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A Constructive Approach to Qualitative Fuzzy Simulation

1. Introduction

In this paper we present a new approach for qualitative fuzzy simulation (QFSIM) inspired by
numerical simulation methods. Current qualitative simulation methods [FOU-90] are based on
constraint propagation. They generate all possible states and use filtering techniques to validate
these states. A recent direction has been to add numerical information and take advantage of it in
the filtering process, the basic algorithm remaining the same [BER-90][SHE-90].

An alternative approach, which has never been investigated so far, is to extend conventional
numerical methods in such a way that they can handle equations with inaccurate coefficients.
Within our approach, inaccuracy is captured by variables and coefficients represented by fuzzy
numbers, inducing that the results of the simulation are expressed in the fuzzy formalism as well.
This type of simulation relies on a 'constructive' algorithm in the sense that the new state value is
calculated from the last value. Compared to qualitative simulation with added numerical data
[BER-90][SHE-90], it presents the advantage to be synchronised on a precise time scale. The
time step size is constant and precisely defined like in conventional numeric simulations and the
inaccuracy of the model only affects the scale of variable values. This provides a firmer ground
for comparing the results of the simulation with real observations, which is crucial in supervisory
systems we are interested in.

Our first attempt was to use Euler's method extended to conventional fuzzy operators based on
the Extension Principle [ZAD-65]. This simulation produced too much spurious behaviors,
mainly because of the strong interactivity among the variables [VES-91a,b].

The two methods proposed in this paper, namely the Extremity Method and the Discretization
Method, produce better results. The first one is complete but not sound, eventhough it produces
much less spurious results than the one mentioned before. On the other hand, the second one is
sound and it converges towards completness as the discretization is refined. Soundness and
completness are understood with respect to variables instantaneous values. Indeed, these
methods specify the possible values of the variables at each instant. Global behaviors of each
variable (sequences of qualitative states on a given simulation window) are not directly available
from the simulation. A procedure (OBG) based on the Discretization Method is presented in the
last section to generate the set of global qualitative behaviors from the results of the simulation.
Qualitative states are defined over fuzzy time intervals.

QFSIM and OBG have been prototyped in Common-Lisp on a Sun workstation. The man-
machine interface is realised with Suntools and the simulated curves are drawn on an Apple
Macintosh with Works.

2. Preliminaries

The variables and coefficients of the equations are assumed to take their values in a Qualitative
Fuzzy Quantity Space (OFQS) [SHE-90]. A qualitative fuzzy value (gfv) is defined as a

S-wple [Q, a, b, a, B] (see Figure 2.1), where Q is the symbol associated to the gfv and (ab o
B) the fuzzy quantity M with membership function pM(u) defined as : (see [DUB-80])

UM (u)=1lifagu<b

UM () =0ifu<(a-a)oruz(b+B)
LLM(u)zoc'1 (u-a+oa)ifa-a<u<a
UM @) =81 (u+b+B)ifb<u<b+B
where (2, b)e R,a<h, a,B320.
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A Constructive Approach to Qualitative Fuzzy Simulation

The 4 values a, b, a - o et b + B of a fuzzy quantity (a b o B) are called the "extremities”. The
QFQS is a set of gfv corresponding to a finite discretization of the whole numeric range of
interest of the variable. Such representation of qualitative values extends interval representations
by including the idea of "preference”. Smooth boundaries are usefull in capturing our commom
sense intuition (see discussions in [SHE-90]). The simulation is performed with the fuzzy
quantities of the coefficients. The fuzzy results of the simulation are then brought back to the
QFQS by using the Approximation Principle [YAG-87]. This principle relies on determining the
set of gfv’s which intersect the fuzzy value. If the intersection is more than one gfv, distances
between the fuzzy value and each gfv are calculated. The closest gfv is selected.

H(x
1
Small ‘>< Medium Y Big
0 B
0 20 22 30 35 %
Fig. 2.1 - A Qualitative Fuzzy Quantity Space.
The Reduction

Following the Compositional Principle [DEK-84], our approach starts from the model of the
components defined by a zero or first order differential equation with coefficients taking values in
a QFQS. The Static Set contains the zero order equations and the Dynamic Set contains the first
order equations (in canonical form [TWA-88]). These sets together correspond to a self-contained
mixed structure [TWA-88].

