualitative statesand ~i and ~2 representtheir correspondingpropagated
qualitativestatesof a singlevariable:

1) Ifs1 equals ~i, D(s1, §~)= 0.

2) Ifs1 doesnot equal§~,D (s ~,§~)> 0.

3) In any case, D(s1,~) = D(~1,ii)’ andD(s1, ~2) � D(s1, ~) + D(s2, ~2)~

Apparently,this is an analogueof the axioms of a classicalmetric. Variousdistance
metrics can be defined for this purposeand eachreflects a different emphasisof both
the simulatorusedand the criteria for priority determination. For instance,we utilise a
distancemetric alreadyproposedby the authorsto realise the approximationprinciple
within the FuSim algorithm. In fact, this metric is general enough to be usedfor
‘crisp’ algorithms,however,othermetric functionsmay also be developedand utilised
in such cases. Within FuSim a distancefunction d(.,.), usedto find the difference
betweenany two fuzzy qualitativevaluesA and A, is given asthe following:

d (A, A) = [(Power(A) Power(A ))2 + (Centre(A) Centre(A ))2] 2,

where , for 4-tuple parametricfuzzy numbers,

Power([a,b, a, 13]) = +[2(b a) + a + ~

Centre([a,b, a, 13]) = 4[a + b].

For simplicity, the common coefficient, 1/2, on the right hand side of the above two
expressions can be omitted when substituting these expressions into the distance
expression [13].

It is important to notice that this distancefunction producesa distancemeasure
between two qualitative values. However, each qualitative statewithin a qualitative
simulation algorithm is denotedby a pair of two qualitative values,one representing
the qualitative magnitudeand the otherdescribingthe qualitativerate-of-change.For
two qualitative states(A, B) and (A, B), distancebetweenthe valuesof theirqualita-
tive magnitudesd (A, A) and that betweentheir ratesof changed (B, B) are usually
different, To ensurea correct commitmentto the possible states,the following syn-
thesiseddistanceD (,), basedon the function d (.,.) is usedto measurethe difference
betweentwo states(A, B) and (A, B):



D((A,B),(A,B))=max (d(A,A),d(B,B)}.

It is straightforward to prove that D (.,.) satisfies the three basic properties of a distance
metric given previously.

Using such a distance function, the distances between the predicted states,

= ([13.5, 16.5, 0.3, 0.3], [10, 12, 0.3, 0.3])

and

s~2= ([4, 13, 0.3, 0.3], [10, 12, 0.3, 0.3]),

and the propagated state,

= Sc
2

= ([13, 16, 0.3, 0.3], [10, 12, 0.3, 0.3]),

of the variable c in the example given in the preceding sub-section can be computed
such that:

D(s~1,~c1) = 1,
D(s~2,Sc

2
) = 288.

Basedon this, it is consideredthat Sc 1 is much more likely to include the actual ‘real’
stateand, therefore,a highercommitmentcan be assignedto it.

It is important to emphasisethat the above-showndistancemetric is also suitable
for determiningdistancesbetween(crisp) interval-valuedqualitative states. This is due
to the fact that if the parametersa and 13 within the 4-tuple representationof a fuzzy
qualitative value (i.e., a fuzzy number) [a, b, a, 13] are both assignedto be 0 this
fuzzy numberdegeneratesto an ordinary realinterval.

2.3. ComputationalMethod for StatePriority

Having defined a distance metric D (.), the priority of a state can then be
assigned. A generalcomputationalmethod for this purposewill be presentedlater in
this sub-section. To better understandthe techniquefor determiningstatepriority, let
us investigatea simplest case first. Supposethat only one constraint, z = x + y,
within a systemmodel involves thevariable z and that, afterlocal filtering, thefollow-
ing N three-tuplesof qualitative statesremain as the possiblenew statecombinations
of the variablesx, y, z:

((A~~,~ ~ ~ (A2~, B~~)}, i = 1, 2, ..., N.

From this, a set of propagatedstates(A2~,~) for the variable z can be obtained,
resulting from summing the respectivepredictedpossible qualitative magnitudesand
ratesof changeof the variablesx andy, namely,

A~~

~ =B~1+B~~.

