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Abstract

This paper presents an algorithm for constructing differential equation models to answer
prediction questions. A prediction question poses a hypotheticalscenarioand asks for the
resulting behaviorsof specific real-valuedstatevariables(“quantities of interest”). A model
for such a question should include only those aspectsof the scenario relevant to the quantities
of interest. Furthermore, it should include only as much detail as is necessaryto answer the
question. Somepreviousmethodsmaybuild modelsthat fail to relate the quantities of interest
to the conditionsof the scenario,while othershavelimited ability to excludeirrelevantaspects.
Additionally, while many decisions on how much detail to include can be determined by an
appropriate choice of the time scale of analysis, previous approachesrequire the question to
provide this time scale. Our modeling algorithm overcomestheselimitations by identifying the
ways in which quantities of interest interact with conditions in the scenario. Only those aspects
of the scenario that provide these interactions are included in the model, The algorithm also
usesthis knowledge to determine an appropriate time scale of analysis, which determines how
muchdetail to include in the model.

1 Background: The Prediction Task and the Role of Modeling

Our long-termresearchobjectiveis to developknowledgebaseswith knowledgecomparableto that
of scientistsandengineersand software that exploits this knowledgeto answerquestions. Such
softwarewill support inteffigent tutoring, provide importantinformation resourcesfor scientists
andengineers,andaid in designingand maintaininglargeengineeredsystems.While we expect
the resultsof our researchto be applicable to many fields of scienceand engineering,we have
chosento initially apply andevaluateour methodsin the domain of plant physiologybecausea
largeknowledgebasein this domain alreadyexists [11].

~Support for this researchis provided by grants from the National Science Foundation (IRI-8620052 and IRI-
9120310) and NASA (NAG 9-512) and by donationsfrom Digital EquipmentCorporation and Lockheed Al Center.
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Our currentresearchfocuseson predictionquestionssuchas “How would adecreasingamount
of soil wateraffect plant size andgrowth rate?” We define the prediction taskas follows:1

Given:

• domain knowledge(e.g.,knowledgeof plant physiology)

• ascenario,consistingof the following:

— structural conditions: physical individuals and relations among them representing
physicalstructure(e.g., aplant in soil)

— behavioralconditions: initial valuesor behaviorsof statevariables(e.g.,the amount
of water in the soil is decreasing)

• a set of state variablesof interest whose behaviors the user wants to predict (e.g., size
andgrowth rateof the plant)

Produce:

• predictions: the expectedbehavior of each state variable of interest(e.g., “size increasesand

eventuallylevelsoff; growth rate slows andeventuallystops”)

• explanations: justifications for the predictions (e.g., “water uptake decreases,causinga loss
in turgor pressure,which is adriving influenceon plant growth”)

The scenario and state variables of interest collectively constitute the prediction question.
There are a variety of tools for prediction in scienceand engineering. State variables in such

domainsare typically real-valued functions of time (quantities). Analytic and simulation methods
basedon differential equations can predict the time-varying behavior of quantities. However, these
analysis methods require a model of the scenario in terms of functional and differential relations
amongscenarioquantities. The scientist or engineer must construct the model from the question,
and few tools are available to help with this modellng task. The focus of our research is on
constructing models from questionsautomatically.

Modelingis difficult becauseit requires identifying all, and only, the domain knowledgepertinent
to the predictionquestion.If the modelincludestoo muchinformation,effort will be wastedduring
analysisandthe predictionswill be unnecessarilycomplicatedandhard to explain. If it includes
too little information, its predictionsmay be unreliable. To support a broad rangeof questions,
the domain knowledge must include many perspectivesand levels of detail, but most of them will
be irrelevant to any particularquestion.

The domainknowledgeprovidesthebuildingblocksfor models,calledmodelfragments.Each
model fragmentspecifiesaset of functional or differential relationsamongquantities.It may also
specify preconditionson the validity of theserelations. For instance,the growth rate of aplant is
a functionof its turgor pressure(the hydraulicpressurein its cells),but only as long as the turgor
pressureis above a threshold. We define a model fragment as a propositional implication whose
antecedentis a conjunctionof operating conditionsand whoseconsequentis a conjunctionof
relations.2 Operatingconditionsdelimit the statesin which the relationsof the model fragment
hold; they are equality and inequality constraintson quantity values. The relationsare a set of
functionaland differential relationsamongquantities;while our modelingmethodssupportmany
types of relations,such as quantitativeand qualitativeequations,this paperwill restrict relations
to be QualitativeProcessTheory influences[4].

