A Representation Language for Conceptual
Mechanism Design

Dorothy Neville
Computer Science and Engineering

University of Washington
Seattle, WA 98195

Leo Joskowicz
IBM T.J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598

June 23, 1992

Abstract

Automating conceptual mechanism design requires developing a representa-
tion language to support common design tasks such as analysis and validation.
This paper describes a simple and expressive language for describing the struc-
ture and behavior of fized azes mechanisms. The language uses a mixture
of predicates and algebraic relations to describe the mechanism’s parts, their
positions, their motions, and the relationships between them. It allows both
abstract, incomplete, and underspecified behavioral descriptions, and accurate
and complete descriptions. With an example, we illustrate how the language
naturally describes the kind of design specifications found in the conceptual
and configuration stages of the design process. We show that the language cap-
tures the mechanism descriptions of a significant number of mechanisms from
an engineering encyclopedia. We describe a partially implemented design ver-
ification algorithm that determines if a mechanism structure matches desired
structural and behavioral specifications stated in the language.

96

1 Introduction

Automating conceptual mechanism design requires developing a behavior and struc-
ture description language to support common design tasks. The language should be
descriptive enough to capture naturally the behavior of a significant class of mecha-
nisms. It should be flexible enough to allow both precise and complete descriptions
and abstracted, underspecified, and incomplete design specifications. It should have
a computational basis, so that specific tasks such as analysis and validation can be
automated.

Existing representation methods for design focus on relatively narrow and special-
ized mechanism classes: linkages, cams, and gearbox configurations, to name a few.
General representation methods, such as bond graphs, only capture certain behavioral
aspects and abstract away geometry altogether. Constraint languages are expressive
enough but require complete specifications and are computationally intractable. Re-
cent research has begun to address these issues, and some progress has been made
[2, 3, 7,9, 10]. However, we found that none of these approaches is entirely appropri-
ate for representing a large class of everyday mechanisms, such door locks, staplers,
and brakes.

In this paper, we develop a simple and expressive structure and behavior language
for fired-azes mechanisms. We first identify the requirements of such a language with
an example. We then propose a concise representation language which uses a mixture
of predicates and algebraic relations to describe parts’ positions, motions, and their
relationships. With the example, we illustrate how the language naturally describes
the kind of design specifications found in the conceptual and configuration stages of
the design process. We show that the language captures the mechanism descriptions
of a significant number of mechanisms from an engineering encyclopedia. We then
describe a design verification algorithm that determines if a mechanism structure
matches desired structural and behavioral specifications stated in the language. We
conclude by describing our current implementation efforts, a review of literature, and
a discussion of future work.

1.1 Example

We motivate the requirements of a representation language with a simple example.
Figure 1 shows an indexing mechanism used to position and lock a horizontal rack. It
consists of a rack, a table, a plunger, a cam, a lever, a spring, and a frame. The rack
1s mounted on the table and is free to translate horizontally in either direction when
the plunger is raised. When the plunger is lowered, it engages one of the rack’s teeth,
thereby preventing any further translation of the rack. The rack can be positioned
at ten horizontally aligned, evenly spaced locations. The spring-loaded plunger is
engaged and disengaged via a cam. The cam is mounted off-center on a fixed axis
and has two stable positions, a disengaged position (shown in the figure) and an
engaged position. The cam is activated by rotating the lever, which is permanently

97

cam
lever
m e
l)’ frame
plunger :
L

table

Figure 1: The indexing mechanism.

attached to the cam. The distance between rack’s translation axis O; and the cam’s
rotation axis O is 10cm.

We first observe that this description refers to both the structural and the behav-
ioral characteristics of the mechanism. The distance between the axes, their relative
positions, and the contacts between parts refer to structural properties and relations.
The rack’s translation, the cam pushing the plunger, and the rack positioning are be-
havioral statements. Behavioral statements further distinguish between part motions
(the rack’s translation), part motion relationships (the cam pushing the plunger),
and part positions (the ten positions of the rack). Motion relationships are causal,
indicating the effect of a part’s motion on another part: the plunger is engaged by
rotating the cam. The description contains both feasible and infeasible behaviors: the
cam pushes the plunger; once the plunger engages the rack, the rack cannot translate.