Using the given distance metric, for each i, i = 1, 2, ..., N, the distance between
(A~1,B2~)and (A7~,B~)can be calculated.

With respectto a particular quantity space, both states ~ B2~)and ~ B~j)

should ideally be identical to each other, or, equivalently, D ((A~~,~ (A2~,B))



should be equalto 0 (if they both are supposedto reflect the underlyingunique ‘real’
state of the variable z). However, due to the nature of (fuzzy) interval algebra or
theoretically unavoidablequalitative ambiguity, this cannot be always satisfied. This
leadsto a differencebetweenthe two and the differenceis directly representedby the
measureddistanceD ((A7~,B7~),(A7~,B~)). Intuitively, the larger this distanceis the
less likely the state (A71, B71) will be the actualone and, hence,the lower the degree
of thecommitmentthat should be assignedto this state. From this point of view, any
monotonicallydecreasingfunction of the distancemetric can be used to measurethe
degreeof commitmentthat a particularstateis associatedwith provided that themono-
tonical function employedmaps 0 to full commitment. Notice that, however,generat-
ing degreesof commitmentto differentpossiblequalitativestatesis aimed at prioritis-
ing suchstatesin order to performprogressivesimulation from the most likely state.
Thus, information embeddedin the distancemetric function itself is sufficient for the
purposeof determiningstatepriorities. We shall, therefore,omit the discussionabout
the concreteforms of the monotonicaldecreasingfunctions (which may be instantiated
in an infinite numberof ways) but exploit the distancemetric to meet the sameend.

Different tuples of predictedstatesassociatedwith the variablesx, y, and z usu-
ally result in different distancesbetweenthe predictedstatesof z and their correspond-
ing propagatedones. This forms the very basis to prioritise the predictedpossible
states. In fact, when distances between s~= (Ad, B71) and s~= (A71, B7~),
i = 1, 2, ..., N, are obtained, the state priorities can then be determinedsuch that
p(s1) = p((A71, B2~))= j if

D(S1,~1)=min((D(s~,~~)1k = 1,2, ...,N} (D(s1,s~1)11<1)).

Following this rule, for example,the statewith the highestpriority (p((A7, B7)) = 1)
will be the onethat satisfies:

D ((A7, B7), ~A7,B7)) = min(D(t~AZk, Bzk), (AZk, ‘3zk)) I k = 1,2, ..., N).

The abovediscussionis basedon the simplified casewhere only one constraint
within the systemmodel involves the variable z. When thereare severalconstraints
sharingthis variable the correspondingcomputationalmethod will, of course,become
more complex. To extendthis to a generalsituation, it requiresa clarificationof two
basic notions, constrainedvariablesand constrainingvariables,regardingthe position
at which a particular variable appearsin a given constraint. Informally speaking,a
single variable on one side of the given constraintis termed the constrainedvariable
while thoseappearingon the other side arecalledconstrainingvariables. With respect
to such a distinction amongstsystemvariables, it should be emphasisedthat causal
implications arenot usedin the generationof the behavioursbut ratherthe notionsof
constrainedand constrainingvariables areonly usedin the calculationof the distance
metric and hencefor the associatedpriority. As discussedin [13, 15], if the valuesof
the constrainingvariablesare known, the value which the constrainedvariableshould
take can be obtained by performing the operation on the values of the constraining
variables. However,in general,an unknownvalueof a constrainingvariablecannotbe
found by solving the equationas it can be donein solving numericalequations(e.g.,
via transposition)due to the lack of inverseoperations. Fortunately, this problem is
avoidedwithin a qualitative simulation processsince,there,eachvariable hasa set of
known values (generatedby continuity) and constraintsare used to check for the



consistency amongst values taken by different variablesinsteadof propagatingthem to
find unknowns. However, difficulty ariseswhen trying to obtain the locally propagated
state of a constraining variable for determining the distance measure to assign state
commitment. It is necessary, therefore, to separate these constraints into two groups,
one consistingof those with the sharedvariable being constrainedand the othercon-
taining the constraintswithin which the sharedvariable actsas a constrainingvariable.
For eachconstraintof the first group, a set of distancescan be obtainedin the same
way as explainedabove for the special case. For any constraint belonging to the
secondgroup, the following approximatemethodis utilised. For a tuple of predicted
states associatedwith the correspondingconstraint, find the distance between the
predictedstate and the propagatedstate of the constrainedvariable within this con-
straint and, then, treat sucha distancemeasureas that of eachof the constrainingvari-
able.

