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Abstract

The ability to choosean appropriate manner in which to model a given device is

crucial in making a compositional modeling [3] approachsuccessful. In compositional
modeling, a systemis provided with a library of composible piecesof knowledgeabout

the physical world, called model fragments, each representinga conceptually distinct

phenomenonsuch asa physical processor oneaspectof a componentbehavior. Given

a specific query about a device, the system choosesamongthosemodel fragmentsto
composea model of the device that is most adequateto answerthe query. Selectionof

appropriate model fragmentscan be viewed as aspecial caseof amore generalproblem
of reasoningaboutrelevanceof knowledgeto agiven goal. In this paperwe pursuethis
view by applying a general framework for reasoningabout relevanceto the problem of

model fragment selection. We show that heuristics for model selectioncan be usciully
statedas irrelevanceclaims.

Employing such a framework allows oneto stateboth generalanddomain-specific
heuristicsabout relevancedeclaratively, asopposedto building them into the control
structureof the system. Given relevanceheuristicsstatedin the language,ourrelevance
reasoningsystem can immediately makeuseof them to control the model formulation

process,enablingus to experimenteasily with different heuristics.
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1 Introduction

The ability to choosean appropriate manner in which to model agiven deviceis crucial in
makinga compositionalmodeling [3] approachsuccessfulin a complexdomain. In composi-
tional modeling,asystemis provided with a library of composiblepiecesof knowledgeabout
the physicalworld, calledmodel fragments.Eachmodelfragmentrepresentsaconceptually
distinct phenomenonsuch as a physicalprocessor oneaspectof a componentbehavior. A
knowledgebaseof a large complexdomain can contain many model fragmentsrepresent-
ing alternativeways to model each phenomenon. Choosingthe appropriateset of model
fragmentsfor a given problemis oneof the most difficult tasks in compositionalmodeling.
An appropriatechoiceof modelfragmentscan lead to a correct answerefficiently, while an
inappropriatechoice can result in an inefficient, incorrect or no solution at all.

Selectionof appropriatemodel fragmentsis a special caseof a more generalproblemof
reasoningabout relevanceof knowledgeto a given goal. Subramanian&~Genesereth[13]
and Levy [9] haveproposedgeneralframeworksfor reasoningabout relevanceof knowledge.
This paperpresentsan applicationof Levy’s framework to the problemof model fragment
selection.Theproblemaddressedis as follows: givenadescriptionof aphysicalsystem,anda
specific questionaboutsomeaspectof its behavior,how can aprogramselectrelevantmodel
fragmentsto bestanswerthe query. The selectionmust be sufficient to producea correct
answerto the questionwith the desiredamountof detail. Choosingan appropriatemodelfor
adeviceinvolvesdecidingwhich abstractionsof the domainshould bemade.The framework
providesa set of formally definedprimitive irrelevanceclaims,and showshow they serveas
justifications for creatingcertain kinds of abstractions.We show that heuristicsfor model
selectioninvolving abstractions,including the heuristicsunderlyingcompositionalmodeling
approachesproposedby Falkenhainer[3] and Nayak [11], can be statedusing irrelevance
claims.

Thereareimportantadvantagesto employinga generalframeworkfor relevancereasoning
in model fragment selection.The frameworkallows one to stateboth generaland domain-
specificheuristicsaboutrelevancedeclaratively,In contrast,themodelformulationprograms
developedso far have such heuristicsbuilt into their control structure. Given relevance
heuristicsstatedin the language,our relevancereasoningsystemcan immediatelymakeuse
of them to control the model formulation process,enablingus to experimenteasily with
different heuristics.

