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Abstract

The paper considers th~-problem of qualitative modelling of dis-
crete-time continuous-variab~- dynamical systems, for which only a
quantised measurement [x(k)] of the state x(k) is available. The qual-
itative model has to describe the qualitative trajectory x(1),x(2),...
for given qualitative initial state x(0) and qualitative input sequence.
First, it is shown that the qualitative trajectory of the system is am-
biguous. Hence, the qualitative model has to be nondeterministic.
Second, it is shown that nondeterministic automata provide reason-
able qualitative models of the continuous-variable system. The re-
lation between the automaton and the given system makes obvious
which knowledge about the system has to be available if the qualita-
tive model should be set up. Third, it is proposed to use stochastic
automata which provide means for weighting each state concerning
its appearance on the qualitative trajectory of the continuous-variable
system. On this basis, the set of spurious solutions, which exist for any
qualitative model, can be reduced. The appropriateness of the model
becomes obvious by designing a qualitative controller, The results are
illustrated by the problem of stabilising an ‘inverted pendulum’.
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1 Introduction

Qualitative modelling of dynamical systems has been dealt with in two sepa-
rate lines of research. Artificial intelligence approaches have the primary aim
of modelling human understanding and reasoning about physical systems
(for a survey ci [13]). Typically, rough characterisations [x(k)) are used as
qualitative description of the system state x at time step k. For example, for
deKleer and Brown [1] [x(k)] denotes the sign of x(k), whereas for Kuipers
[4] [x(k)] refers to a large but quantitatively unspecified interval.

On the other hand, qualitative modelling and analysis has been a topic
of active research in systems and control theory for many years. Graph-
theoretic analysis of dynamical systems [12], uncertain systems modelling
and robust control [5], or the qualitative analysis of interconnected systems
[10], [9] has been fields where qualitative rather than quantitative results are
the main motivation of research, These investigations try to follow the way
an control expert goes. Experienced control engineers are able to solve their
control tasks even if many details of the system dynamics are not known
or deliberately neglected, because the knowledge about the principal be-
havioural patterns such as the existence of oscillations, saturation effects, or
limit cycles or about the current output of the process in terms of subsets
of the state space rather than accurate quantitative values are sufficient for
many control purposes.

Although motivated by different aims and developed independently, both
lines of research have considerable similarities. In [6] it has been shown that
the relation between quantitative and qualitative models can be described by
an abstraction operator. On this basis, results from both the artificial intelli-
gence approach and systems theory can be presented in a unified framework.
The methods developed in these fields differ, virtually, in the abstraction
operator.

One of the main problems in qualitative modelling is the conservatism
of the results. Even for simple examples such as the mass—spring system,
qualitative models yield a large set of trajectories. Although it can be proved
that this set includes the qualitative description of the real system trajectory,
this set does include also many behavioural forms that no physically real
dynamical system can perform (spurious solutions). The main reason for
this is that the qualitative model is based on too less information about the
real system, because the quantity spaces used are too coarse.

To circumvent this situation is the motivation of this paper. A new
form of qualitative models is proposed. which is capable of including more
information about the system. This new kind of qualitative models has the
form of nondeterministic or stochastic automata.

In more detail, it is assumed that the qualitative value [x(k)] of the sys-



tem state x(k) is received by means of a directionwise quantiser (Section 2).
As shown in [7], for a qualitatively given initial state [x(0)] the qualitative
system trajectory is ambigous. This result is reviewed in Section 3 and ex-
tended to systems with inputs on autonomous systems. As a consequence of
the ambiguities of the system performance, nondeterministic and stochastic
automata are proposed as reasonable forms of qualitative models (Section 4).
These kind of models can be used to analyse the qualitative behaviour of the
system and, moreover, to design a qualitative controller. The control prob-
lem will be solved in Section 5. The example of the pole balanciirg problem
explained in Section ~6demonstrates that the conservatism of the qualitative
model is so low that the resulting qualitative controller does stabilise the real
unstable system,

This paper follows the view on qualitative modelling and control which
has been proposed in [2] and [7]. It extends the automata—theoretic model
that has been described in [7] for autonomous systems to systems with in-
puts. Another generalisation of [7] concerns the quantisation, which has been
assumed to be equidistant in [7] but has a more general form here. In addi-
tion to that, by solving a typical regulator problem with the help of this new
kind of qualitative model, it will be shown that the model includes enough
information about the system behaviour not only for analysis but also for
design purposes.