‘Terms appearin boldfacewherefirst used.2Falkenhainerand Forbus [3] define a model fragment as a first-order implication. When such a first-order
implication is instantiated,the result is a propositionalimplication that we call a model fragment. We view the
first-order implication as aschemafor generatingmodel fragments.
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2 FundamentalModeling Issues

For purposesof this paper, we assume that a previous step identifies all model fragmentsin the
domain knowledgethat describesomeaspectof the scenarioat somelevel of detail. Falkenhainer
and Forbus[3] show how this can be done.

Of thesemodelfragments,the modelermust selectthosethat arepertinent to the quantitiesof
interest. This posestwo fundamentalissues:

• Identify thosemodel fragmentsthat describerelevantaspectsof the scenario(the scopeof
the model).

• Identify thosemodel fragmentsthat are at an appropriatelevel of detail.

Only model fragmentsthat describerelevantaspectsof the scenario(i.e., are within the chosen

scope)at anappropriatelevel of detail should be includedin the model.

2,1 SelectingScope

The modellngalgorithmof Falkenhainerand Forbus[3], which we refer to asFF, providesoneof
the bestapproachesto scope selection.FF choosesthe scopeof the modelusing threesourcesof
knowledge:

• Eachmodel fragmentspecifies the objectsit models.

• Objects in the scenariomust be decomposed into a structural partonomic hierarchy. FF
assumesthat eachobject in this hierarchycan be analyzedindependentof other objects.
This assumptionholds to a largedegreein manyengineereddevices,where componentsare
designedto have specified functions largely independentof their context.

• The questionspecifiesthe quantitiesof interest,3

FF chooses the scope of the model by determining the relevant objects in the scenario. It
identifies a minimalset of modelfragmentsthat could provideamodelof thequantitiesof interest.
Those objects modeled by these model fragments are relevant. To ensurethat interactionsamong
these objects aremodeled,FF choosesa “minimal covering system,” the lowest object down the
partonomic hierarchy that subsumes the relevantobjects; this object and its subobjects(down
to the level of the relevantobjects)are relevant. Any model fragment that modelsoneof these
relevant objects is within the scopeof themodel.4 Importantly,no subsequent steps in the modeling
algorithm can expandthis scope,andmodelfragmentsthat only model objectsoutsidethis scope
cannot be included in the model.

There are two limitations in this approach.First, the assumptionthat scenarioobjectscan be
decomposed into a single partonomic hierarchy of objects that canbe analyzedindependentlydoes
not apply to natural systems suchas plants and animals,andoftenit mustbe relaxed in engineering
as well, Plants and animals can be organized into nearly-decomposablesystems(e.g.,the respiratory
system and the circulatory system), although these are basedon functional rather than partonomic
breakdowns, However, systemdecompositionsin natural systemsare not rigid; they dependon
operating conditions and the time scale and purposes of analysis. Even in engineering, designed

3
Falkenhainerand Forbus allow questionsto specify objects and relations of interest as well, but we focus on the

guidanceit receives from quantities of interestfor comparisonwith our modeling approach.
4

Other modeling decisionsin FF might be viewed as further restricting the scope of the model, but these are

irrelevant to our discussion.
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systemboundariesmustbe relaxedwhenconsideringfaultsor unintendedinteractions.Determining
the appropriate system decompositionof the scenario is an important issue for the modeler; it
cannot be specifieda priori [2].