In reasoningaboutphysicalsystembehavior,the worksthat havehadmost influenceson
our own are QualitativeProcessTheory (QPT) by Forbus [4] and compositionalmodeling
by Falkenhainerand Forbus [3]. Our representationof physical phenomenain the form of
model fragmentsis basedon the representationof processesand individual views in QPT.
We will try to use the sameterminologyas usedin [3] in this paper.
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1.1 Model Fragments

In our system,knowledgeabout the physicalworld is organizedinto model fragments.Each
model fragment representsa classof conceptuallydistinct physicalphenomenon,such as a
physicalprocess,an object, or a component function, in termsof the conditionsunderwhich
it takesplaceandthe constraintsandchangesit will impose on the state of the world. In
this scheme,the behaviorof adeviceis modeledby acollectionof modelfragmentinstances,
whereeachinstancerepresentsthe different aspectof its behavior.

Formally, a model fragmentis a predicatewhoseargumentsare the formal parameters
of the model fragment. If a1,.. ., a,, are bindingsfor the formal parametersof amodelfrag-
ment M, then M(ai,. . . , a,,) meansthat the tuple a1,. . . ,a,, can be consideredto be an
instanceof M. The modelfragmentwill be activatedonly if its conditionsare satisfied,and

only then its content facts, BM, are includedin the compositionalmodel used to solve the
query. Somemodelfragmentsdescribecontinuousphenomenawhile otherdescribediscontin-
uousphenomena.13

M of acontinuousphenomenonspecifiesthe functional relationsamong
quantitiesthat hold while it is taking place and the influences(increase,decrease)of the
phenomenonon quantities. That of a discontinuousphenomenonspecifiesits consequences
as assertionsabout the new stateof theworld, which we will call Action.

In order for a model fragment M to be activated,threetypes of conditions must be
satisfied: instantiationconditions,1’M, activationconditions,OM and relevanceconditions
AM. ‘M are conditions on the formal parametersof the model fragment. They identify
the set of objectsin the representationandrelationsbetweenthem that mustexist in order
for there to be an instanceof the model fragment. °M are conditionsabout the current
scenariothat mustbesatisfiedfor the modelto beapplicable,usuallyconditionson rangesof
parametersin themodelfragment. ‘M andCM only assurethat themodelfragmentcorrectly
describesthe behaviorof the mechanismmodeled. Deciding to include the modelfragment
in the compositionalmodel alsohingeson its relevanceto the query andappropriatenessin
the presentproblemsolving context. For example,wemayhaveseveralmodelsof a battery,
each describinga different aspectof its behavior, such as electrical, thermal and gassing
properties,but not all being relevantto thecurrent goal.

We useAM to stateheuristicsfor determiningwhenthe model fragmentis relevantto a
goal. They are meta-levelstatementsabout the representationof the deviceandthe specific
problemsolving task. They concernthe choiceof objects that we needto representfor the
specific problemand the distinctions that should be madein the representationin terms
of granularity. In this documentwe concentrateon relevanceconditions that state which
abstractionsare to be madeduring the searchfor the solution of the goal.

The key distinction betweenrelevanceconditions and the other conditions is that AM

aremeta-levelconditionsthat musthold in order for the model to beuseful; i.e., conditions
about the representationand about the problemsolving task. ‘M and OM are base-level
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conditions.

2 Relevance Reasoning

Often, representationscontain too much detail for a specific goal, either in the form of
irrelevantfactsin thetheory of thedomainor by containingirrelevantgranularitydistinctions
in thedomain. A powerfulmethodto control searchin suchcasesis by providingtheproblem
solver with meta-levelcontrol advice about what is irrelevant to a given goal, (e.g., Lenat
[7], Subramanian[14], Levy [9]). In simple cases,this advice might be to ignore a certain
fact or set of facts, therebypruning the solutions paths containingit. In other cases,we
might advisethe problemsolver that certaingranularity distinctions are irrelevant to the
givengoal, andthereforetherepresenationcan beabstracted(e.g.,for acertaingoal it is not
necessaryto representthe subpartsof a certaincomponent,and it will suffice to represent
the componentby asingle object).