Notations. {a, b, c,. . . } denotes a set of unordered elements a, b, c,...,
whereas (a, b, c,...) is the description of an n-tupel with ordered elements.
Hence, if x1, x2,.. . , x,., are scalars and u1 urn vectors, (xi. x2,. . . , x,,)
denotes an n-row vector and (u1,.. . , Urn) a matrix with m columns, respec-
tively. In general, vectors are denoted by boldface lower case letters, eg x,
y, z, matrices by boldface upper—case letters, eg A, B, C, and scalars by
lower—case italics, eg x~,z,~,gjj. R and Z are the sets of real or integer num-
bers.

2 Continuous~variab1esystems with quan~

tised state measurements

Consider the linear discrete-time continuous-variable system

x(k+1)=Ax(k)+Bu(k), x(0)=x0 (1)

where
x = (x1, x2, . . . ,x~)’ and u = (u1, u2,. ..
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denote .the vec~ors of the systems state or input variables, respectively. The
prime is the symbol for vector transposition. A and B are matrices of appro-
priate dimensions with constant elements. For every given input sequence

U = (u(0), u(1),.. . , u(T — 1))

with fixed observation horizon T the system (1) has the trajectory

~(x(0), U) = (x(0), x(i),. . . , x(T)) (2)

where
k—I

x(k) = Ac x(0) + ~ Ak_l_l B u(l) (3)

holds.

Now, it is assumed that the state x(k) cannot be measured quantitatively
but is quantised by a directionwise quantiser that maps the state variables
into a set of intervals. The intervals are bounded by given values

gij (i=1,2,...,n; ~

and defined independently for all components x~of the state vector x. Hence,
the state variables x~that belong to the same set

Q~,(z~)= {x, I ~ ~ x~< g~z,+i} (4)

are qualitatively equivalent and represented by the same qualitative value
[x~(k)]= z~.The setsQ~(z1)are defined for

The quantised state vector [x(k)] is given by

[x(k)] = ([xi(k)], [x2(k)],.. . ,[x~(k)])’ (5)

where
[x1(k)] = z~ holds if and only if x~(k)E

The set Q~(z1)defined in eqn (4) can be written as

Q~,(z~)= {x1 I [xi] = z~}.

For all

~ (6)
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Qr(Z) can be defined by

= Qrj(zi) ® Q~2(z~)0,.. 0 Q~~(z~)= {x I [x] = z} (7)

with 0 denoting the Cartesian product. All these sets together cover the
subspace Rr ç R~

= U2~~Q~(z). (8)

For
g~f-= —~ and g~f~= 00 (9)

the whole state space R’~is partitioned into the sets Q~(z):

R= U~ Q~(z). (10)

In the case of equidistant intervals with interval length q~

jEZ (11)

holds. Then
= Z~ (12)

and
R’~Uze~n Q~(z)

follow.

It is further assumed that the inputs u~can assume one of a set of given

values u~
u~(k)cZ,~={u~ ~ (13)

Therefore, the element j of Z,~,is the qualitative value of u(k), ie

[u(k)] = ([ui(k)}, [u2(k)], . . . , [u,,~(k)])’ (14)

where
[u~(k)]= j holds if and only if u~(k)=

Hence, [u(k)] belongs to the set Z~:

ZEZu{(zi,z2,...,Zm)’~ZjE{g~,g~+l,...,g~}}CZ”. (15)

The qualitative input sequence [U] is represented by

[U] = ([u(0)],[u(1)],.. .,[u(T— 1)]).

The qualitative trajectory of the system (1) is given by

[X1(x(0), U)] = ([x(0)], [x(i)], . . . , [x(T)]). (16)

Obviously, for a given initial state x(0) the system (1) has a unique qualita-
tive trajectory [X].