The secondlimitation of this approach is that it may fail to include importantaspectsof the
scenario in the model. Consider the question “How would a decreasingamount of soil water affect
plant size and growth rate?” The quantities of interest are plant size and growth rate. Since in
generalit is possibleto reasonabout growthindependentof the soil, the minimal coveringsystem
will excludethe soil, so soil water amount cannot be included in the model. Yet clearly a model
for this question must include the interaction of soil water amount and growth processes.In this
example, the inadequacycould be overcomeif a query interpreter included soil water amount asa
quantity of interest, forcing its use in selecting the minimal covering system; however, in general,
including all quantities appearing in behavioral conditions (given quantities) as quantities of
interest is a bad idea. The user may provide a complicated scenariowith many irrelevant conditions.
Themodelershouldnot requireusersto know which aspectsof their hypothetical scenariowill affect
the quantitiesof interest,and the query interpretercannoteasily determinewhich given quantities
are relevant. If all given quantities are usedin selectingthe minimal covering system, an irrelevant
given quantity may require consideration of an object far removed from the appropriate scope,
resulting in an excessivelylarge scopeand hence an overly complex model. Thus, using all given
quantities in selection of the scopeof the model may result in unnecessarilylarge models,while
ignoring them may result in an inadequate model.

FF cannot determine which given quantities are relevant becauseit is fundamentallyinsensitive
to the ways in which behavioral conditions in the scenario interact with quantities of interest.
Intuitively, a model should include the important interaction paths betweengiven quantities and
quantities of interest, where an interaction path is a setof functional and differential relations that
connectstwo quantities,describinghow they affect eachother. While F? has contributed many
usefulideasfor automated modeling, it must be extendedto exploit knowledgeof interaction paths
relevant to the question.

Severalother researchersuseinteractionpathsto guidemodellng. Wiffiams’s “critical abstrac-
tion” method [16] constructs a model of how a deviceworks with respectto a setof queries (which
can be viewed asquantities of interest for purposesof this discussion). Wiffiams assumesthat the
independent (exogenous)quantities of the deviceare given. Williams also assumesa most-detailed
model of the device is given. Willlams’s method computes the “causal support structure” of the
quantities of interest by tracing causally forward through the functional and differential relations
of the detailed model from the independent quantities to the quantities of interest; those model
fragmentsprovidingthis supportstructurearedeemedrelevantandprovidethe scopeof the model.
Nayak et al. [9, 10] alsoprovideamethodfor constructingamodel of how adeviceworks. In place
of the queriesusedby Williams, their methodrequiresan “expectedbehavior,” apair of quantities
such that the device achievesa causal connection from the first to the second. Their objective is
to find amodel that providessuch a connection.

Neitherof thesemethods allows enoughfreedomin selectingthe scope of the model; these
methodsare unable to select a subsystemof the deviceas the scope. For example,considerthe
question “How would decreasingturgorpressureaffect the ratesof potassiumdiffusion andactive
transport in the leaves?” It is not necessaryto model the entire plant to answerthis detailed
question. Turgor pressurecan be treatedas an exogenousquantity and the potassiumtransport
mechanismsin the plant can be examinedin isolation.But Williams and Nayaket al. require the
exogenousquantitiesof the plant as input; their methodscannot determinethat turgor pressure,
normallyaquantityregulatedby the plant,canbe treatedas the exogenousquantityfor purposesof
this question. It might seempossibleto treat the given quantitiesof the questionas the exogenous
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quantitiesin the critical abstractionmethod,but that will not work becausethe methodrequires
a completeset of exogenousquantitiesfrom which all other quantitiescan be determined. The
methodsof Williams and Nayak et al. assumethat the exogenousquantitiesof the deviceare
given and the objectiveis to provideamodel of the whole device, whereasthe ability to focuson
a subsystemof a device, whoseinput quantitiescan be treatedas exogenousfor purposesof the
question,is an importantissue in selectingan appropriatescopefor predictionquestions.

2.2 Selecting Level of Detail

The modelermust determinethe appropriatelevel of detail at which to describeeachaspectof
the scenarioin the scope. This may involve many types of approximationandabstraction.In this
paper,we focuson two types.

One importantmethod of changingthe level of detail in amodel is by changing its accuracy
[15]. Accuracy is ameasureof how closely the predictionsmatchreality. Although accuracycan
be changedwith avarietyof mathematicalapproximations,wefocuson approximationby ignoring
insignificant influences.That is, aquantity or its rate of changemaybe a functionof many other
quantities;if the modelercandeterminethat someof theseinfluencesareinsignificantfor purposes
of the question,the model canbe simplified.