We also note that the description is only a partial and simplified description of
the mechanism. It describes certain behaviors, but not others: the description states
what happens to the plunger when the cam is rotated, but not vice-versa. It only
describes the behavior of a subset of parts: the cam, the plunger, and the rack, but
not the spring. It does not specify the exact relation between the rotation of the cam
and the translation of the plunger: it only states that the plunger goes down as the
cam is rotated counterclockwise. It ignores altogether the transient behavior of the
spring and the effects of friction.

The indexer is a prototypical example of the kind of mechanisms we want to cover:
it has non-standard parts (the plunger), " as multiple degrees of freedom (the cam

98

and the rack can move independently), has varying contacts (the plunger engages and
disengages the rack’s teeth), has multiple operating states (the rack can be locked
and unlocked), and utilizes dynamical elements, such as the spring. Many practical
mechanisms have these properties.

We contend that a conceptual design representation language for mechanisms
should at least have the above characteristics to adequately capture design specifica-
tions. To summarize, the mechanism representation language should:

1.2

distinguish between structural and behavioral specifications. Most design spec-
ifications describe the desired mechanism in terms of desired behaviors subject
to small number of structural constraints. Lumping them together complicates
the design process, precludes function sharing, and may unnecessarily overcon-
strain the resulting design.

allow causal descriptions of both feasible and infeasible behaviors. Such de-
scriptions are pervasive and naturally capture design intent.

allow descriptions of behavior of a subset of parts. Design specifications almost
always describe the desired behavior as a relation between input parts and
output parts. The goal is to find the structure and behavior of the intermediate
parts that achieve the desired relationship.

allow descriptions of only a subset of all possible behaviors. Design specifications
almost never exhaustively describe all the possible behaviors of the desired
mechanism under all possible conditions. Rather, they describe the desired
behaviors under the desired conditions.

allow behavioral abstraction and simplification. Design specifications, especially
in the early stages of conceptual design, are often underspecified or qualitative.
They tend to group together sets of behaviors that will be examined in more
detail and further differentiated later.

allow descriptions of simple dynamical behaviors. Sophisticated dynamical
models are seldom necessary for the conceptual design of common mechanisms.
However, a simple account of dynamics is necessary to capture the action of
gravity, friction, and springs.

cover a broad and well-defined class of common mechanisms with non-standard
parts, multiple operating states, multiple degrees of freedom, varying contacts
and topology, and springs.

Our solution

The rest of this paper describes our proposed language for fired-azes mechanisms,
an important class of mechanisms mostly not covered by existing representation lan-
guages and design techniques. Parts in a fixed-axes mechanism can only translate,

99

rotate, or both, along fixed line axes. The indexer in Figure 1 is an example of a
fixed-axes mechanism.

In our language, we distinguish between possible behaviors and actual behav-
iors. Possible behaviors describe all the behaviors that are physically possible for all
inputs. Actual behaviors describe the behaviors that result from applying specific
input motions to parts. Possible behaviors descriptions constitute an envisioning of
the mechanism’s behavior, while actual behaviors best describe the simulation of a
mechanism under specific conditions. We represent possible behaviors with region
diagrams [8], an annotated partition of a mechanism’s configuration space into re-
gions characterizing its operating modes. Because region diagrams are a concise and
complete representation of mechanism behavior, they are appropriate for describing
and analyzing possible mechanism behavior [6, 7, 8].

We develop a new language for describing actual behaviors resulting from input
motions. The language is a mixture of predicate and algebraic relations and has sepa-
rate components for describing structure and behavior. Structural statements specify
the locations and spatial relations between axes, contacts between parts, etc. Behav-
ioral statements specify motions of parts, relations between motions, and relations
between motions and positions. They identify the different operating states of the
mechanism at varying degrees of abstraction. Partial descriptions are captured by
bounded or uninstantiated relations on the parts’ motion parameters. The language
1s complete in the sense that it can accurately describe all the behaviors produced by
fixed-axes mechanisms.

The proposed language has a sound computational basis. In section 3, we describe
a design validation algorithm. It takes as input a specification of the mechanism’s
desired structure and behavior and an actual mechanism. It then determines if the
mechanism satisfies the specifications. The algorithm validates the design specifi-
cations by matching them with the mechanism region diagram to determine if the
actual motions are indeed possible. ‘

2 A language for behavior and structure

Our language represents a mechanism as a set of parts, a set of behavioral descriptions,
and a set of structural predicates. The set of parts is a partial or complete list of the
parts comprising the device. The behavioral description is a set of statements about
the parts’ positions, motions, and their relationships. The structural description is a
set of predicates about the parts’ structure, contacts, and axes positions.