187



3 Nondeterminismof thequalitatIvebehaviour

For the qualitative model, only the qualitative values [x(k)] and [u(k)] are
relevant. The initial state x(0) is only known to belong to the set Q~(z(0))
for some given z(0):

x(0) E QT(z(0)) (17)

The system input is described by some qualitative input sequence

V = (v(0),v(1),. . . , v(T — 1))

where
[u(k)] = v(k) (k = 0,1,2,...,T— 1) (18)

holds. Therefore, the system (1) can perform any trajectory that starts from
some x(0) given in eqn (17) under the control sequence described by V and
eqn (18). These quantitative trajectories form the set

~(z(0),V) = {X(x(0),U) I x(0) c Q~(z(0)),[U] = V}. (19)

The_model has to generate the qualitative trajectories that result from the
set X and form the set [X]:

[~(z(0),V)]= {[X] I Xc I~1}. (20)

It has been shown in [7] for autonomous systems (eqn (1) with u(k) = 0)
and equidistant quantisation (cf eqn (11)) that the set [X] is, in general, not
a singleton but has more than one element. In order to extend this result to
the class of systems (1) considered here, the sets

Mr(0) = Qr(Z(0)) (21)

M~(k) = {Ak x(0) + ~ A~’’ B u(l) I x(0) c Q~(z(0)),

[u(l)] = v(l) (1 = 0,1,... , k — 1)}

= {Ax+Bu I xcM~(k—1),[u]=v(k)}. (22)

are defined and qualitatively described by

[M~(k)]= {[x] x c M~(k)}. (23)

Obviously, the system (1) has a unique qualitative trajectory if and only
if

M~(k)c Q~(z) for some z ~ (24)

holds for all k = 0,1,... ,T.
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Theorem 1 The system(1) has for an arbitrarily given qualitative initial
statez(0) andfor an arbitrarily given input sequenceV a uniquequalitative
trajectory if and only if eqn (2~)holds for all k = 0, 1,. . . , T.

The following theorem shows that the conditions of Theorem 1 are, in
general, not satisfied.

Theorem 2 [7] Considerthe system (1) for u(k) = 0 (k = 0, 1,. . . , T — 1)
andequidistantquantisationas describedby eqn (11). Assumethat detA ~ 0
holdsand define

A = diag-~--A diagq~~.
q~,

Thesystem(1) hasfor all qualitative initial statesz(0) c Z~a unique quali-
tative trajectory [X(z(0), 0)] if and only if

A=diag P
2n~+ 1

holdswhereP denotesa permutationmatrix andn~EZholdsfor i = 1,2,. .. , 72.

Obviously, an autonomous system (eqn (1) for ii = 0) has to satisfy a
rather restrictive condition on the matrix A. For systems with nonvanishing
inputs, additional conditions have to be met. Hence, almost all systems
(1) have a set of qualitative trajectories rather than a unique qualitative
trajectory. This fact has severe consequences for qualitative modelling since
it shows that any qualitative model has be nondeterministic. That is, for
given qualitative initial state and qualitative input sequence the model has
to generate a set of trajectories rather than a unique output sequence.

4 Qualitative modelling by meansof nonde~.
terministic or stochasticautomata

4.1 Modelling by nondeterministic automata

The nondeterminism of the qualitative trajectory of the system (1) suggests
to use a nondeterministic or stochastic automaton as qualitative model.
First, the nondeterministic automaton N(Zr, Z~,H, z(0),V) is considered,
where ZT denotes the set of states, Z~,the set of inputs. H : Z~x Z,~ .~ 2Z~
the transition relation, z(0) the initial state and V the input sequence.
is the power set of Z~.Z~,and Z~are the sets defined in eqns (6) or (15),
respectively.
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The transition function H has to be found so that the automaton gener-
ates the set X of qualitative trajectories of the system (1). In order to do
this, the sets

M~(0) = {z(0)} (25)

M~(k+ 1) = {H(~,v(k)) I ~ c M~(k), (k = 0, 1,2,. .. , T — 1)} (26)

are introduced. Then the set ~(z(0),V) of all trajectories of the nondeter-
ministic automaton is given by

~(z(0),V)=M~(0)®M2(1)0... oM~(T). (27)

Obviously, the automaton N is a nice qualitative model of the system (1) if
for arbitrary

z(0) and V

the relation
~(z(0),V) ~ [~(z(0),V)] (28)

holds. Then, the automaton generates all qualitative trajectories of the sys-
tem (1). As an extension of a result of [7], which concerns autonomous
systems, the following theorem can be proved analogously to [7].