Levy [9] describesa framework in which various notions of irrelevanceare defined and
analysed.The definitionsof irrelevancediffer alongseveralaxes,suchas thekind of element
being deemedirrelevant (e.g., singlefact, object, predicate)andstrengthof thejustification
for the irrelevanceclaim. For example,a fact f can be definedto be strongly irrelevant to a
goalg if it appearsin no proof of g, or, weakly irrelevant if thereis a proof of g that doesn’t
usef. Alternatively, we can define f to be irrelevant if it appearsin no minimal proof of
g.1 In[9] we describeseveralsuchdefinitions andanalizetheir properties.Irrelevanceclaims
can either be automaticallydeducedby the systemby examiningthe knowledgebase(as in
[10]) or theycan be given to the systemby the user,eitheras knowledgethat theuserhasor
as heuristicsthe userwishesthe systemto employ. In this paper we focus on stating model
selectionheuristicsas relevanceclaims.

An irrelevanceclaim is a statementof the form Ir(o~,g, ~), where o is the subject of
irrelevance,g is a problem solving goal and ~ is the knowledge base(which we usually
omit). c~,as we describebelow, can denoteeither a singlefact, apredicate-symbol,object-
constant,distinction betweenpredicates,etc. To emphasizethe different subjectswe use
specific predicatenames(e.g., JrObject, IrPredicaie, etc.).

In this paper, we are mostly interestedin stating what is relevant, rather than what is
not. We do so by stating Rcl(ct,g). We makethe closed-worldassumptionon the predicate
Rel, i.e., if we cannotconcludeRel(ct,g) then we assumeIr(c~,g)2.The following property
connectsthe relevanceof a formula to the relevanceof termsmentionedin it:

‘Given somedefinition of minimum derivation [10].
2The closedworld assumptionwaschosenfor simplicity of exposition. More sophisticatednon-monotonic

reasoningmethodscan be employed. However, the closed world assumptionhassufficed for our purposes
thus far.
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Wff(w) A Mentions(w,~)A Rel(w,g)~ Rel(a,g),3 (1)

i.e., if w is a relevant well formed-formula,and c~(a formula or a term) appearsin w, it is
also relevant.

Irrelevanceclaims arejustifications for the problemsolver to modify the representation
(andits searchalgorithm)suchthat it won’t containc~.Using them,we define the meaning
of the relevanceconditions,AM as follows:

Rel(M(xi,. . . ,x,,),g) (2)

Rel(M(x~),g)~ Rel(Ij~ A OM(x~)~ BM(~)A M(~),g). (3)

It follows that if all ‘M, OM andAM hold, thenM(~)will be relevantas will its behavior

constraints,13
M• The problemsolverwill thereforeincludetheinstantiatedmodelfragmentin

the compositionalmodel. In what follows, we briefly presentthe different relevancesubjects
definedin the framework.

In the first set, the subjectsof relevanceare the basicelementsof the representation.
RelFact(f,g) meansthat the fact f might be part of adeductionof the goalg, andtherefore
should not be ignored in searchof a solution. RelObject(o,g), RelParameter(f,o, g) and
RelPredicate(P,g) saythe sameaboutanobject-constanto, term f(o) andpredicate-symbol
F, respectively.Theseclaimsarebestunderstoodas negationsof their Jr counterparts,i.e.,
it is not justified to ignore f, o, f(o) or F4.

Thefollowing setof claimsdenoterelevanceof moreabstractchoicesin the representation:
The claim RelObjDetail(o, R,g) denotesthat the representationshouldcontain the set of
objects C = {x~R(o,x)}, as opposedto only containingo. For example,in the casewhere

R = SubParts,it statesthat both o and its subpartsshouldbe represented.Thefollowing
is a simpleconsequentof the statement:

RelObjDetail(o,R,g)A R(o,x) A Rel(o,g) ~ RelObject(x,g). (4)