The Reduction Procedure transforms the mixed structure in a single qualitative differential
equation (gde). An example of reduction is shown below :

*———qu Q - Input Flow

l Qo - Output Flow
\Y Qo P - Pressure
p —

V - Volume
Mixed Structure Single Differential Equation (gde)
Q-Qo=dV/dt Reduction dV/idt + k. V=Q
P=kl.V e = with k =kl .k2
Qo=k2.P

Fig. 2.2 - Reduction of the mixed structure representing the bathtub.

The fuzzy value of the gde coefficients are determined by using fuzzy arithmetic operations
[ZAD-65]. In the bathtub example above, k = k1 . k2, where . is the fuzzy multiplication. At this
stage, it is assumed that the coefficients appearing in the mixed structure do not interact. Hence
the unaccuracy captured in the mixed structure is entirely preserved in the gde.
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3. Qualitative Fuzzy Simulation - QFSIM

The goal of QFSIM is to determine the gfv of the variables at each instant. Two methods for a
constructive fuzzy simulation algorithm are presented : the Extremity Method and the
Discretization Method. Both apply to first and second order gde’s [VES-91a,b]. Because of
space constraints, the Extremity Method will be applied to a first order system and the
Discretization Method to a second order system.

3.1. The Extremity Method

In our first attempt to @QFSIM the Euler's method was extended to conventional fuzzy operators.
These fuzzy operations accord to the Extension Principle [ZAD-65] for non-interactive variables,

ie.: Vw,uf M,N (W) = sup {min (UM(u), UN(v)) : w = f(u, v)}. As it could be foreseen, this

simulation produced too much spurious behaviors, being complete but not sound. The main
reason is the strong interactivity among the variables which comes with The Extended Extension

Principle framework, i.e. V w, W'f pj N D (W) = sup {min (UM(u), uN(V)) : w = f(u, v), (u, v)
€ D}, where D specifies the relation between u and v.

The Extremity Method precisely focuses on the interactivity among the variables. For example, in
the first order system dX/dt + kX = f(t), there is a strong relation between X and its derivative
dX/dt (dX/dt = f(t) - kX). As these variables take part in the same operation X(t + dt) = X(t) + dt
. dX/dt(t) in Euler's method, undesirable side effects are encountered.

The Extremity Method uses the extremities a, b, a - o et b + B of a fuzzy quantity (a b o B). The

objective is to garantee that at each simulation step the possible values of the variable are within
the calculated extremities. In other words, the method must be complete, producing the least
number of spurious values at each time point.

3.1.1. Application to First Order Systems

The Extremity Method applied to the first order system dX/dt + k.X = f(t), where k belongs to

the fuzzy quantity K = (a b o B), is presented below. The method successively calculates
X(tg+dt), X(to+2dt), etc. The initial values ty and X(tg) and the time step dt are given. The

following illustrates how the method provides X(t') = (xm' xM' ¥ 8") with t' = t+dt from X(t) =
(xm xM v §).

(1) Calculate the intervals X1, X2, X3 and X4 with the extremities of X(t), i.e. xm, xM, (xm -
Y) and (xM + ) respectively.

Let us set X(t) = (xm xM v 8), K = (a b o B), f(t) = (fm fM fo £8) and dt be a real number. The
arithmetic operators +, - and . are fuzzy operators based on the extension principle.

X1 =xImxIMO00)

=(xmxm00)+[dt. [((fmfM00)-[(ab00). (xmxm00)]]]
X2 = (x2m x2M 0 0)

=(xMxMOO) +[dt. [(fmfM00)-[(ab00).(xM xM 0 0)]]]
X3 =x3mx3M00)

= (xm-y xm-Y 0 0) + [dt . [(fm-fo fM+B 0 0) - [(a- b+B8 0 0) . (xm-y xm-y 0 0)]]]
X4 = (x4m x4M 0 0)

= (xM+6 xM+3 0 0) + [dt . [(fm-far M+£B8 0 0) - [(a-0t b+B 0 0) . (xM+8 xM+8 0 0)]1]
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Figure 3.1 shows a simple case in which the intervals X1, X2, X3 and X4 do not intersect.

A

% x4M = xM' + 6'
XM+ <
x4m
X2M = xM'

xM <
X2m
xIM
Xm <

xIm=xm'
x3M

xm- Y <

x3m=xm' - 7Y

t t = t+dt

Fig. 3.1 - The Extremity Method.