Theorem 3 For arbitrarily given initial statex(0) and input sequenceU,

for the nondeterministicautomatonN(ZX,Z~,H, [x(0)], [U]) the relations

M~(k)D [M~(k)] (29)

and (28) hold if and only if the transition function H satisfiesthe relation

H(z,v) 2 {[x]IxcD0(z,v)} (30)

with
D0(z,v)={Ax+Bu IXEQr(Z), [u]=v}. (31)

If the 2 —sign in eqn (30) is replaced by ‘=‘, the function H generates
the smallest sets H(z, v). Then the smallest sets M~(k)and Z(z(0), V) are
obtained. The corresponding sets and the automaton N is marked by an
asterisk: H~,N~(Z~,Z,~,H, [x(0)], [U]),M(k) and Z*(z(0), V).

The nondeterministic automaton N generates the smallest set of spurious
solutions. This set is given by

T(z(0),V) = ~(z(0),V) \ [~(z(0),V)]. (32)



The reason why, in general, the transition function H~cannot be chosen so
that the set T is empty is based on the Markov property that the nondeter-
ministic automaton possesses. Accordingly, the set M~(k)depends merely
on the set M~(k— 1) but not on the automaton states at time instances ear-
lier than k — 1 (cf eqn (26)). On the other hand, the set [M~(k)]cannot be
uniquely de’termined from the set [M~(k—1)]. Hence, the automaton can, in
general, not-generate exactly the same qualitative trajectories as the system
(1).

Theorem jjias an interesting impact on knowledge acquisition. The the-
orem describ~sthe relation between the qualitative model N and the real
system (1). Accordingly, a qualitative model can be found if it is known
which set D0(z, v) of states will follow at time k + 1 the state z at time k
and the qualitative input v. D0 can be determined by means of eqn (31)
if the model (1) is known. On the other hand, this set can also be found
from experience with the system behaviour. Eqn (30) shows that a reason-
able qualitative model can be determined even If instead of D0 a superset
D0 of D0 is available. An operator that has experience with the qualitative
behaviour of a given system does know all possible directions where the sys-
tem can ‘go’. Hence, he can describe the set D0 and, thus, find a qualitative
model that, according to eqn (28), does generate all qualitative trajectories
of the system. -

The more4be operator knows the system, the better will be the set D0,
i.e. the smaller ~ill be the difference between this set and D0. Eventually, if
the operator knows his system precisely, he is able to determine the best pos-
sible qualitativ~ model N*, which is the model with the least set of spurious
solutions that can be found for the system under consideration.

This remark points to the fact that for dynamical systems the process of
knowledge acquisition can be based on both the model (1) of the system or
experience of an operator.

4.2 Modelling by stochasticautomata

The qualitative description of the system (1) can be improved if the states
z c M~(k)of the automaton are weighted concerning the probability with
which that the system (1) does really assume these qualitative states z at
time k. The weight is the probability p~(z,k) with which the state z c M~(k)
belongs to [Mr(k)].

This weighting is based on the following consideration of the system (1)
for qualitatively given inital state and input sequence. The system (1) is
started from different initial states s(0) that satisfy the relation (17), and
the trajectories are observed. Since x(0) is only known to belong to the set
Q~(z(O))it is reasonable to assume that the initial states x(0) used in these



experiments are uniformly distributed over Q~(z(0)). Then,

pz(Z, k) = Prob{[x(k)] = z}

is the probability of the state x to have the qualitative value z.
This is the reason for using the stochastic automaton S(Z~,Z,~,P, z(0), V)

as qualitative model where

Z~X Z~X Z~‘~

represents the transition ~bability -function. P(z, ~, v) is the probability
that the automaton that h~at time k the state z and gets the input v goes
to the state ~ at time k + 1.

In analogy to the nondeterministic automaton, the following sets are in-
troduced:

H~(z,v) = {~I P(z,~,v)~ 0} (33)

Ms~(0) = {z(0)}

Ms~(k+1) = {Hs(z,v(k))IzeMs~(lc)}, (k=0,1,...,T—1). (34)

The performance of the stochastic automaton is described by the probability
t(z, k) with which the automaton is at time Ic in state z. The following
relations hold for the automaton that has the initial state z(0) =

t(zo,0) = 1 -az~ t(z,0)=0 for-all z~z0
t(z,k+1) = >~P(z,~,v)t(~,k) (k=0,1,,..,T—1). (35)

2 e

Obviously,
Ms~(k)= {z I t(z,k) ~ 0}

holds. The set of trajectories of the stochastic automaton is given, analo-
gously to eqn (27), by

Zs(z(0),V) = Ms~(0)0 Ms~(1)0... 0 Ms2(T). (36)