However, RelObjDetail implies more than the relevanceof the finer level objects. Since
someof the propertiesof o are defined by propertiesof elementsof 0, these values are
constrainedby the valuesof properties of o. For example,the weight of an objectis the sum
of the weightsof its subparts.The statementITA(R, F, 0, 01, c)5 denotesthat the property
F(o) dependson someproperty of 01 C 0. The fifth argumentgives the relation between

3Here,a must be either asubexpression,predicatesymbol or term.
4RelFacL,RelObject,RelParameter, and RelPredicate are all specializationsof Rel. Therefore,

RelFact(f,g) ~ Rel(f,g),RelObject(o,g) ~ Rel(o,g), RelPararrteter(f,o,g) ~ Rel(f(o),g), and
RelPredicate(P,g) =~Rel(P,g). We will use the more specific predicateswhen we want to emphasizethe
type of the argumentof Rel or when it is not clear from the context.

5ITA standsfor Inherited ThroughAggregate
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F(o) and a property of o1. If it is omitted, we assumeF(o) = F(o1). The following is a
consequenceof theformal definition:

JTA(R,F,o,o,)A RelObjDetail(o,R,g)A Rel(F(o)) ~ Rel(F(oi)). (5)

A commoncaseof suchobjectaggregationis onewhereo denotesthe setof objectsin 0. For
example,whenreasoningaboutachemicalsubstance,only the setsof moleculesof eachtype
are relevant, not the specific moleculesinvolved. RelSetElernent.s(S,g) (JrSetElements)
denotesthat the individual elementsof the set S are (not) relevantto the goal g6.

Theclaim IrFredDistinction(F, 2, g) where2 is a setof predicatesandP is a predicate

denotesthat the representationshouldnot containthepredicatesin the set2, but ratheronly
contain a predicateF which is interpretedas the union of the interpretationsof predicates

in 2. For example, for many reasoningtasks it is not necessaryto distinguish between
propertiessuchasRechargeableBatteryandnonRechargeableBattery.Instead,apredicate
Battery will suffice. This type of claim is a justification for predicateabstraction (Plaisted
[12], Tenenberg[15]).

The claim RelOnlySetRepreseniative(S,g) denotesthat the only propertiesrelevantto
the goalarethosethat arecommonto all elementsof S, thereforeit is enoughto representthe
set S by a representativememberthat hasonly theseproperties.RelOnlyHomogenousSet
denotesthat theelementsof the set S should be represented,but only as ahomogeneousset,
i.e., propertiesthat distinguishbetweenits elementsshould be ignored. JrArgurnent(P,n, g)
denotesthat the nth argumentof the predicateP is irrelevant to g.

Note that in general,using theserelevanceclaims might require us to changethe rep-
resentation.For example,if RelOnlySetRepresentative(S,g)is asserted,we needto adda
new object that has all the propertieswhich arecommonto all elementsof S. The precise
changeof representationrequiredfor eachrelevance-predicateis describedin [8]. However,
in this document,we assumethat the model fragmentsalreadycontaintheabstractedrepre-
sentation;therefore,we are using relevanceclaims as describersof abstractionsratherthan
abstractiongenerators.

2.1 Relevance Heuristics

Using the aboveirrelevanceclaims, we can expressheuristics for model selection,some of
which are listed below. A term mentionedin the goal is relevant to it (this is the query-
expansionheuristicusedby FalkenhainerandForbus [3]):

Coal(g) A Mentions(g,o)~ Rel(o,g) (6)
6Another exampleof this aggregationis in the missionariesandcannibalsproblem (Amarel [2]), where

only the setsof missionariesand cannibalsarerelevant to the problemandnot their specificnames.
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The following two heuristicsenableus to deducerelevanceof componentsfrom therelevance
of othersby exploiting the structural hierarchies. They are similar to the object-expansion
heuristic used in [3]. According to their heuristic, if ~i and ~2 are both descendentsof
components in the hierarchy,and their least commonancestorin the hierarchyis t, then
anycomponentthat is either in betweent and~i (32) or achild of sucha componentwill be
consideredrelevant. Our heuristic is morerefined in that it only makesthis inferenceacross
one level in the hierarchy. Statingthe heuristicdeclarativelyenablesus to considerother
refinementssuchas delimiting it to specific structural links, or to a certainclassof objects.
It can also be generalizedto be equivalentto their heuristic.