(2) Compose the fuzzy quantity X(t') = X(t + dt) = (xm' xM'y' §") :

xm' = min (x1m, x2m)

xM' = max (x1M, x2M)

Y = xm' - min (x3m, x4m)
d' = max (x3M, x4M) - xM'

3.1.2. Example and Discussion

Figure 3.2 shows the application of the method to the first order system with K = (0.2 0.3 0.1
0.1)and f(t) = 10if0<t<14,-10if t > 14.
X = (xm xMY 9)
100 - X . . .
80 |-
60 |-
40 |-
20 |-
O-(
-20_ .
-40
-60_ .
-80_ .

=3

-100=tk I ! I i 1 i i i f
0 5 15 25 35 45

Fig. 3.2 - Fuzzy simulation with the Extremity Method.
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It was proved in [VES-91a,b] that the Extremity Method applied to the first and second order
systems is complete. Although the method is not sound, it produces much better results than the
fuzzy extended Euler's method. The main drawback of the method is the difficulty to be
generalized to more complex systems in which the relations between the variables and their
derivatives are more complicated.

3.2. The Discretization Method

The Discretization Method consists in discretizing the fuzzy quantities into a set of real numbers,
then successively apply the current Euler's method with every of these numbers (or with every
two-per-two combination of discretised values when dealing with second order systems). The
results of these simulations are used in a second step to compose the fuzzy solution.

3.2.1. Application to Second Order Systems

In this section we present the Discretization Method applied to the second order system d2X/dr2
+ k.dX/dt + j.X = f(t), where k belongs to the fuzzy quantity K = (a b o B) and j belongs to the
fuzzy quantity J = (cd ¢ y).

(1) Discretise the fuzzy quantities K and J and generate the two following sets of real pairs,
called the discretization sets. The first set KJ1 contains pairs (k1,j1) such that membership

functions pK(kl) = 1 and pJ(j1) = 1. The second set KJO contains pairs (k0,jO) such that
membership functions PK(k0) > 0 and pJ(G0) > 0.

K=(baB)andI=(cdovy)
KJ1 ¢ {(k1,j1)/kl,jle R,a<kl <b,c<jl <d}
KIOcC {(k0,j0)/k0,j0e R,(a-a)SkO<(b+B),(c-9)<jO<(d + )}

Obviously KJ1 ¢ KJO. By sick of clarity, the details for determining the discretization sets are
provided in Section 3.2.2.

(2) Apply Euler's method to each pair (kj j;) that belongs to KJO:

for all (k, j;) € KJO, dx/dt(t, k;, j;) = v(t, ki, ;)

x(to, ki, jj) = X(10)

v(to, ki, j;) = dX/dt(t0)

x(t+dt, ki, Ji) = x(t, kj, ji) + dt . v(t, k;, jp)

v(t+de, kj, ji) = v(t, ki, §i) +dt [ £(0) - §i - x(@ kg, §1) - K - vt K, §7)

X
XM
/] \ /N A
v </ -
: Xm = min x(t,k1,j1), (k1,j1)e KJ1
/ XM = max x(tk1,j1), (k1,j))eKJ1
: Xm
0 . :‘ - : . t

Fig. 3.3 - Fuzzy simulation with the Discretisation Method.
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(3) Compose the fuzzy solution X :

X(1) = (Xm XM v )

Xm = min x(t, k1, j1), (k1, j1) € KJ1
XM = max x(t, k1, j1), (k1, j1) € KJ1

v = Xm - min x(t, k0, jO), (k0, j0) € KJO
& = max x(t, k0, jO) - XM, (k0, j0) € KJO

3.2.2. The Discretization Procedure

It was proved in [VES-91a,b] that the Discretization Method is sound and converges towards
completness as the discretization is refined. The method is not complete in practical finite
discretization cases but the particular way of discretizing may significantly influence the results.
This section presents a procedure to discretise the fuzzy coefficients in a constructive way.