The following theorem is an extension of the results on autonomous sys-
tems given in [7] to the broader class of systems (1) considered here:

Theorem 4 For arbitrarily given initial state x(0) and input sequenceU,
for the stochasticautomatonS(ZX, Z~,F, [x(0)], [U]) the relations

Ms2(k) 2 [M~(k)] (37)

and
Zs(z(0),V) 2 [X(z(0),V)] (38)



hold if and only if theiransition probability function F satisfiesthe relation

F(~,z,v)= fD(~,Z,V)dxfD
0

(z,v) dx

with
D(~,z,v)=D0(z,v) flQr(~) (40)

andD0as in eqn (31),

For this stochastic automaton, t(z, k) is an approximation of Pz(Z, k).

The best nondetermix~stic automaton N~and the stochastic automaton
described in the theorem above have the same sets of trajectories because
the following relations can be proved:

H*(z,v) = Hs(z,v) for all z,v

Z*(z(0),V) = Zs(z(0),V) for all z(0),V.

However, the stochastic automaton yields a better characterisation of the
qualitative performance of the system (1) since it generates together with
each set M5~(k)a weighting function t(z, k) that describes the probability of
the state zcMg~(k)to be really assumed by the system (1).

The additional characterisation of the states of the qualitative model by
the probability t(z, k) mak~it possible to reduce the set Zg(z(0), V). If
t(z, k) has a low value the state z can be assumed to belong not to the
qualitative trajectory of th~system (1) but to spurious solutions. Therefore,
such states can be deleted. For a given threshold s only those states z for
which

t(z, k) > s

holds are used for determining the set Zs(z(0), V) of qualitative trajectories
according to eqn (36).

A reasonable representation of the stochastic automaton is obtained if
the probabilities t(z, k) of all states z E Z~are written in the vector

t(k) = (t(z1, k), t(z2, Ic),. . . t(zq, Ic))’

where q is the number of elements of Z~. Then the performance of the
stochastic automaton is represented by

t(k+ 1) = P(v(k)) t(k), (Ic = 0,1,...,T— 1) (41)

where the matrix P(v(k)) represents the probability function P for given

input v(k).
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5 Qualitative control

The qualitative model proposed in the preceding sections can be used in
qualitative analysis and simulation. An example is given in [7] where the free
motion of an oscillator has been qualitatively described by a nondeterministic
and a stochastic automaton. Numerical examples have demonstrated that the
automata represent reasonable qualitative models because the set of spurious
solutions is very small.

The aim of this section is to go a step further. A~nethodwill be proposed
for designing a qualitative feedback controller that ~bilises an unstable sys-
tem (1) although the state variables cannot be meas~redquantitatively. The
possibility to use the qualitative model for control purposes shows that the
qualitative model is really a powerful means for dealing with dynamical sys-
tems.

The following is a summary of a method for qualitative controller design
which has been proposed in [8]. The main idea of this method is the following.
It is assumed, without loss of generality, that the equilibrium state of the
system (1) is given by x = 0 and z = [x] = 0. Therefore, the aim of
stabilising the system is to find a qualitative controller

[u(k)] = f([x(k)]) (42)

that moves the system into the equilibrium state. Since only the qualitative
state [x] is available, the system cannot be asym~to~Ucallystabilised as it
would be possible with some quantitative controller

u(k) = f(x(k))

[11]. Therefore, the control aim is to hold the system in the surroundings of
the equilibrium state, The control law f has to be chosen so that the prob-
ability pz(O, k) of the stochastic automaton in connection with the control
sequence that results from eqn (42) is maximised,

The control law can be determined by means of the qualitative model if
the controller (42) is applied to the model in the form

v(k) = f(z(k)) (43)

where the same control law f is used as in eqn (42). Then, V = Vf =

(f(z(0)),f(z(1)),... ,f(z(T—1)) holds and the qualitative model of the closed
loop system is given by Sf(Z~,Z,~,P~,[X(0)], 0) with

Pf = (pJ~), Pf~,= p~~(f(z~))

where pi~(Vk) is the ij—element of the matrix P(vk), cf. eqn (41). Then the
aim is to maximise the probability t(0, Ic), which can be determined by means
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of the model Sj. The ultimate aim is to obtain a stable closed loop system
Sf. That is, for any given initial state z(0) the model should eventually reach
the equilibrium state z = 0, i.e.

as k—~oo. (44)

However, the qualitative model S has spurious solutions and so has the closed
loop model Sj. Hence, the control aim (44) may-not be satisfied even if the
original aim

as

is reached. Therefore, the following design metho~is used in which the aim
(44) is replaced by maximizing t(0, Ic) at time k = 0,1,2,...