StructuralHierarchySlot(P) A Rel(x,g) A RelObjDeiail(x, F, g) A P(x, y) ~ Rel(y,g) (7)

StructuralHierarchySlot(P) A P(x, y) A Rel(x,g) A Rel(y,g) ~ RelObjDetail(x,F) (8)

An actionof adiscontinuousmodelfragmentis the fact that is assertedin the subsequent

state of the simulation as the consequenceof it becomingactive. We say that the model
fragment causesthat proposition,i.e.,

Action(M, q~)=~Causes(M,q~). (9)

A queryof theform Explain(çb)might be given in acasewherethe simulationpredicts
that q~will hold, but themodel usedis not detailedenough.7We adoptthefollowing simple
axiomsto establisha connectionbetweenExplain and Rel.

Rel(q~,Explain(~)) (10)

Explain(q~)A JnKB(~ ~) ~ Explain(~) (11)

Explain(q~A ~) ~ Explain(q~)A Explain(~) (12)

Model(M) A Causes(M,q~)A Explain(q~)~ Rel(M,g) (13)

When two terms refer to the sameobject in the domain, the relevanceof one of them
implies the relevanceof theother. We usecoreferintuitively to statethat two different terms
actually refer to the samething. For example,PressureOf(g1)refers to the samething as
Pressureln(c1) when g1 is the gas containedin the sealedcontainer,c1. Such coreference
statementsare given explicitly in our knowledgebase.

Rel(oi,g) A Corefer(oi,o2) ~ Rel(o2,g). (14)

Certain unary predicatesare identified as Type predicates.

Type(x,F) ~ P(x) (15)

7Sophisticatedreasoningaboutexplanationor aboutcoreferenceis outsidethe scopeof this paper,though
there is considerablebody of work on thesetopics in Al and philosophy.
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Thefollowing heuristicsaysthat if an attributeof an object is of a certaintype, then the
fact that it is of that type is relevant:8

Type(f(x),F) A Rel(f(x),g) ~ Rel(P(f(x)),g) (16)

Thefollowing heuristicsaysthat if we are trying to explaina certainquantitythat is inher-
ited through an aggregate,the decompositionalong that aggregateis relevant:

Explain(F(o)) A ITA(R,F,o,oi,c) A Rel(o,g)~ RelObjDetail(o,R,g). (17)

3 Model Fragment Selection Example

In this section,we presentan examplein which therelevanceheuristicspresentedin Section
2.1 areusedto selectappropriatemodel fragmentsto beconsideredby a modelingprogram.
The particularmodelingprogramthat weuseis DeviceModeling Environment(DME) [6],
developedat Stanford. Given the topological descriptionof a deviceand initial conditions,
DME formulatesa mathematicalmodel and simulatesits behavior. DME hasa knowledge
baseof model fragments.DME takesan input descriptionof the initial state,including the
topologicalmodelof the device,and searchesthe knowledgebasefor model fragmentsthat
areapplicableto the given situation. Equationsto describethebehaviorof the device are
formulatedfrom the set of model fragmentsthus found. Theequationsareusedto predict
thebehaviorof thedevice. Duringprediction,if thereareanychangesin thesetof applicable
model fragments,theset of equationsis updatedaccordinglyand predictioncontinueswith
thenew equationmodel.

Theproblemdomain is a rechargeable,nickel-cadmium battery. Thebattery is a constant
voltagesourcewhenthechargelevel is in its normalrange. Otherwise,thevoltagegenerated
i~ythe battery increasesor decreasesas it is chargedor discharged.When the battery is
over-chargedbeyonda certainpoint, a pressureincreasein the battery causesthe cell to
explode.This pressureincreaseis causedby the hydrogengasgeneratedin thebattery.