One useful criterion for significanceis the time scaleof analysis. For instance,diffusion of
solutesthroughcell membranesis relatively slow. To modelthe changesin solutelevels in a cell on
a time scaleof seconds,the influenceof diffusion can be ignoredbecauseit cannotchangethe level
significantly on that timescale.However, to modelthe changeson a time scaleof hours,diffusion
must be consideredbecauseit can causesignificant changein that amountof time. Thus, the
domainknowledgecan associatean influencewith the time scaleat which it becomessignificant.

Another relatedwayof changingthe level of detail in amodelis by usingtime scaleabstrac-
tion, atechniqueusedin domainsrangingfrom economicsto engineering[5, 6, 7, 8, 13, 14]. Rather
than ignoring influences that are significant only at time scalesmuch slower than the time scale
of interest,time scaleabstractionallows the detaileddynamicsof aprocessmuch fasterthan the
time scaleof interestto be abstractedout. In many dynamicsystems,a set of detailedinfluences
work to maintainan equilibrium functionalrelationshipbetweenquantities.if we areinterestedin
the fast time scale and hence the transient dynamics, we must reasonwith the detailedinfluences.
However,at aslower time scalewe can simply model the behavioras an instantaneousfunctional
relationship; that is, we assume that the system is always very close to equilibrium. For instance, at
adetailedlevel, osmosiscan be modeledby a setof influencesthat dynamically reactto agradient
betweenthe water potential in a cell and its environmentandbring them into equilibrium. At a
slowertime scale,the modelcanignore thesedynamicsandsimply assertthe equilibrium functional
relationship(in this case,equality) betweenthe waterpotentials. Becauseof the ubiquity of this
typeof abstractionin scienceandengineering,it is importantto be ableto representthesedifferent
levels of detail and the knowledge needed to choose among them.

Therehasbeenlittle work in choosingthe level of detail in amodelbasedon timescaleconsid-
erations.Kuipers [8] showshow simulationcanintermix modelsat different timescales,but he does
not provide methodsfor constructingsuch modelsin responseto questions. Iwasaki [6] presents
amethod that determinessignificant processesandappropriatetime scaleabstractionsgiven the
desiredtime scaleand desired quantitativeaccuracyfor each quantity of interest. Her method
estimatesthe time scaleat which each processwill causesignificant changeandcomparesthis to
the specifiedtime scaleof interest;thoseprocessesacting at much faster time scalesare modeled
by their instantaneousfunctional relation, those processesacting at comparabletime scalesare
modeledthrough their dynamics,and thoseprocessesacting at much slowertime scalesare treated
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as insignificant.This is ausefulmethodwhenthe appropriatetime scaleof the modelis given, but
it will oftenbe unreasonableto expect the personposing the predictionquestion(e.g., a student
interacting with a tutoringsystem)to specify the time scale;rather,the modelingprogramshould
determinethe time scaleat which the behavioralconditionsaffect the quantitiesof interest.

2.2.1 Summary

Existing methodsof selectingthe scopeof the model rely on assumptionsinappropriatefor the
prediction task. Effective selection of scoperequires a sensitivity to the interactions betweenbe-
havioral conditions of the scenarioand the quantities of interest. Identification of theseinteractions
allows the modelerto determinehow muchof the scenariois relevantandwhich quantitiescan be
treatedasexogenous.

Existing approaches provide important ways of changing the level of detail of a model, but
the criteria for making these decisions are too weak for the prediction task. Influencesthat are
significant only at time scalesslower than the chosentime scaleof the model can be ignored.
Detaileddynamicsoperatingat time scalesmuchfasterthanthe chosentime scalecanbe modeled
by time scaleabstractions.However,existing methodsrequirethe userto specify the appropriate
time scaleof the model; instead,the modelershoulddeterminethetimescaleat which thebehavioral
conditions affect the quantities of interest.