Consider the second order system d2X/dt2 + k.dX/dt +j.X = £(t), where k belongs to the fuzzy
quantity K = (a b o 8) and j belongs to the fuzzy quantity J = (c d ¢ ), then the qualitative

nature of the solutions is determined by the roots A1 and A2 of the characteristic equation A2+ kA
+]j = 0. Assuming that j # 0, eight cases must be considered : (see Figure 3.4)

: A1 and A2 are complex on the right half-plane (¢ > 0)

: A1 and A2 are complex on the axis jw (¢ = 0)

: A1 and A2 are complex on the left half-plane (¢ < 0)

A1 =22 (A = [k2 - 4j]1/2 = 0) is a real on the left half-plane (6 < 0)

: A1 and A2 are reals on the left half-plane (o < 0)

: A1 and A2 are reals, A1 on the right half-plane and A2 on the left half-plane
: Al and A2 are reals on the right half-plane (¢ > 0)

A1 =22 (A = [k? - 4j]11/2 = 0) is a real on the right half-plane (¢ > 0)

T QMmoo ow >

Figure 3.4 shows the phase space analysis of cases B, C, E and F, corresponding to different
qualitative behaviors for the variable X.

P

Fig. 3.4 - Phase space analysis of cases B,C,E and F.
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Figure 3.5 shows the eight regions A to H in the plane j x k (k is the horizontal axis and j is the
vertical axis). The curves (A = k2 - 4 =0), G=0)and (k =0,j>0) delimit the different
regions. Since the coefficients j and k take their values () > 0) in the intervals [a - ¢, b + B] and
[c- @, d + y] respectively, different qualitative behaviors are possible depending on the regions
intersected by these intervals. For example, if (a - a) and (c - @) are negative, and if (b + B) and
(d + y) are positive, all cases A to H are possible.

region B curve A=0

region H region A
region G

region F

Fig. 3.5 - Regions A to H in the plane j x k.

The Discretization Procedure chooses the pairs (k, j) from the intervals [a - o, b + 8] and [c - @,
d + y] in the following way :

(1) It garantees that any possible qualitative behavior will be simulated at least once.

(2) It chooses the pairs (k, j) according to the surface intersecting each of the regions A to H. The
number of pairs (k, j) is proportional to the surface.

For example, considering the case in which (a - ), (¢ - @), (b + B) and (d + ) are all positive,

then the whole surface S = [(b + B) - (a - )] . [(d + ¥) - (c - @)] is in the right upper quadrant
and it intersects regions C, D and E. If N is the desired number of discretizations, the procedure
selects :

* NE pairs (k, j) in region E,
where Ng =((N-1). Surface_in_E)/S
Surface_in_E = 1/12 [(b + 8)3 -(a- (x)3] -[c-9). b+B-a+w)];

* Np = 1 pair (k, j) in region D;

» N pairs (k, j) in region C,
where N =((N-1). Surface_in_C)/S
Surface_in_C=[(d+y).(b+B-a+]- 1/12[(b+B8)3 - @- w3].
The Discretisation Procedure determines which regions are intersected, calculates the number of

pairs (k, j) in each region and selects the pairs. Additionally, two heuristics are used by the
procedure to select the pairs :

(1) take frontier points;
(2) take the points as much spread as possible.

Let us notice that in case of first order systems the Discretization Procedure is restricted to
selecting the values of one single coefficient as much spread as possible.
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4. Qualitative Behaviors Generation

The Qualitative Fuzzy Simulation QFSIM determines the gfv of the variables at each instant. The
fuzzy value represents the possible (1L > 0) and the really possible (1 = 1) values of the variable.
Now, should we aim at providing the possible qualitative behaviors of the variables as well, i.e.
the sequences of different qualitative states, that QFSIM is not sufficient. If we consider the
example in Figure 4.1, it could be concluded that the sequence BIG-MEDIUM-BIG between t
= 10 and t = 12 is a possible behavior for variable X. Indeed X(10) = BIG, X(11) = MEDIUM
and X(12) = BIG are possible values of X. However, there is no real solution corresponding to
this qualitative behavior.

X=(abaf)

BIG -

MEDIUM

e - - - b+B
= = m D
i ©- € a
© SMALT .

L
ol

-

0 5 15 25 35
Fig. 4.1 - A fuzzy simulation.

The set of possible qualitative behaviors is shown in Figure 4.2. The meaning of Ipl and In0
will be specified later.

t5 <13
6> t4

Tul =0
Tuo = (11 12)

= D oo~ (S~ o>

Fig. 4.2 - The possible qualitative behaviors.

