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Abstract. The Qualitative Modelling and Interpretation (QMI) system translates noisy sensor data
into a qualitative description of the underlying behavior of a chemical plant and uses this
information together with qualitative models to identify faults and operating regimes. Qualitative
models of normal and faulty equipment are simulated to describe the range of possible behaviors in
a chemical plant without the need for exact numeric models which are unavailable for many faults.
Sensor data are then used to select between different models. Simultaneously using interpretations
from multiple sensors reduces sensitivity to sensor noise, increasing diagnosis reliability. QMI
has been implemented on a simulated propylene glycol reactor with good results.
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INTRODUCTION

Qualitative Modelling and Interpretation (QMI) is an on-
line process monitoring system which combines
quantitative change detection with qualitative modelling
to diagnose faults in chemical plants. QMI translates
sensor readings to a qualitative description where each
variable is characterized by its relation to landmark
values (e.g. zero, boiling point, equilibrium mole
fraction) and the sign of its derivative. These sensor
interpretations are compared to simulations of multiple
qualitative models in order to find the model which
matches the observed behavior.

Many process monitoring systems have been developed
which detect and diagnose potentially costly or dangerous
situations. Two common numerical methods are change
detection, typically using alarm thresholds, and model
selection. Because incoming data from sensors is
generally noisy, alarm thresholds for single sensor
detection methods must be set to balance between quick
detection with frequent false alarms and infrequent false
alarms with slower detection. Traditionally, alarm
thresholds are set to eliminate false alarms. More
sophisticated alarm threshold techniques include
Shewhart and cumulative sum (CUSUM) control charts
which are statistical tests for the determination of a
change from expected behavior (Bowker, 1972; Box,
1970; Shewhart, 1931).

In contrast, model selection methods fit incoming data
from single or multiple sensors to detailed plant models
via techniques such as Kalman filtering or non-linear
programming (Frank, 1990; Isermann, 1984; Willsky,
1976). The model which best fits the data is considered

" 1o be the current model of the plant, and thus the
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diagnosis. To achieve a wide coverage of faults and
operating conditions, quantitative models must be built
which describe all possible situations, including several
magnitudes of the same type of faults, such as 10%,
40% and 80% leaks. Unfortunately, quantitative models
are often unavailable for changes which take the plant
into unknown or transient operations, such as during
start-up and shutdown procedures.

Qualitative monitoring and diagnosis systems avoid the
need for quantitative models by describing plant data in
qualitative terms: values may be high, normal or low,
and trends may be increasing, steady, or decreasing. This
qualitative interpretation is used to determine the causes
of changes in the plant. Rule-based or expert systems
map these symptoms directly to causes via rules
obtained from process experts (Ramesh, Davis and
Schwenzer, 1992; Venkatasubramanian and Rich, 1988).
Rule-based systems do not require a plant model,
however they do require a multitude of rules to cover all
possible faults in a chemical plant and have difficulties
with unexpected operations or new equipment. In
contrast, model-based diagnosis systems examine a
qualitative plant model to determine what changes
(faults) in the model could have caused the observed



symptoms. Recently, several investigators have started
combining numerical and qualitative methods, either by
using quantitative information o constrain qualitative
models (DeCoste, 1990; Dvorak and Kuipers, 1991;
Berleant and Kuipers , 1990; Forbus, 1987), or by
mixing qualitative and quantitative models to get a better
description of the physical system (Forbus and
Falkenhainer, 1990; Oyeleye, Finch and Kramer, 1990;
Yu and Lee, 1991).

The Qualitative Modelling and Interpretation (QMI)
system combines both detection and diagnosis into one
package which borrows from both numerical and
qualitative methods. Multiple sensors are analyzed and
compared to known qualitative models of the plant, and
that model which fits best is taken o be the current
model of the plant. Tighter tolerances can be set on
individual sensors because QMI filters out aphysical
interpretations which may be suggested in single sensor
methods such as alarm thresholds and control charts,
allowing earlier diagnosis of process disturbances
without causing more false alarms. Use of qualitative
models also permits diagnosing a range of faults and
behaviors for which exact equations are not known.
QMI has been tested on a simulated continuous stirred
tank reactor and gives relatively rapid and accurate

diagnoses.

QUALITATIVE MODELS

In qualitative modelling, an entire class of faults is
described with a single model, rather than by several
quantitative models with different numeric values of
parameters. This approach is useful when the magnitude
of the fault is unknown and plant behavior may vary
with the size of the fault. For example, a "small” leak
from a tank may be compensated for by a controller, but
a larger leak may cause the controller to saturate.