For k = 1 the task is

max t(0, 1) = max (P(f(z~))oe~ (45)

where e denotes a q—vector with vanishing elements besides a ‘1’ in the i—th
row. The symbol ( )o denotes the row of the given matrix that belongs to
the equilibrium state z = 0. By means of eqn (45) the function f can be
chosen for all states z for which there is a nonvanishing entry in the row
(P(f(z~))o. The resulting partial control law is denoted by f1. It is defined
for those states of the model S, from which the equilibrium state 0 can be
reached in one time step. The control law f’ ensures ~that the model reaches
the equilibrium state with maxim~mprobability.

For other states, I can be chosen if k = 2 is considered. Then the task is
given by -

max t(0,2) = max (P2(f(z~))oe~. (46)

The solution yields the function I for all states from which the equilibrium
state can be reached in no less than two time steps, The control law ensures
for these states that the model reaches its equilibrium state with maximum
probability.

If necessary, further time steps have to be considered in order to get the
complete control law f, This method for qualitative control will be demon-
strated by an example in the following section.

6 Example: The pole balancing problem

The following application study demonstrates the methods of qualitative
modelling and control that have been proposed in this paper. The problem is
to stabilise an ‘inverted pendulum’ (Fig. 1) by pushing the vehicle reasonably
to the left or to the right. This problem is a real benchmark for qualitative
modelling because this stabilisation problem is really difficult. Experiences
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with this experiment show that the existence of a solution to this control
problem depends strongly on the quality of the sensor signals. If the angle and
the angle velocity can be measured precisely, a systems theoretic approach
to the control problem is reasonable. Accordingly, a discrete-time model (1)
is set up and the feedback controller

u(k) = Kx(k)

can be designed by well known methods [11].
However, this way of solution does not take into account the deterioration

of the closed-loop system performance in case of bad sensor information. It
is typical for this experiment that the angle and the angle velocity cannot
be measured precisely but only with severe measurement errors. Then the
following qualitative approach is reasonable where the quality of the sensor
data can be explicitly taken into consideration by using appropriate quanti-
sations of the angle and the angle velocity.

For the inverted pendulum shown in Fig. 1 the following model can be
set up, cf [3]:

(m + m~)x— ml~2sin y + ml~cos ~ = 0

F

Figure 1: The ‘inverted pendulum’
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ml2ç~— mgIsin~ + mlx cos ~‘ = 0.

In these equations the following signals and parameters have been used:

F(k) - force on the vehicle (input signal)
x(k) - position of the vehicle
ço(k) - angle
m - mass of the pole
m~ mass of the vehicle
1 - length of the pole.

After linearisation of the equations around the equilibrium point ço = 0 and
with x,±,.p and ç~as entries of the state vector x and F as unique input
u(k), the following model is obtained:

01 0 0 0
00 —~ 0 1

*(t) = 0 0 1 x(t) + ‘~‘ u(t). (47)

~ (m+m~,)g ~ 1
~ “ rn.,! ‘~ mc!

With the parameter values

= 1kg, in = 0.1kg, 1 = 0.5m, g = 9.81~

and for the sampling time of 0.02s the following model of the form (1) results:

1 0.02 —0.002 0 0
0 1 —0.0196 —0.002 0.2

x(k+1)= 0 0 1.0043 0.02 x(k)+ 0 u(k). (48)

0 0 0.4318 1.0043 —0.4

A reasonable qua.ntisation can be derived from the following arguments,
which reflect practical experiences with the system. A simulation study shows
that the pole can no longer be stabilised if the following bounds are exceeded

Ix3I > 0.21, Ix4I > 0.87. (49)

Due to these bounds and the measurement insensitivity of 0.0175 (1°) for ~
and 0.0175 (1°) per sampling period for ~5the bounds g~jare fixed:

= —0.210, g~,o= —0.0175, 93,1 = 0.0175, ~ = 0.210

94,—i = —0.870, g4,o = —0.0175, ~ = 0.0175, ,~4,2= 0.870.