These are the results provided by the "Qualitative Behavior Generator” OBG when applied to the
first order system dX/dt + k.X = f(t), where k is the gfv [K, a, b, ., B].
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4.1. The Qualitative Behavior Generator QBG
This section presents the detailed description of the method used by OBG. It is based on the

Discretization Method presented in Section 3.2. For sick of clarity, the method is presented for
first order systems (one single coefficient k) but BG can handle second order systems as well.

(1) Consider the results of the Discretization Method and for all k; in the discretization set KO
{kO/kOe R, (a - o) <k0 < (b + B)}, build the qualitative behavior QB(k;) of variable X.

Notations :

QB(k;) = Sequence of QS : Qualitative Behavior of X, calculated with the real coefficient kj

QS = (QD, TuO; , Tuly) : Qualitative State
: Qualitative Descriptor
Qx(t, ky)) : Qualitative value (or description) of x(t, kj) at instant t
Tuo; = [tl, 2] : Maximal time interval for which the QS is possible (u>0)
Tul; = [t1, t2] : Maximal time interval for which the QS is really possible (i=1)

For each kj the procedure proceeds to a real simulation for initial time < t < horizon, determining
x(t, kj). Qualitative values Q(x(t, kj)) are derived from the real values x(t, kj) using the
approximation principle presented in Section 2. The procedure then uses these values Q(x(t, k;))
to compose QB(k;). There is a change of qualitative state each time that the QD changes. The
algorithm garantees qualitative continuity [VES-91a].

Two time intervals TpO; and T1; are associated to each QS in QB(k;). A QS is possible (u>0)
during the interval TUO; and is really possible (u=1) during the interval Tplj. Given T the
connex time interval during which some QD holds in a particular QB(k;), Tu0; and Tul; are

calculated in the following way : if kj € K1 then Tu0; = Tulj = T, otherwise, if kj € KO - K1

then TpO; = T and Tl = &. These intervals TuO; and Tl calculated for each QS of a
particular QB(k;) will then be used in step (3) to calculate the intervals TpO0 and Tyl of each QS
of a QB of variable X.

(2) Build the set SQB of qualitative behaviors of variable X.

Notations :

SQB  :Setof QBs
QB : Qualitative Behavior (Sequence of QS)

Each QB(kj) is characterized by a sequence of qualitative descriptors (QD) with associated
possible and really possible time intervals. There will be as much QBs in SQB as there are
different sequences of descriptors. All the QB(k;)s having the same sequence of descriptors are
composed in the same QB. This is illustrated by the example below with two QB(k;)s :

QB(k1) = (QSD!,Tu01 1, T111)(QSD2, Tpo;2, Tr142))
QB(kp) = (QSD1,Tu0y1, Ti71)(QSD2, Tu0,2, Tui2))

The QB resulting from the composition of QB(k1) and QB(k») is :

QB = ((QSDL,Tuol, Tu11)(QSD2, TpoZ, Ti2))

where TuQj = Ui THOij’ Tul = Ui Tulija for1i,j = 1, 2 in our example.
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It is important to notice that the Discretization Procedure as described in Section 3.2.2.
guarantees that OBG will detect all the qualitatively different behaviors (oscillations, asymptoucal
trend, ...). In this meaning, OBG is complete and sound.

4.2. Example

In Figure 4.1 illustrates the example of a qualitative fuzzy simulation of the first order system
with coefficient k = [SMALL, 0.2, 0.3, 0, 0] and f(t) = 10if 0 <t < 14 and f(t) =-10 if t > 14.

X MEDIUM-POS

+ - | | | ] | ! | | |
-90 5 10 15 20 25 30 35 40 45

Fig. 4.3 - A qualitative fuzzy simulation of a first order system.

OBG derived the following two possible qualitative behaviors :

Behavior 1

ZERO ® SMALL-POS ® ZERO ® SMALL-NEG B
Tud (00) (1 16) ((15 15)(16 16)) (15 45)
Behavigr 2

ZERO ® SMALL-POS ® MEDIUM-POS = SMALL-POS
Tuo (00) (111) (8 13) (14 15)

® ZFRO = SMALL-NEG ® MEDIUM-NEG B
Tpo (16 16) (16 27) (24 45)
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5. Conclusions and future work .