Qualitative models use qualitative equations o describe
how variables change with respect 10 one another (e.g. in
laminar flow, flow rate is proportional to pressure drop).
Variables are described by the sign of their slope and
relation to landmarks (e.g. mole fraction has the
landmarks of zero, one and perhaps equilibrium). The
description of all the variables in the system is called the
qualitative state of the system (e.g. water temperature is
increasing and between freezing and boiling points, and
the amount of water is steady and positive). QMI uses
the QSIM qualitative simulation package (Kuipers,
1986) to "solve” the qualitative models, producing a
“tree” of behaviors for the models, as shown in Fig. 1.
Each behavior or path through the tree is a series of
qualitative states.
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For example, in Fig. 1, State 1 is the steady state
operation of a level controlled, water cooled CSTR and
states 2 and 3 are induced changes to the system with the
subsequent states being the reaction to these changes.
State 2 is the onset of a tank leak, where temperature and
concentration are still steady, but tank level and outlet
flow have begun to decrease in response to the leak; and
state 3 is a change in the inlet flow rate. State 4
describes the qualitative state where temperature and
concentration have begun to react to the change in
reactor level, with temperature decreasing and reactant
concentration increasing. State 7 is the qualitative state
where the controller has begun to react to the level
change, but the level and outlet flow rates are still
decreasing. Behaviors branching from state 7 include
retum to set point or saturation of the controller.
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Fig. 1. Sample behavior tree

Qualitative modelling of chemical plants is an area of
active research. For example, Dalle Molle and
colleagues (1988, 1989) have modelled chemical reaction
systems and proportional-integral level control using
QSIM. Vinson, Grantham and Ungar (1992) have
modelled a chemical plant consisting of heat exchangers,
& reactor, a stripper and a condenser using the Qualitative
Process Theory framework (Forbus, 1984), and Oyeleye
and colleagues (1990) have modelled a jacketed CSTR
for application in MIDAS, a fault diagnosis system.
‘When building models of more complex systems the
number of solutions can get quite large, thus care must
be taken to limit the number of solutions without
eliminating real behaviors (Kuipers and Chiu, 1987,
Catino, 1991).

QMI ALGORITHM

The QMI algorithm conducts two operations on-line: 1)
It translates noisy sensor data into a qualitative
description, and 2) it compares this interpretation to the
behaviors predicted by the gualitative models.
Qualitative simulation of the models is done beforehand,
so the behavior tree is always available to QMI. The
algorithm is shown in Fig. 2.
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Fig. 2 Qualitative Modelling and Interpretation Algorithm

Qualitative interpretation of the incoming data is done
by finding the best fit line through the incoming data
with linear least squares. The estimate of the slope is
then given a measure of belief (zero - one) that it is
positive, zero or negative via the ad-hoc functions:1

. 1
ing) =
N 1
l+e cutof
1
agee) =
p(dec) a-(1+ .,op)
l+e cutof

p(ud) = 1- p(inc)— p(dec) |

where o is used to adjust the slope of the curves and
cutoff is the inflection point. Large values of a (> 10)
yield on-off functions which trip at the cutoff value, and
small values (~ 1) give flat curves. We use o= 5 inour
simulations. The cutoff is set from knowledge of the
noise in the signal so that a value of p(std), p(inc) or
p(dec) greater than 0.5 indicates that the current
interpretation is probably correct.

In order o speed detection and eliminate false alarms, the
beliefs in the intespretations of several sensors are
multiplied to yield an overall belief in the interpretation

1 We have examined the use of statistical analysis
techniques in determining the confidence in the signof a
given slope, but have found them to be limited in that
there is only one hypothesis to test; whether the slope is
zero. In statistics, there is no ability to test for a
number being greater than zero without specifying the
value which is "greater than zero.”
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of the state of the plant. In the reactor example above,
one of the qualitative states has temperature increasing,
concentration decreasing and both level and outlet flow
steady. If the interpretation of these signals is
p(inc,temperature) = 0.8, p(dec,concentration)=0.7,
p(std,level) = 0.75 and p(std,flow) = 0.65, then the
overall belief in the qualitative state is 0.273. We take a
belief greater than 0.5N to be a significant belief in the
qualitative state, where N is the number of sensors.
Combining the sensor interpretations allows QMI to
overlook sensors which appear to be changing (due to
noise) while the others remain normal. Similarly, QM1
is less sensitive to sluggish sensors when the other
sensors are changing as expected from a disturbance.

Initially, QMI assumes the system is behaving normally
and only compares the qualitative interpretation to the
normal state and the first states of the disturbances in the
behavior tree. As more data comes in from the plant the
qualitative interpretations of the signals change due to
noise and process disturbances. If a disturbance occurs in
the plant, the qualitative interpretation will change to
produce a high confidence in the initial state of the
disturbance. With the next set of data QMI will look for
interpretations which maich this state and those
following it. Diagnosis is attained when one disturbance
has a belief that is much higher than the others.