Once the distance measures,of a variable, associatedwith each constrainthave
been determinedthe overall priority of a particular stateof the variable can then be
easily adjudgedby ordering all the distancemeasuresfrom the smallestto the largest
and assigningthe stateattachedwith the smallestdistanceto the highestpriority while
that with the largest distance to the lowest priority. Summarising the discussion
presentedabove results in a basic algorithm for computingthe statepriorities of sys-
tem variables. In principle, for computationalefficiency, the determinationof state
priority canbe carriedout while performing the constraintfiltering throughthe useof
the Waltz filter [7, 13, 18]. However, for the sake of clearerpresentation,the algo-
rithm outlined below is to be executedafter accomplishinglocal filtering.

Step 1) For eachvariablex find all constraintsrelating to it.

Step2) When x is the constrainedvariable within a constraint,find the N propagated
qualitative states of the x { (A~,B~)I i = 1, 2, ..., N } by operating on the
valuesof constrainingvariables;whereN is the numberof the tuplesof the
predictedpossible statesassociatedwith this constraint; find the distances
between(A1, B1) and (A1, B1) respectively:

(D((A1,B1), (A1, E~ I i = 1,2, ..., N),

or

(max{d(A~, A1), d(B1, B~)} I i = 1,2, ..., N);

then, attach each resulting distancemeasureto its corresponding predicted
possiblestateof x and go to Step 4.

Step 3) When x is a constrainingvariable, for eachof its possiblestateswithin the
set of predictedstatecombinations(i.e., the tuples of possiblestatesassoci-
ated with the constraint)find the propagatedstateof the constrainedvariable
(not the x) within the constraint and then the distance between this pro-
pagatedstateand its respectivepredictedstate; attachso resulting distanceto
the possiblestateof the constrainingvariablex.

Step 4) Redo Step 2 or Step 3 until all the predicted statesassociatedwith all the
constraintsthat are relatedto x havebeen attachedwith distancemeasures.

Step5) Prioritise the statesof x such that p((A~,B1)) = j, i = 1, 2, ..., M, if

D1 = min( [Dk I k = 1, 2, ..., M) — k <j))~



where D1, i = 1, 2, ..., M, is the distancelabel attachedwith state (A1, B1)
and M is the total numberof possiblestatesof the variablex associatedwith
all theconstraints.

It is worth emphasisingthat, within traditional qualitative simulation algorithms,
in order to guaranteethe generationof the correctbehaviourall the statesof a variable
remaining after filtering (A, B), i = 1, 2, ..., N, are treatedequally likely so long as
the intersectionsbetween(A, B) and their respective(A, B) are not empty (strictly
speaking,the intersectionshere should be thosebetweenA and A and thosebetween
B and B). Further, as pointedout earlier, the method for determiningstatepriority is
not restrictedto simulationalgorithms that can explicitly representuncertaintywithin
qualitativestates. Instead,it can be readily extendedor modified to increasethe simu-
lation effectivenessin crisp interval basedtechniques. TakeQSIM asan example,the
abovealgorithm can be utilised within its simulationmechanismprovided that the dis-
tancemetric betweentwo qualitative states,D (.,.), employedin the previous analysis
is substitutedwith the distancemetric betweentwo qualitative magnitudevalues i.e.
d (.,.). This is due to the fact that the ratesof changeof a systemvariableonly takes
three sign valuesand, therefore,theredoesnot exist a measurabledifferencebetween
the predictedrate-of-changeand the respectivepropagatedrate-of-changeafter accom-
plishinglocal filterings. As a positiveresultof this, the calculationsrequiredfor deter-
mining distancescan be considerablyreduced. Nevertheless,it should be noticed that
this is possible only in the casewhen the landmarksare representedby known real
numbers,or as in more recentreasonerslike Q3 [1], whensemi-quantitativeinforma-
tion is utilised.