2.1 Parts and axes descriptions

Parts and axes are uniquely described by their name. Parts have associated with
them motion axes, motion types, motion parameters and parameter bounds. Since

100

BEHAVIOR-DESCRIPTION ::= MOTIONSEQUENCE {,MOTIONSEQUENCE} —
MoTIONSEQUENCE {,MOTIONSEQUENCE}

MOTIONSEQUENCE ::= MOTION | SEQUENTIALMOTIONS | PARALLELMOTIONS
SEQUENTIALMoTIONS ::= MoTioN {,MoTIioN}

PARALLELMoTIONS ::= [MoTIioN, MoTioN {,MoTIoN}]

MoTION ::= SiMPLEMoTION | COMPLEXMOTION

SIMPLEMOTION ::= <OBJECT, SM-TYPE, AX1S, INITIALPOSITION, EXTENT, RELATIONS >

SM-TYPE ::= Translate | Rotate | Screw | Translate-and-Rotate | Stationary | Hold

EXTENT ::= AXISPARAMETER by AMOUNT
AMOUNT ::= REALVALUE | CONSTANT | VARIABLE | *infinity*
CoMPLEXMoTION ::= <OBJECT, SM-TYPE, CM-TYPE, AXIS,

For IDENTIFIER = VALUE to VALUE>
Begin MOTIONSEQUENCE End

CM-TYPE ::= Alternates | WithDwell | AlternatesWithDwell

Figure 2: Language for Behavior Specifications

we consider only fixed-axes part motions, this description is complete. For example,

<RACK, TRANSLATE, O, X, [0,10]>
<LEVER, ROTATE, O3, 6, [0, 7]>

states that the rack can translate along axis O; with parameter X ranging from 0 to
10 and the lever can rotate around axis O; with parameter 8 ranging from 0 to .

2.2 Behavior descriptions

The motions of parts in a mechanism are described by one or more MOTIONSE-
QUENCES, which describe the motion of some (or all) parts in an operating region.
Motions in motion sequences can be either simultaneous (denoted by square brack-
ets) or sequential. In a fixed-axes mechanism, part motions can either be stationary,
rotate, translate, or do both along a fixed axis in space. The motions can alter-
nate, or have a rest period between alternations. Figure 2 shows the complete BNF
specification of the language.

We distinguish between simple and complex motion types. Simple types of mo-
tion include TRANSLATE, ROTATE, SCREW, which indicates helical motion resulting
from combined rotation and translation, ROTATE-AND-TRANSLATE which indicates
independent rotation and translation, and two special types of “no motion” which
take into account forces: STATIONARY and HOLD. STATIONARY indicates that the
part does not move by itself either because it is not subject to any force or because its
motion is blocked. HOLD indicates that the part is externally prevented from moving
and is is used to maintain a part’s position regardless of the forces acting on it.

101

Initial part positions are expressed as equations on motion parameters. They can
- specify single spatial locations (§ = =) or sets of locations (0 < X < 10). The
extent of the motion is specified by the amount that motion parameter changes. This
amount can be a constant number, a constant symbolic number, an unknown amount
(variable), or unbound. Relations between motions are expressed as a set of equations
between motion parameters. Two motions are related iff their corresponding motion
parameters are functionally dependent on each other. For example, the cam’s rotation
is related to the plunger’s translation by the equation z = f(¢) (where { is a sinusoidal
function). When disengaged, the plunger’s translation is independent of the rack’s
translation. Equations can be linear or qualitative equalities and inequalities. We
approximate nonlinear relations (such as the cam/plunger relation) by piecewise linear
functions.

Complex motions capture the most common repetitive motions: alternation and
dwell. We use macro-like forms allowing the expression of repeated motions in specific
patterns. ALTERNATES indicates a constant change in the direction of motion, such
as the motion of windshield wipers. WITHDWELL indicates a rest period in a constant
direction motion such as stop-and-go motions. ALTERNATESWITHDWELL indicates
an alternating motion with a dwell period in-between. The motion is repeated a
number of times, determined by the FOR - TO BNF clause.

A behavior consists of a pair of motion sequences connected by an arrow, describing
the attempted input motions and the resulting actual motions. This represents “what
we try to move” versus “what actually moves and by how much”. This distinction is
a key property of the language and allows us to express many types of behaviors in
a simple and clear manner, as shown with indexer example.