The work that we have presented in this paper is used in a dynamic process supervisory system.
It shows two complementary aspects, appearing as two separate procedures, which provide
complementary answers to supervision system requirements. Given the model of the process in
which the parameters are not accurately known, the two following issues have been addressed :

(1) Predicting the values that the variables may take at each instant of a given temporal window,
the scale for the variable time remaining precisely defined. QFSIM provides two simulation
methods for which variable intantaneous values are obtained in the form of fuzzy sets which
exibit possible values and really possible values, depending on whether the membership function
is equal or inferior to 1. '

(2) Predicting the qualitative behavior of the variables in terms of a sequence of qualitative
descriptors that have been appropriately defined. The qualitative reasoner QBG uses the
Discretisation Method to generate all the qualitative behaviors. Temporal information is also
available since every qualitative descriptor in the sequence has associated two fuzzy time
intervals, indicating the possible and really possible state duration as well as the initial and final
time points.

In our opinion, these two aspects are as important and definitely complementary. It is enough to
take the example of model-based diagnostic systems based on the comparison of predictions and
observations. Indeed it may be as important to be able to compare instantaneous values on
several precise reference time points as trajectory qualitative shapes on a given temporal window
and qualitative state changes.

The type of simulation presented in this paper uses synchronised sampling, in accordance with
most industrial process monitoring systems which proceed themselves to sampled observations.
Tracking the process is thus significantly facilitated. The time sample rate is a constant parameter
to be chosen like in conventional numeric simulations. Then the inaccuracy of parameters in the
model only affects variable values estimates. That provides a firmer ground for again comparing
the results of the simulation with real observations, which is crucial in real time supervisory
systems. In non constructive qualitative simulation algorithms, temporal durations are calculated
with the first order Taylor-Lagrange formulae using quantity space values in the form of numeric
or fuzzy intervals. It was shown in [MIS-90] that the first order Taylor-Lagrange formulae is
scarcely sufficient to provide significant information. This is true, independently of the weakness
directly related to a weak quantity space, at the neighbourhood of critical points for which dx/dt
reaches zero. Indeed, zero derivative leads to one infinite boundary for the duration estimate. As
aresult, time durations calculated for adjacent states are often widely overlapped. It may happen
that a given instant belongs to several consecutive duration estimates, implying that the value of
the variable at this instant is very weakly constrained. In this cases, instantaneous value
comparison is mostly unefficient.

On the other hand, we are aware that the counterpart of this type of approach is to require much
more calculations than a qualitative reasoner would need to infer the qualitative state changes. In
this aspect it is closer to numerical simulation algorithms.

Finally, it may be interesting to discuss the completness and soundness issue. Other approaches
are unable to guaranty soundness. Indeed, they use constraint propagation with interval labels
which is complete but not sound. Consequently, spurious behaviors may be generated. The same
happens with our Extremity Method. The Discretisation Method which relies on running several
well-chosen numerical simulations is sound, but it is in turn not complete. However, it is
possible to provide a measure of completness as it converges towards completeness as the
discretization granularity increases. The complexity of the method is N(+1) where N is the
number of discretizations and n is the order of the system. Since the discretization is performed
in a rational and constructive way, OBG is itself complete in the sense that it predicts all the
qualitatively different behaviors (oscillations, asymptotical trend, ...).
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FQSIM is presently used to simulate the behavior of a steel process at CST ("Companhia
Siderurgica de Tubarao”) which is a Brazilian-Japanese company located in Vitoria (Brazil). It
consist of three subsystems in cascade: one is a second order system and the other two are first
order piecewise linear systems with delays. At this point the results are rather encouraging.
However, significant work remains to be done before QFSIM and QBG can deal with real
complexity problems. An important step in this direction is to extend the algorithms so that they
can deal with non linear systems. We have been analysing non linear systems which can be
approximated by piecewise linear ones. Further investigations may consider the idea to use the
Discretization Method by taking advantage of the work by Sacks [SAC-90]. Indeed, [SAC-90]
presents the system PLR (Piecewise Linear Reasoner) which is able, applying theoretical
methods issued from system theory, to produce a qualitative description of the solutions for all
initial values of parametrized ordinary differential equations. PLR indicates the types of the
solutions (phase space trajectory shapes), giving important information about the variables
behavior but it does not generate these behaviors. We intend to have QFSIM generating these
behaviors with a rational and constructive discretization procedure based on PLR's results.
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