2.4. BehaviouralPriority

It is natural, with eachpossible new statehaving beenprioritised, to generatea
system’sbehaviourfrom the stateassignedwith thehighestpriority. A useful strategy
to performeffectivequalitativesimulationcan then be describedasfollows. Startwith
a given initial stateand predict the next possible states. Then, find the highestpriori-
tised stateand performfurther simulationfrom this state. Repeatthis at eachsimula-
tion stage(of prediction and local filtering) unlessat somestagethe highestprioritised
state has an attacheddistancelabel less than that attachedwith the secondhighest
prioritised stateat the previous simulation stages. In which case,the simulation will
carry on from the predictedstate labeled with the secondshortestdistancemeasure
within one of the behavioural branches that were temporarily terminated earlier.

Such a strategycan be graphically illustrated in figure 2 through a simple exam-
ple. Without losing generality,supposethat the given initial stateis representedby sc~
with p(s01) = 1 and that three immediate successor states are produced: s~ ~12~ and

~13 that survive constraint filtering. If the distance measures associated with these
three states are 0.6, 0.8, and 0.9 respectively, their corresponding state priorities can
then be determined such that p(s 11) = 1, p(s 12) = 2, and p(s 13) = 3. From this, the
next possible states are first generated from state ~ii and, as shown in the figure, we
have p(s21) = 2, P(~22)= 1, and P(~23)= 3. From state ~22~ currently the highest

prioritised one, two future states,s~1and s~2are obtained. However, the distances
(0.8 and 1.0) labeled with these two new states are both larger than that (0.7) attached
to the second highest prioritised state s21 and, thus, further prediction from s22 is

halted, although statess~1and ~32 can still be prioritised betweenthemselves. The



simulation process will then carry on from states21 that was temporarily stopped as
the figure shows, producing the next highest prioritised state s32.

,-Th I
~ 31

0.8
p(s21).~’2

~—‘~‘~iT~4 p(s3~=l

p(s~)=1

ED p(s1~2 C p(s2~ ‘.•‘C p(sj~2

0.9

p(s13)=3

Figure2. ProgressiveSimulationStrategy

Once the state priorities are determined the priority assignedto a particular
behaviouralbranch(suchasthe partial behaviourconsistingof statessrn, s~,and ~21

in the aboveexample)can easilybe adjudged. In fact, with respectto theabove given
simulation strategy, at each simulation stage the ordering in which the partial
behaviourfrom the initial state to one of the presentstates is generatedreflects the
priority of this partial behaviour. In termsof using the distancemetric we candeter-
mine the behaviouralpriorities by thefollowing method:

Methodfor computingbehaviouralpriorities.’ For the partial behaviouralbranches
generatedso far, B1 (i = 1, 2, ..., n), each of which consists of a sequenceof
(predicted)states(~1O, s~.1,..., s~,}and is consequentlylabeledwith a sequenceof
distancemeasures(D11, D12, ..., ~ the behaviour B1 is said to have the jth
priority if

c(B~)=min((c(Bk) 1k = 1,2, ...,N) — (c(Bk) I k <j)),

where c(B1) = min(D1t }~

This method effectively constitutesa techniquefor realisingprogressivereasoning
within qualitative simulation. The simulation system will explore the behaviourwith
the current highest priority thereby maximising the chanceof producing a solution
within the minimum computation and hencetime. If unsuccessfulthe next highest
priority behaviourwill be exploredand so on until, in the limit, all possiblebehaviours
are generated,ensuringthe eventualsoundnessof the qualitativesimulation algorithm
used.

It is interestingto notice that, within the Fuzzy Qualitative Simulationdeveloped
by the authors, the behavioursgeneratedhave been implicitly assignedwith certain
degreesof commitmentusing the distancemetric shown earlier and furtherprioritised
through the useof the approximateprinciple [13]. Originally, this principle is utilised
to ensurethe closureof the quantity spacesuch that the resultingvaluesfrom opera-
tions amongst qualitative values remain within the space. The application of the



approximateprinciple, of course, results in a reduction in the behaviours. However,
the ‘real’ behaviourmay be missed, therebylosing the soundnessproperty of qualita-
tive simulation. The techniquefor progressivereasoningbased on explicit priorities
effectively extendourapproachso that themostlikely behaviour,asdeterminedby the
approximateprinciple, is exploredfirst.