2.2.1 Desired behaviors of the indexer

The minimal behavior specification for the indexer is described by two behaviors, one
for each of lever’s the stable positions. First, we state that the rack cannot move
when it is in any one of its ten locked positions:

<RACK, TRANSLATE, Oy, { =¢,i=0,1,...,9,8 =7}, z By ¢, {} > —
<RACK, STATIONARY, O, {z=14,i=0,1,...,9, 0 = x}, {}>

The initial positions field shows that rack in one of the ten locked positions and the
lever at its leftmost position (8 =), which corresponds to the locked configuration.
Trying to move the rack by any amount c results in the rack remaining stationary.
Translating the rack while the lever is in the unlocked position yields:

<RACK, TRANSLATE, Oy, {X = ¢, § =0}, X BY ¢3, {}> —
<RACK, TRANSLATE, O, {X =¢;,0 =0}, X BY ¢c3, { 0< €1 +¢2 <10 }>

The rack moves by the extent given, provided that it remains within its range. These
two behavioral descriptions succinctly describe the desired behavior of the indexer,

102

matching the informal description in Section 1.1.

2.2.2 Simple dynamics

The previous indexer description did not require dynamics, as it omitted the plunger.
In general, more complete descriptions do require dynamics. We capture dynamics
by specifying its effects in terms of motions. For example, to describe the effect of
the spring on the plunger, we first create a part description for it:

<PLUNGER, TRANSLATE, Os, Y, [1,3]>

In the device, a spring keeps the plunger in contact with the cam. We implic-
itly model the spring’s actions through a behavior description in which initially the
plunger is not in contact with the cam and and the attempted motion is STATIONARY:

<PLUNGER, STATIONARY, Oz, {Y = 1,6 = 0}, {}> —
<PLUNGER, TRANSLATE, Oz, {Y = 1,0 = 0}, {Y BY 2}, {}>

In this description, the plunger initially is engaged in the rack (since Y has its
minimum value of 1), while the lever is in its unlocked position (6 = 0). The input
motion STATIONARY indicates what happens when we leave the plunger in this initial
position. The actual motion shows that the plunger will translate upwards until it
contacts the cam.

2.2.3 Simultaneous motions

The examples so far have considered one motion at a time: either the rack will trans-
late or it won’t depending on the position of the lever. More generally, mechanisms
exhibit simultaneous motions given a single input motion. We account for simulta-
neous motions with motion sequences that contain one or more motions sequentially
or in parallel. For the indexer example, we can state that rotating the lever causes
the plunger to move by the following behavior description:

<LEVER, ROTATE, Oy, {# = n,Y =1}, {6 BY —7}, {}> —
[<LEVER, ROTATE, Oy, {# = =,Y =1}, {6 BY —7}, {}>
<PLUNGER, TRANSLATE, Ogs, {Y =1}, {Y BY 2}, {}>]

Note that in this example we do indicate the actual relationship between the
positions of the lever and plunger as they are changing, just that they change by the
given extent during the same time interval.

Simultaneous actions are also necessary to express the input motions of many
devices. In the example, we do not represent what would happen if motions were
attempted on both the lever and the rack simultaneously. However some mechanisms
rely on simultaneous input: opening a door with a doorknob requires rotating the
knob around its axis and simultaneously holding it in position while opening the door.
This action can be represented by a ROTATE knob motion followed by simultaneous

103

PREDICATES RELATING AXES:
(PARALLEL AXIS1 AXis2)
(PERPENDICULAR AXIS1 AXI52)
(INTERSECT AX1s1 aXis2 {AT PT})
(PLANE axIsl aX1s2)
(CoPLANAR PLANE] PLANE2)
(SKEWED aXIsl AXIS2)
(DISTANCE AXIS]1 AXIS2 NUM)

PREDICATES RELATING PARTS:
(KEYED-TO-SHAFT PART SHAFT)
(FREE-ON-SHAFT PART SHAFT)
(IN-CONTACT PART1 PART2)
(IN-CONTACT-WHEN PART] PART2 {POSITION RELATIONS})

GENERIC PART PREDICATES:
(GEAR PART RADIUS NUM-TEETH AXIS)
(LEVER PART LENGTH)
(LENGTH PART)
(WIDTH PART)

Figure 3: Structure Specifications

motions of HOLD knob and ROTATE door for both the input and actual motion
sequences.