In DME’s knowledgebase, therearea numberof model fragmentsdescribingdifferent
behavioralaspectsof a nickel-cadmiumbattery, such as the electrical, chemicalor thermo-
dynamic properties. Table 1 shows somemodel fragmentsin the DME knowledge base.
Dependingon the questionposedby the useraboutthe battery, the systemmust choosean
appropriateset of model fragmentsto consider in formulating a model. We show how this
is done through reasoningabout relevanceof model fragmentsto the problemin hand.

The following aredomainfactsneededfor the expositionof the problemsolving scenarios:

ElectricProperty(ChargeLevel) (18)
8Notice this is one exceptional casein which relevanceof an expressionis implied by the relevanceof a

subexpression.
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Ga.sParts(x,Gasln(x)) (19)

Type(ChassisOf(x),Container) (20)

StructuralHierarchySlot(GasFarts) (21)

GasFart.s(x, ChassisOf(x)) (22)

Type(Gasln(x),Gas) (23)

Constituents(x,HydrogenJn(x)) (24)

Constituents(x,Oxygeriln(x)) (25)

Battery(s)A —‘Sealed(ChassisOf(x)) Damaged(s) (26)

Action(SealedContainerRuptureModel(x),—‘Sealed(s)) (27)

Corefer(pressureJn(ChassisOf(x)),pres.sureOf(GasJn(x))) (28)

Constituents(x,y) A Gas(s)~

JTA(Con.stituents,MassOf,x,y, MassOf(x) =

~yEConstituents(x,y) MassOf(y)) (29)

Supposewearegiven an instanceof an EPSsystemthat includesBatOOl and a query
g = ChargeLevel(BatOOl,t),

where t is the numberof cycles (i.e.,days)for which the battery is operating. This will lead
us to concluderelevanceof BatteryNormalOperatingModeland BatteryOverchargeOperating-
Model. Therefore,they will be activateddependingon their activation conditions, i.e., the
StoredChargeof the battery. The proof treefor their relevance is shown in Figure 2.

30 ~3l ~32

Figure 1: Proof treefor Axiom 32

The numbersrefer to the axiomspresentedso far andthosefollowing:

Rel(ChargeLevel(BatOOl,L)) (30)

Rel(BatteryChargingDischargingModel(BatOOl)) (31)
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Rel(BatteryNorrrialOperatingModel(BatOOl) ) A

Rel(BatteryOverchargeOperatingModel(BatOOl)) (32)

Now, supposethe battery is overcharged and becomesdamaged. In this case,we might
ask the system to explain why the battery is damagedby posing the goal

= Explain(Damaged(BatOOl)).
This leadsus to concluderelevanceof BatteryCassingHydrogenModel,PressureAspectFlu-
idContainerModel, GasPressureldealModel,and SealedContainerRuptureModelthrough the
proof treeshown in Figure 3. The intermediateaxiomsareasfollows:

13

g, \ i

26 ~ 27

/ ~

12 ~ /~/

Explain(Battery(BatOOl)A —‘Sealed(ChassisOf(BatOOl))) (33)

Explain(—’Sealed(Chassi.sOf(BatOOl))) (34)

Rel(SealedContainerRuptureModel(ChassisOf(BatOOl))) (35)

Rel(Pressureln(ChassisOf(BatOOl))) (36)

Rel(Cha.s.sisOf(BatOOl)) (37)

Rel(Pressure0f(Gasln(BatOOl))) (38)

RelObjDetail(BatOOl,GasParts). (39)

Rel(Gasln(BatOOl)) (40)

Rel(Gas(Gasln(BatOOl))) (41)

Rel(Container(Cha.ssisOf(BatOOl))) (42)

Figure 2: Proof treefor Axioms 43 through46
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Rel(BatteryGassingHydrogenModel(BatOOl)) (43)