3. PotentialApplication of Prioritised Behaviours

We havepresenteda basicallysimple but yet potentiallyvery useful techniquefor
making qualitative simulation more efficient and hencemore attractive for practical
applications. The potential usesinclude any application tasksfor which efficiency is
important suchasreal-timemodel-baseddiagnosisof dynamic systems[5, 10, 14] and
real-time critical-event simulation [2]. We have not yet applied the proposedtech-
nique to any of our currentapplicationsbut intend to do so in the very nearfuture. At
this stage,therefore,we can only outline thepotential for our technique.

For real-time critical event simulation we envisageusing the technique within
FuSim to predict whethera particularcritical event (state)will follow from thepresent
stateof the system. Advancedwarningof sucha statecan be very importantto opera-
tion staff, allowing shut-downor correctiveaction to be initiated. Obviously, the pro-
cedures are usually time-critical. In such situations, exploring the most likely
behaviourfirst result in a possiblereduction in computationtime and hencemaximis-
ing advancedwarning,whilst still avoiding falsenegativepredictions.

Within real-timemodel-baseddiagnosisof dynamic systems,the useof prioritised
behavioursoffers severaldistinct advantages.In such applicationsqualitative simula-
tion is usedto producepredictionsof the evolution of a physicalplant that are syn-
chronouslycomparedto the evolution of the observationsfrom the real plant to detect
discrepancies[10, 14]. If no discrepancyexists then the (normal) model currently
being simulated reflects the real operation condition of the plant and the plant is
assumedto be working normally. However,even in this case,thecomputationtime of
the qualitative simulation is requiredto be fast enough so that the generationof the
next simulatedsystem stateoccurs fasterthan the evolution of the real process. For
processeswith relatively fast dynamics,say less than 1 secondtransientresponse,this
presentsa problem even for currentaffordablecomputers. Prioritising the behaviour
generationallows progressivereasoningand therebyeasingthe time-criticality of the
simulation.

When fault conditionsarepresent,i.e. the predictedbehaviourdoesnot matchthe
observedstate,the plant model is modified until a new predictedstateis generatedthat
does match the observed state and, hence, the possible fault associatedwith the
modified model (constraint) is identified. The key is, of course, to find a suitable
method for making model adjustments. The authors have proposeda method which
they call iterative search [10] that provides a systematicway of exploring model
adjustment that might result in a reduction of discrepancybetweenthe observedand
predictedbehaviours. An important advantageof this is that, in principle, it doesnot
requireexplicit fault models, although they may be usedif available. However, this
potentially resultsin exploringa numberof models,at different stagesof prediction, an
an attempt to get the best match (that minimises discrepancymetric). The use of
prioritised behavioursoffers theprospectof a significant reductionof the computation
required to realise this method. Whenever a predicted behaviour is explored that
obtainsa matchingbetweenpredictedand observedbehavioursless than a prescribed



thresholdof the discrepancymetric the searchprocedurecould be halted,and the asso-
ciatedfault reportedas a possiblecause. Further,the degreeof commitmentimplied
by the priority can be combinedwith the value of the resultantdiscrepancymetric to
producean ‘integrated’ measurereflecting both the likelihood of that behaviourbeing
the correctone (of the assumedunderlyingfault happeningin the physical plant) and
the degreeof correspondencebetweenobservedand predictedvalues. Such possibili-
ties seemto us to be a very exciting prospectfor real-time applicationsof qualitative
simulation.

4. Conclusion

We have proposeda simple but potentially very powerful techniquefor prioritis-
ing the behavioursgeneratedby qualitative simulation algorithms. Although the
presentationand associatedexamplesutilise the fuzzy quantity space employedin
FuSim [13], this is not essentialand, in fact, asdiscussedin the paper,the techniqueis
equally applicable to other non-constructivesimulation algorithms [1, 7, 18]. The
method forms a basis for a techniquefor performingprogressivereasoningto cope
with real-time constraints. In this manner,the most likely solution is generatedfirst
and the subsequentbehavioursare only generatedif higher priority behavioursfail.
Ultimately all possible behavioursare generated,as in current algorithms, and the
soundnessof qualitative predictionsis guaranteed.The techniquehasrelevanceto any
applicationwherecomputationalresourcesare important.
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