2.3 Structure

While the behavioral language is intended to be complete, the structural language is
intentionally incomplete and open-ended. Parts can have virtually any shape and have
any spatial relation with other parts. A catalog of geometric shapes, part features, and
part spatial relations is clearly outside the scope of our research. Instead, we identified
the most common structural predicates used in describing fixed-axes mechanisms:
predicates relating the axes, predicates relating parts, and predicates constraining the
sizes, shapes, and other characteristics of parts. Figure 3 lists a representative sample
of predicates. We envisage the user to add component part types and structural
predicates as necessary.

For example, when designing a transmission, the structural information needed is
the relationship between the axes of rotation of the input and output shafts, whether
they are parallel or perpendicular, and, if they do not intersect, how far apart they
are. For the indexer, the minimal set of structural predicates relates the axes of
motion of the rack and lever, the components that form the “external interface” of
the device. We know that they are perpendicular and 10cm apart. This is represented
by the predicates (PerpENDICULAR O; O3) and (D1STANCE O; O 10)

104

2.4 Coverage

We empirically determined the appropriateness of the language by surveying about
2500 mechanisms from Artobolevsky’s four-volume Mechanisms in Modern Engineer-
ing Design [1]. We chose the encyclopedia because of its size, uniform format, and
comprehensiveness. It contains general-purpose, single-function mechanisms, such as
couplers, indexers, and dwells which constitute the functional components of larger,
specialized mechanisms, such as printing presses, mills, motion-picture cameras, and
cars.

Our survey determined that about 35% of mechanisms are linkages, 22% are fixed-
axes, and 9% are fixed-axes mechanisms connected by linkages. In addition, the I/O
behavior of some linkages and many complex mechanisms is a fixed-axes behavior.
This clearly shows that fixed-axes mechanisms constitute an important category. In
addition, we found that 21% of mechanisms have at least one spring, that 30% have
more than one degree of freedom, and that 18% have varying topology. More than
half of the fixed-axes mechanisms have more than one operating state. Virtually
all mechanisms have at least one non-standard part. This quantifies our claims on
coverage. For a details on the survey, see [8, 11].

We selected a dozen examples from across the four volumes and examined the
text accompanying each mechanism. We then reproduced the English description
using our language, and compared the two. In all cases, we successfully managed to
described the stated behaviors within our language.

3 Validation

To test the computational validity of the proposed language, we automated an im-
portant component of the design process: design validation. The design process
starts with a structural and behavioral specification of the desired mechanism and
produces a mechanism that exhibits the correct behaviors, abides by the structural
constraints, and does not exhibit unwanted behaviors. Typically, the design process
is incremental, whereby possible solutions are generated and need to be validated: the
proposed mechanism has to be analyzed to determine its complete set of behaviors,
and validated to verify that these true behaviors match the specifications. If they
don’t, modifications are necessary. Validation also determines if the device contains
unexpected or undesirable behaviors, and submits tighter specifications if necessary.

Validation tests the behaviors and structure of the mechanism against the de-
sired behavior and structural constraints. Structural verification is done by directly
inferring the sizes, shapes and relative positions of objects and axes from the mecha-
nism description and comparing them with the structural predicates. Validating the
behavioral specifications requires matching the desired behaviors with the possible
behaviors. To verify that a mechanism exhibits a specified behavior, we first analyze
the mechanism to obtain its region diagram describing its possible behaviors. We
then simulate the intended input motion through the region diagram, obtaining the

105

true motions. Finally, we compare the true motions with the actual motion sequence
specified in the desired behavior.

In previous work, we describe a program that computes mechanisms’ region di-
agrams [8] and a program that computes actual mechanism motions by simulation
[11]. We are currently implementing a program in CLP(R) that automatically tests
the behavioral specifications written in our representation against the region diagram
of a completed design. We are using CLP(R) because it allows us to express the
behaviors easily in predicate form and handles linear constraints. Given hand-coded
or automatically derived region diagrams and intended input motions statements, it
derives the resulting actual motions for the mechanism. The program currently vali-
dates kinematic pairs with one or two degrees of freedom, given a single input motion
and a single initial position. We are working on incorporating dynamics and multiple
pairs of objects.