All states that satisfy at least one of the inequalities given in (49) are outside
the ‘working space’ of the system. They belong to the same qualitative state
z10. The other states are consecutively numbered as follows:

= (—1,—i)’, Z
2

= (—1,0)’, z3 = (—1,1)’, . . . , z9 = (1,1)’.
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The input signal u(k) has three qualitative levels:

u(k)=10 ~ v(k)=1

u(k)=0 ~ v(k)=0

u(Ic) = —10 ~ v(k) = —1,

ie the force can be chosen to be zero or maximum in both directions.

Under these assumptions, a stochastic automaton S can be found as de-
scribed in Theorem 4, which is represented by eqn (41) with

94 81 2 23 0 0 0
0 19 3 0 0 0 0
0 0 91 0 0 0 0
0 0 0 75 5 0 4
0 0 0 0 90 0 0
0 0 4 0 5 75 0
0 0 0 0 0 0 91
0000003
0 0 0 0 0 23 2
6002020

49 0 0 15 0 0 0 0 0 0
3 0000 00 0 00

39 100 60 4 0 0 0 0 0 0
0 0 0 34 0 0 0 0 0 0
0003 0~0 00 00
0 0 1 44 100 75 0 0 0 0
0 0 0 0 0 0 45 0 0 0
0 0 0 0 0 0 55 0 0 0
0 0 0 0 0 8 0 100 48 0
9 0 39 0 0 17 0 0 52 100

48 100 0 8 0 0 0 0 0 0
0 0 55 0 0 0 0 0 0 0
0 0 45 0 0 0 0 0 0 0
0 0 0 46 100 44 1 0 0 0
0 0 00 0 30 0 0 0
0 0 0 0 0 34 0 0 0 0
0 0 0 0 0 4 60 100 39 0
0 0 000 00 030
0 0 0 0 0 15 0 0 49 0
52 0 0 46 0 0 39 0 9 100

The control aim is to stabilise the system in the state z5 = (0, 0)’. The

stabilising controller can be found by means of the procedure proposed in
Section 5. The control law is given by the following table:

00
00
00
00
00
00
00
19 0
81 94
06

0
0
0
0
0
0
0
0
0

100

P(0) = 0.01

P(—1) = 0.01

P(1) = 0.01
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z(k) = z1 z2 z3 z4 z5 z6. z7 z8 z9
u(k)= -1 0 0 0 0 0 0 0 J

Note that for the implementation of this qualitative controller only a rought
measurement of the angle and the angle velocity is necessary. The controller
needs only information about the qualitative value of both signals. A further
simplification is possible because the resulting contro[ law is rather simple.
The controller has only to known whether both the angle and the angle
velocity have the same sign.

The simulation result given in Fig. 2 shows that this controller actually
stabilises the inverted pendulum. The closed-loop system eventually reaches
a cyclic trajectory, which can be compared with a limit cycle of a nonlinear
system. In fact, the controller brings about a severe nonlinearity of the closed-
loop system. Due to the roughness of the measurement, the equilibrium point
cannot be approached asymptotically, but the system obviously remains in
the near surrounding of this point.

Figure 2: Trajectory of the ‘inverted pendulum’ with qualitative controller
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7 Conclusions

The paper has proposed a new form of qualitative models, which is appropri-
ate for systems whose state variables can be measured through a quantiser.
As it became obvious in Section 3 that the qualitative trajectory of the sys-

tem is, in general, ambiguous, nonlinear or stochastic automata provide a
reasonable framework for qualitative modelling.

This new form of qualitative models makes it possible to use well known
results on discrete event systems, which have been elaborated with emphasis
to ‘real’ discrete event systems such as manufacturing systems or computer
nets. These tools can be applied now to continuous-variable systems if these
systems are considered on the qualitative level of abstraction rather than by
means of quantitative models like (1).

As an interesting byproduct, the paper bridges the gap between the fields
of continuous-variable and discrete event systems. Until now, both classes
of systems have been investigated separately. The paper demonstrates that
both forms of considerations can be applied simultaneously. Theorems 3
and 4 describe how automata have to be chosen if they should describe a
continuous-variable system (1) qualitatively. With these results in mind, it
should be investigated whether analysis and control methods that have been
developed for ‘real’ discrete event systems are really reasonable for qualitative
analysis and control of continuous-variable system or whether it is necessary
to elaborate new methods that take into account the continuous nature of
the system under consideration. This is the aim of current research whose
results will be described in forthcoming papers.
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