Our modeling algorithm, presentedin the next section,identifies the interaction paths that relate
behavioral conditions and quantities of interest. It usesthis knowledgeto select an appropriate
scopefor the model, and it choosestime scaleabstractions and determines insignificant influences
by selectingthe time scaleat which the behavioralconditionsof the scenariointeractwith the
quantities of interest.

3 Using Interaction Paths to Guide Approximation
and Abstraction

3.1 Time Scale Conditions

Our modeling methods currently support two types of variation in level of detail that we have
found to be amongthe mostimportant. First, the accuracyof the modelcanbe variedby ignoring
insignificant influences whose significance depends on time scale. Second,our methods support
time scaleabstraction. Supportingthesemodelingdimensionsrequirestwo types of knowledge:
the domain knowledgemust includean orderedset of time scales,andmodel fragmentsmust be
qualified with time scaleconditions.

Our approachto selectinglevel of detail requiresthat the domain knowledge include a set of
the important time scalesat which domain processeswork. Eachtime scalerepresentsan orderof
magnitudeof time, suchas seconds,minutes,or days. Wefurther requirea totalorderingoverthese
time scalessuch that a time scalet

1
is lessthana time scalet

2
if i~is ordersof magnitudesmaller

(faster). For instance,hereis an orderingof severalimportant time scalesin plant physiology:

cellular-water-balance< solute-balance< plant-water-balance< growth

Cellular-water-balancerepresentstheorderof magnitudeof time at which osmosisworksto achieve
an equilibrium between the water potentials inside and outside a cell; this is roughly seconds. Solute-
balancerepresentsthe time scaleat which solutesdiffuse throughthe plant to achieveequilibriums;
solutesdiffuse much more slowly than water, with significant changesoccurring on the order of
minutes. Plant-water-balancerepresentsthe time scaleat which the plant is working to balance
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the waterlevel in its tissuesby takingwaterup from the soil, transportingit throughoutthe plant,
andregulatingtranspiration(evaporation)from the leaves;significant changesoccuron the order
of hours. Finally, significantresultsof growthof theplant occur on theorderof days.The domain
knowledgemustincludesuch an ordering over all the importanttime scalesin the domain.

Eachmodel fragment in the domain knowledgecan include in its operatingconditionsa set
of time scaleconditions. A time scalecondition delimits the time scalesof analysisfor which
the model fragmentcan be used. For instance,a model fragmentwith the time scalecondi-
tion (> :time-scakp~ant-water-ba~ance)can only be used in modelsthat addresstime scaleslarger
(slower) thanplant-water-balance.As in the time scaleordering, the inequality relationsin time
scaleconditionsareorder of magnitudecomparators.

To illustrate the use of time scaleconditions,considerthe examplequestion “How would a
decreasingamountof soil water affect plant size andgrowth rate?” Figure 1 showsall the model
fragmentsfor this scenario.Theseareshownas an influencegraph in which nodesarequantities
andarcsarethe influencesof the modelfragments.Operatingconditionsarenot shown. Influences
arelabeledwith their type (e.g., Q+ or 1+) andwith their time scaleconditions.5 A dotted line
associatesa time scaleabstractionwith its underlyingdetailedinfluences.

This figure demonstratesthe threewaysin which we usetime scaleconditions:

• Differential influences (1+, 1) causechangesin their influenced quantity. We qualify these
influences with the minimum time scale needed for them to causesignificant change. For
instance,in the example,theinfluencesof wateruptakeand transpirationon apoplastwater
amount are insignificant at time scalesmuch faster than plant water balance, the effects of

the ABA andK+ processesare insignificant at time scalesmuch fasterthan solutebalance,
the effectsof osmosisareinsignificantat time scalesmuchfaster thancellularwaterbalance,
and the effect of growth on the size of the plant is insignificant at time scalesmuch faster
than growth.

• Somefunctional influences representtime scaleabstractionsof dynamicprocesses.These
influencesare qualified with the minimum time scaleat which achangein the independent
quantity canbe viewed as instantaneouslycausinga changein the dependentquantity (i.e.,
a time scaleat leastas largeasthe time it takesthe underlyingprocessesto reachequilib-
rium); at time scalesfaster than this, the functionalrelationshipis invalid. For instance,the
functional influence assertingthe equilibrium functional relationshipbetweenthe amounts
of water in the apoplastandsymplastonly holds if the time scaleis at leastthat of solute
balance,since the dynamicscannotbe ignoredat fastertimescales.