4 Related work

Much recent work has focused on methods and representations for conceptual mecha-
nism design. A classic work in linkage design is [4]. Freudenstein and Maki enumerate
the kinematic structure of linkages in order to represent their functional properties ab-
stractly. Conceptual design is viewed as the process of matching functional properties
of the desired mechanism to potential structures. The representation and procedures
are specific to linkages obeying specific mobility requirements.

Finger, Hoover, and Rinderle [3, 5] use a graph grammar based on bond graphs
to represent behavior parametrically linked to geometry graph to represent structure.
They propose a series of transformations to achieve the desired design. Both Kota
[10] and Marshek [9] describe a representation scheme for machine behavior and a
set of behavior transformation rules for design synthesis. Our language shares many
common features with these languages, but is more comprehensive: all three are
limited to single-state, fixed axis, fixed topology mechanisms.

Existing qualitative representations are also not fully adequate. Faltings’ place
vocabulary [2] is a qualitative kinematic representation which captures only one aspect
of mechanism behavior, as Joskowicz’ region diagrams

Since our primitive elements are not transformation tasks, but motions themselves,
we can represent more behaviors; we can represent devices with more parts without
knowing what all the kinematic pairs are; we can represent dynamics and motions
being blocked due to positions.

5 Conclusions
In this paper, we present a new language for representing the behavior and structure

of fixed-axes mechanisms. The language is flexible enough to describe partially or
completely specified mechanisms and is expressive enough to capture salient aspects

106

of their kinematics and dynamics. We claim that our language captures descriptions
of mechanisms at the right level of abstraction necessary for design. We describe
behavior in a way that allows us to represent subsets of parts, subsets of behaviors,
part positions that block other parts from moving, part motions that cause other
parts to move, and the simple dynamics of a spring or gravity. By implementing a
validation module as part of a design system, we show the relationship between the
behavior descriptions and the region diagram representation of the behaviors of a
completely specified mechanism.

Our long term goal is an automated design system for mechanisms consisting of
fixed-axes and linkage subassemblies. Toward that end, we have developed a lan-
guage to express design specifications and are working on an implementation of the
validation component of design. Future work includes incorporating the analysis and
simulation system of [11] with these results.

Acknowledgements

We thank Franz Amador and Dan Weld for many discussions and helpful com-
ments on drafts of this paper. We also thank Elisha Sacks and Brian Williams for
many fruitful discussions. Part of this work was conducted while the first author was
a summer intern at IBM T.J. Watson Research Center. The first author was also
funded in part by National Science Foundation Grants IRI-8902010 and IRI-8957302,
Office of Naval Research Grant 90-J-1904, and a grant from the Xerox Corporation.

107

References

[1]

2]

[10]

[11]

I. Artobolevsky. Mechanisms in Modern Engineering Design, volume 1-4. MIR
Publishers, Moscow. English Translation, 1979.

B. Faltings. Qualitative Kinematics in Mechanisms. Artificial Intelligence, 44,
1990.

S. Finger and J.R. Rinderle. A Transformational Approach to Mechanical Design
Using a Bond Graph Grammar. In First ASME Design Theory and Methodology
Conference, Montreal, Canada, September 1989.

F. Freudenstein and E.R. Maki. The Creation of Mechanisms according to Kine-
matic Structure and Function. Environment and Planning B, 6:375-391, 1979.

S. Hoover and J. Rinderle. A Synthesis Strategy for Mechanical Devices. Research
in Engineering Design, 1(2), 1989.

L. Joskowicz. Reasoning about the kinematics of mechanical devices. Interna-
tional Journal of Artificial Intelligence in Engineering, 4:22-31, 1989.

L. Joskowicz. Mechanism comparison and classification for design. Research in
Engineering Design, 1:149-166, 1990.

L. Joskowicz and E. Sacks. Computational Kinematics. Artificial Intelligence,
51:381-416, 1991.

S.M. Kannapan and K. M. Marshek. An Algebraic and Predicate Logic Approach
to Representation and Reasoning in Machine Design. Mechanism and Machine
Theory, 25(3):335-353, 1990.

S. Kota. Qualitative Motion Synthesis. In Proc. of the First Natl. Conf. on
Applied Mechanisms and Robotics, Cincinnati, 1989.

E. Sacks and L. Joskowicz. Mechanism Simulation using Configuration Spaces
and Simple Dynamics. Technical report, March 1992.

108