Rel(FressureAspectFluidContainerModel(ChassisOf(BatOOl))) (44)

Rel(GasPres.sureldealModel(GasJn(BatOOl))) (45)

Rel(SealedContairierR’uptureModel(ChassisOf(BatOOl))) (46)

4 Discussion

We havepresenteda framework in which a problemsolver can reasonabout the choiceof
relevantpartsof the knowledgebasethat areto be usedto solve agiven query. We demon-
strated the useof this generalframework for the task of model fragmentsselection. The
languagewe have presentedenablesus to expressnaturally anddeclarativelythe heuristics
aboutmodel selectionin compositionalmodeling.

There are relatedworks on model formulation [3, 11, 1] and relevancereasoning[13].
Spacelimitation allows us to discussonly oneof them. FalkenhainerandForbus’ procedure
for selectingmodelfragmentconsistsof four steps: (1) query analysis,(2) objectexpansion,
(3) candidatecompletion,and(4) candidateevaluationandselection.Step(1) identifiesfrom
the query the set of relevantobjectsandterms. Step(2) usespart-of hierarchyof objectsto
includeall the componentsof relevantobjects. Step(3) generatesall the internally consistent
and completesetsof model fragments.Step(4) choosesoneamongthe setsbasedon their
simplicity andestimatedcost.

The heuristics (7) and (8) in Section 2.1 demonstratedthat the strategybehind query
analysis and object expansioncan be formalized as relevanceheuristics. Our relevance
framework enablesone to formulateany suchheuristicsandmakeuseof them immediately
in problem solving. Falkenhainerand Forbus’ conceptof an assumptionclass, which is a
set of assumptionsabout how an object is to be modeledsuch that the assumptionsare
mutually exclusive but one of them must be made, can be formalized in our framework
simply by the exclusive-orof the relevanceof the elementsof an assumption class. Where

their systemproducesseveralconsistentmodels,our frameworkwould yield adisjunctionof
setsof relevanceclaims,eachrepresenting(or entailing) a consistentmodel.

This documenthas focussedonly on relevanceclaims that result in abstractions. Ab-
stractionshavetraditionally beendivided into two kinds, truth preserving(TD abstractions
[5]) andcompletenesspreserving(TI). The irrelevanceclaims we presentedhereonly account
for the former kind. The reasonis that an irrelevanceclaim can only justify ignoring some
of the knowledge availableand therefore, (when dealing with a monotonic representation
language),shouldnot enableus to draw new conclusionsthat wouldn’t follow in the orig-
inal theory. However,our framework alsoallows us to state other meta-levelclaims about
the problem solving scenario,such as approximation-claimsconcerningthe accuracyof the
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desiredsolution or the time period of the simulation. Thesein turn enableus to stateother
typesof assumptionsmadeby modelfragments.

The fact that we can explicitly state the representationalchoicesbeing madeallows us
to stateheuristic rulesthat connectbetweenchoices.For examplesometimes,a decisionto
considera finer level of granularity in onesubtreeof a structuralhierarchyimplies that we
should do the samein asibling subtree.This heuristiccan be formalized as follows.

R(ci,c2) A Rel(R,g)A Rel(ci,g) A Rel(c2,g)A RelObjDetail(ci,P,g) A P(c1,x1)A

ITA(P, R, c1, ~i, constraint1)A F(c2, 52) A ITA(P, R, c2, ~2, constraint2)A

DefinedBy(R,R’) ~ Rel0bjDetail(c2,F, g)