• We qualify an equilibrium process(influenceson and from its rate quantity) with the time
scaleat which it reachesequilibrium; at thisor slowertime scales,thetransientdynamicswill
havesettledout andthe time scaleabstractionshould be used. For instance,it only makes
senseto reasonabout the dynamicsof osmosisbetweenthe apoplastandsymplastat time
scalesmuch fasterthanthat of solutebalance.

51n QualitativeProcessTheory[4], therearetwo typesof functional influences:Q+ andQ~.p Q+ x means that

p is a function of x (and perhapsother quantities)andthepartial derivativeis positive (i.e., if theother quantities
on which p dependsareheld constant,p changesin thesamedirection as x); Q is similar but specifiesa negative
partialderivative. In theinfluencegraph,the influencepoints from theindependentto thedependentquantity. There
are two typesof differential influences:1+ andI~.Theseareused to specifythat aprocessincreasesor decreasesa
quantity, respectively. For instance,the amountof waterin a bucketis I~to the rate of inflow from a faucet and
1 to the rate of outflow through a hole. In the influencegraph, the influence points from the processrate to the
influencedquantity.
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Thosefunctional influencesin the influencegraphwithout time scaleconditionsarealwaystreated
as instantaneousfunctionalrelations.

Time scaleconditionsprovide the criteria for selectingamongalternativelevels of detail in
our representation.They ensuremutual exclusionof a time scaleabstractionand its underlying
details. They alsoprovide the criteria for assessingsignificanceof influences. Once a time scale
for the model is chosen,theseconditionsdeterminethe appropriatelevel of model accuracyand
determinewhich processesshould be modeledby their dynamics andwhich shouldbe modeled
through time scaleabstractions. The next sectionshows how theseconditionsalsoprovide the
criteria for choosingthe appropriatetime scaleof the model.

3.2 Selecting Level of Detail

Our approachto time scaleselectionensuresthat the model includes the model fragmentsthat
relate the quantitiesof interest to behavioralconditions. This requires identifying the ways in
which quantitiesof interestinteractwith given quantities(quantitiesin behavioralconditions).

To representthe way in which two quantitiesinteract(i.e., through particularfunctional and
differentialinfluences),wefirst definean interactiongraphastheundirectedgraphcorresponding
to an influencegraph.Next, wedefinean interactionpath betweentwo quantitiesasapath in the
interactiongraphthat maycrossthe samenode(quantity)morethanoncebut thatmaynot cross
the sameedge(interaction) morethanonce. This definition allows loopsin aninteractionpath,
which is important for inclusionof feedbackioops. Although relationsin a modelfragmentmay
havecausaldirection, interactionsare undirected. As such,interactionpathsrepresentpotential
inferencepaths,but theyneednot correspondto causalpaths.Thisis importantbecauseinferences
neednot follow the directionof causality;for example,if x is afunctionof y andz, andthe values
of x andy are known,it maybe possibleto infer the valueof z. Two quantitiesarerelatedby an
interactionpathwheninformation about the valuesof oneconstrainsthe valuesof the other.

Given the interactiongraph for the model fragmentsof a question,our modeling algorithm
selectsa time scalewith the following steps:

1. Identify all the interaction paths linking any given quantity to any quantity of interest. For
efficiency, avoid generating paths having incompatible interactions (i.e., interactions with
mutually inconsistent time scale conditions).6

2. Associateeachof theseinteractionpathswith the set of time scalesfor which it is valid by
finding all domainknowledgetimescalesthat satisfythe conjunctionof time scaleconditions
of interactionson the path.

3. Associateeach quantity of interest with the time scalesat which it interacts with given
quantitiesby taking the union of the time scalesof its interactionpaths.

4. Form theintersectionof the setsof time scalesfor the quantitiesof interestto find the time
scalesfor which everyquantity of interestis connectedto somegiven quantities.

5. If the resultingset containsmore than onepossible time scale,chooseamongthem using
preferencecriteria. Our algorithm currently choosesthe largest (slowest)time scaleunder
the assumptionthat long-term trendsaremore important than transientbehaviorand that
slowertime scalescorrespondto time scaleabstractionsandhencesimplermodels.

6ldeally, the algorithm should also avoid generatingpaths containinginteractionswith mutually inconsistent
operatingconditions.
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For example,supposethe predictionquestionis “How would adecreasingamountof soil water
affect plant size and growth rate?” The quantitiesof interestin this questionaresize andgrowth
rateandthe given quantityis soil wateramount.The only time scaleat which thereis aconnection
betweensoil wateramount and size is that of growth,so this time scaleis selectedfor the model.

Alternatively,supposethe predictionquestionis “How would decreasingturgor pressureaffect
the ratesof K+ diffusion andK+ activetransport?” The quantitiesof interestin this questionare
K+ diffusion rateandK+ active transportrateandthe given quantity is turgorpressure.Figure1
showsthat connectingthe given quantity to eachquantity of interestrequiresa time scaleat least
as slow as solutebalancefor the ABA and K+ processes,andreasoningabout the dynamicsof
the K+ processesrequiresa time scalefasterthanplant water balance,so the time scaleof solute
balanceis selectedfor this model.

This algorithmselectsasingletimescaleat which to modelthe scenario.Thisis sufficient for a
largeclassof questions,but somequestionsrequirereasoningat different timescalesandcombining
the results.We havenot exploredthis issue;our programrecognizesthat no singletime scalewill
suffice andinforms the user. For relevantwork on this issue,seeKuipers [8] or Iwasaki [6].

In our representation,the chosentime scaledeterminesthe appropriatelevel of detail of the
model. Thosemodelfragmentswhosetime scaleconditionsare satisfiedby the chosentime scale
are all at the appropriatelevel of detail. The time scaleinteraction graph is the interaction
graph correspondingto thesemodel fragments. This interaction graph is usedto select the model
fragmentsto includein the model.

3.3 SelectingScope

While the influencesin the time scaleinteraction graph are all at an appropriatelevel of detail
for the question,many of them will be irrelevant to the question. The most important criterion
of relevanceis that the modelshould includethoseinfluencesthat lie along interactionpathsthat
relatequantitiesof interestto given quantities. However,this criterion aloneis insufficient.

In addition to including interactionpathslinking given quantitiesandquantities of interest, the
modelermust alsoreasonaboutthe effectsof given quantitieson the operatingconditionsof model
fragmentsin the model. Thus far we haveignoredoperatingconditions. However,at each stage
of simulation (or other analysisof the model), the analysismodule must determinewhetherthe
operatingconditionsof eachmodelfragmentin the modelare satisfied.To ensurethat the model
containsthe informationnecessaryto makethis assessment,the modelmustincludeanyinteraction
pathsthat connectagiven quantity to aquantity in the operatingconditionsof amodel fragment
in the model. For example,if oneof the model fragmentsrelevant to the growth questionhasin
its operatingconditionsaquantity q that is influenced by soil water amount,this influencemust
be included in the model; otherwise,as soil water amount changes,the model would erroneously
predict that q (andthe validity of the model fragment)remainsunchanged.

The final criterion for relevanceis the following: including one influencein the model may
require including others. For instance,influencesin QualitativeProcessTheory representpieces
of an equation. If the model includes any functional influenceson a quantity, it must include
all functional influenceson that quantity whosetime scaleconditionsaresatisfiedby the selected
time scale(similarly for differentialinfluences).For example,amodel cannotincludethe effect of
wateruptakeon apoplastwaterwithout including the effect of transpiration,sincetheseinfluences
togetherdeterminechangesin apoplastwater. When oneinfluenceis relevantif andonly if another
influenceis relevant,we will say that they arerelevanceequivalent.

We combineall theseconsiderationsinto adefinition of relevanceof influencesas follows:
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1. An influenceis relevantif it lies on an interactionpathfrom a given quantity to aquantity
of interestin the time scaleinteractiongraph.