i.e., if a relation R’ on the parts of c1 explains the relation R on c1, and R is relevant
and the distinction betweenc1 and its subpartsis relevant, then the distinction between
c2 and its subpartsshould be relevant, too. In our example, this would meanthat we
shouldexplorethe constituentsof the liquid in the battery when we decideto explorethe
constituentsof the gas. The simple object expansionheuristicof Falkenhainerand Forbus
[3] does not capturethat dependency,but our languageallows us to state it. Identifying
theseprimitive relevanceclaimsalsohelpsus in guiding the searchfor additional heuristics.
Stating those heuristicsdeclaratively,as opposedto wiring them into a model formulation
procedure,allows the user to inspect them andmodify them easily (for example,by adding
qualifications as needed). Finally, sincethe framework allows the abstractionsmadein a
model fragmentto be explicitly stated,the problemsolver is able to reasonwith them and
to chooseabstractionstailoredfor the specifictaskat hand,as opposedto beingconstrained
by predefinedabstractionhierarchies.

Themostimportantsourceof relevanceheuristicshasbeenourselves.Wetry to articulate
the heuristicswe seemto be usingwhen formulating models. We considertheir utility and
generalize/specializethem to make them more useful or accurate. We have also gleaned
some heuristics from other works on model formulation in qualitative physics. Learning
heuristics automatically from problemsolving experienceis anotherpossibility we plan to
investigate. Since relevanceclaims provide crisp criteria for when abstractionsshould be
done, this problemis now betterformulated.
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ModelFragment InstantiationCondition RelevanceCondition DeSCriPtiOn*

~CDM** RechargeableBattery(b)
A -Damaged(b)

Rel(p(b)) A
ElectricProperty(p)

Charging anddischarging behaviorof abatteiy.
Stored-chargeof thebatterychangesdepending
on the currentthroughthe plusterminal.

Battery-normal-operating-
model

BCDM(b) Rel(BCDM(b)) voltageus COnStaflt whenStored-chargeis
between~
Voltageincreaseswith Stored-chargewhen
Stored-chargeis over30.0amp-hours.

~attery-overcharge-
operating-model

BCDM(b) Rel(BCDM(b))

lattery-damaged-during-
overcharge-model

BCDM(b) ReI(BCDM(b)) Thebattery isdamagedif Stored-chargereaches
34.0amp-hours.

Aging-model BCDM(b) Rel(BCDM(b)) A TPOG(g, i) A
t> TO

The batterycapacitydecreasesif the maximum
depthof dischargeis lessthan20% overa long

—~--~--
The hydrogenin the batteryincreaseswhen
Stored-chargekeepsincreasingoverathreshold.

~aLtery-gassing-hydrogen-
model

BCDM(b) Rel(BCDM(b))A
Rel(Gasln(b))

)ASFCM*** Container(c)A
Sealed(c)

Rel(Pressureln(c))A
Rel(Container(c))

The modelof thepressureaspectof
asealedfluid container. Active whenthe
amountofiluid is non-zero.

Jas-pressure-ideal-modelGas(Gasln(c))A
PASFCM(c)

Rel(Gas(Gasln(c))A
Rel(PASFCM(c))A
(Rel(Pressure-of(Gasln(c)))v
Rel(Temperature-of(Gasln(c)))v
Rel(Mass-of(Gasln(c)))v
Rel(Gas-constant-of(Gasln(c))))

Themodelof dealgas in asealedcontainer.
The ideal gaslaw holds.

;eai~d-container-nipture-
model

Container(c)A
Sealed(c)

Rel(Pressure-in(c))V
Rel(Sealed(c))

A_Container(c)

A containerrupturesandbecomesun-sealed
whenthepressurereachesathreshold.

lydrogen-production-
by-overcharge-model

Battery-overcharge-
operating-model(b)

Rel(Hydrogenln((Gasln(b)))v Whenan over-chargedbatterycontinuesto be
Rel(Hydroxillonln(b))v charged,thewaterdecreases,the hydrogen
Rel(Waterln(b)) increases,and thehydroxil ion increasesin the

battery.
* Forlack of space,theactivationconditionandthebehaviorof eachmodelis briefly described.
** Battery-charging-discharging-model
‘~‘ Pressure-aspect-fluid-container-model

Table 1: Model FragmentExamples
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