2. An influence in the time scaleinteractiongraph is relevant if it is relevanceequivalentto a
relevantinfluence.

3. An influenceis relevantif it lies on an interactionpath (in the time scaleinteractiongraph)
from agiven quantity to aquantity in the operatingconditionsof amodelfragmentcontaining
arelevantinfluence.

4. No otherinfluencesarerelevant.

Every modelfragmentcontainingarelevantinfluenceis includedin the model.
Figures 2 and 3 show the relevant influences for the prediction questionsaboutgrowth and

potassiumtransport.In theseexamples,all relevantinfluencescomefrom clause1 of the relevance
definition. Figure3, in particular,showsthat the selectionof scopeeliminatesirrelevantinfluences
from the time scaleinteractiongraph. The influencesof soil water amounton water uptakerate,
symplastwateramounton turgorpressure,andstomatalopeningon transpirationrateareall valid
at the time scaleof growth,but nonearerelevantto the question.

3.4 Current Status

The modelingalgorithmpresentedin this sectionhasbeenimplementedandrun on the examples
in this sectionaswell asother smallexamples.On the examplesin this section,the programtakes
a few minuteson an Explorer I Lisp Machine. We have simulatedeach of the examplemodels
in this sectionusing the QualitativeProcessCompiler (QPC) [1]; this requiredus to provide, for
eachmodel,additionalconstraintson the rangesof quantities(e.g.,amountsmust be non-negative)
andinitial conditionsthat wewould expectaquery interpreterto select (basedon defaults).QPC
successfullysimulatedtheseexamples,producingasmall set of reasonablebehaviors.7

4 Discussion

Our modelingalgorithmextendsexistingmodelingmethodsby exploitingtheinteractionpathsthat
relatequantitiesof interestto the behavioralconditionsof the scenario.The algorithmidentifiesa
time scaleat which quantitiesof interestandgiven quantitiesinteract.This time scaledetermines
which influencesare insignificant, and it determineswhich processescan be modeledwith time
scaleabstractions. Our relevancecriteria determinea scope that includes thoseinfluences that
relate quantitiesof interest to given quantitieswhile excluding other influences, The relevance
criteria alsodeterminethe quantitiesin the scenariothat can be treatedas exogenousfor purposes
of the question. This modeling algorithm demonstratesthe benefitsprovided by identification of
interactionpaths.

Our method of selectinga time scalecan be easily generalizedto select amongother types
of modeling alternatives. Many modeling decisions,such as whether to model a processor its
subprocesses,cannotbe madebasedon the time scaleof analysis.In anotherpaper[12], we show
how the methodsdescribedin this paper can be used to selectamongany modelingalternatives
that canbe encodedin the assumptionclassrepresentationof FalkenhainerandForbus[3]. We are
currently applyingthesemethodsto automaticconstructionof modelsfrom the Botany Knowledge
Base[11], which includesover 200 processesdescribedat many different levels of detail.

7The experimentswith QPC were run with thehelp of Adam Farquhar.
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Figure 2: The relevantinfluencesfor the predictionquestion“How would a decreasingamountof
soil water affect plant size and growth rate?”
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Figure 3: The relevant influences for the prediction question “How would decreasing turgor pressure
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Therearetwo importantdimensionsof researchin automatedmodeling:modelingcriteria and
searchefficiency. Researchon modeling criteria attacksthe questionof what constitutesagood
model;suchresearchidentifiestheconstraintsandpreferencesamodelshouldsatisfy. Our research
has beenprimarily aimed at this issue. However,within the spaceof models defined by these
constraintsandpreferences,amodelermust searchfor the bestmodelin an efficient manner.Our
current, naive algorithmsearchesexhaustivelythroughinteractionpaths. This approachwill be
unnecessarilyexpensivein a largeknowledgebase,so we areinvestigatingways of focusing the
searchfor relevantinteractionpaths.

Finally, the modelingcriteria discussedin this papermust be integratedwith other modeling
criteria. An effective modeler must exploit many sourcesof knowledge, including knowledgeof
the user’s background,the context of the question,and feedbackfrom analysisthat can identify
modelingerrorsthat would be difficult to anticipate.The work describedin this paperhasfocused
on the importantguidancethat interactionpaths canprovidefor modelingdecisions.
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