EXAMPLE SYSTEM AND TEST CASES

The QMI algorithm has been tested with a simulated
propylene glycol production reactor pictured in Fig. 3,
from Fogler (1986). Equal volumes (46.62 cfh each) of
propylene oxide and methanol are mixed with water
(233.1 cfh) containing 0.1 wt % HSO4 which catalyzes
the reaction. The PO-MeOH and water feed streams are

initially at 58°F and mixing increases their emperature



to 759F. The reaction is exothermic and propylene
oxide is relatively low-boiling, so reactor must be cooled
to keep the temperature below 125°F to prevent
excessive vaporization. A proportional controller adjusts
the outlet flow rate to prevent the level from changing
drastically due to changes in supply or demand. The
numerical simulation was written in FORTRAN and
uses the LSODE numerical integration package, based
on the Gear method. Possible faults in the simulated
reactor are changed feed flow, tank leak, changed acid
concentration, changed feed temperature, and changed
reactant feed concentration.

Qualitative simulation of these faults with the
qualitative model for the reactor produces a behavior tree,
similar to Fig. 1, with nearly 400 histories and about
2000 qualitative states. As in the example behavior tree
in the Qualitative Models section, there arc many
histories produced by qualitative simulation, rather than
one for each fault. These histories often differ in the
relative time of occurrence of of different events. For
example, when temperature and concentration both have
inverse response, qualitative reasoning cannot determine
which will peak first.

QMI was compared to a version of QMI which has
Boolean equations for beliefs in the sensor
interpretations and to & basic alarm detection method
using single-sensor thresholds. Twelve single-fault
simulations were conducted, and these three methods
were compared for diagnosis time, number and duration
of false alarms, and number and duration of missed
diagnoses. The diagnosis time indicates how long it
takes to properly identify the fault. False alarms occur
when the beliefs in incorrect qualitative states become
higher than all the others and is due to noise in the
signal. Missed diagnoses arise when the probability of
the normal state drops below 0.5N (number of sensors),
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and none of the other qualitative states matches the
interpretation. This is caused by a combination of noise
and slower signals, such as temperature change in a large
tank.

In all the test cases, QMI observes four sersors; tank
temperature, tank concentration, tank level, and outlet
flow rate. Figures 4 g, b, ¢, and d show the time plots
of each of these sensors for a 0.25% decrease in the inlet
reactant concentration at 1.00 hour. In Fig. 4 a, the tank
composition increases to a new steady state value, but
the initial response is a decrease in the tank
composition, which is difficult to detect visually but is
an important characteristic of this change. Temperature
decreases 10 a new steady state and the tank level and
outlet flow rate remain constant.

As this data comes from the plant, QMI calculates
beliefs that each measurement is increasing, steady or
decreasing; these beliefs are shown in Fig. 5. The top
graph shows the interpretation of the concentration
signal: above zero is the belief that the signal is
increasing and below, decreasing. This shows an initial
belief that the concentration is increasing, which would
cause an alarm to be sounded with Boolean alarms, but
comparison with the other signals shows that
temperature and level are both steady while ocutlet flow
may be decreasing (belief 0.5). This does not correlate
with any qualitative state, so the normal state is still
valid, although it has a low confidence. Alarms and
Boolean QMI signal a change here, although no
diagnosis is proposed. The ad-hoc functions capture the
inverse response of the concentration at 1.105 hours, at
which time diagnosis of the fault occurs. The Boolean
version of QMI does not capture the fault until the slope
of the concentration crosses the 0.5 belief line at 1.140
hours.

Water (0.1 wit% H2S04)

Pm%lcne Glycol

®

Fig. 3 Propylene Glycol Reactor
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The average statistics for the test runs are presented in
Table 1. The thresholds in these examples were
intentionally set tightly to force false alarms in the
detection and diagnosis systems. For the Boolean QMI
tests, there are two cases where diagnosis is never

achieved because the magnitudes of sensor noise and the
change are nearly the same, so those statistics are for ten
examples. QMI is able to reach a diagnosis in these
cases through its use of the belief functions. Diagnosis
time is reported in minutes with standard deviation in
brackets. Alarms, of course, do not give diagnoses. For
false alarms and missed diagnoses, Table 1 reports the
average number of false alarms and their average
duration. The difference between diagnosis time for QM1
and Boolean QMI is negligible, but diagnosis time for
the alarm threshold tests is faster than both because it is
detection time and only one sensor has to change from
the normal state to detect a change.,

TABLE 1 Statistics for All Exampl

Boolean Alarm
QMI QMI  Thresholds

Correct Diagnosis 12 10 NA

Diagnosis Time 8 8.1 94 42
minutes @45 G2 (3.8)

False Alarms 0.5 14 22

Duration P 08 3.9 21.

Missed Diagnoses 0.4 1.8 NA
Duration P 43  30.

& Diagnosis time for alarm thresholds is change detection
time,
b Duration is measured in sampling intervals.

QM outperforms Boolean QMI by far in number of
false alarms and missed diagnoses. With the excessively
tight thresholds used here for illustrative purposes, QMI
has one false alarm or missed diagnosis for every two
examples, whereas there are three times as many with
Boolean QMI. Hard thresholds also average two false
alarms per test. The duration of these false alarms is
also much greater for Boolean QMI and hard thresholds.
With looser thresholds the number of false alarms would
decrease at the cost of diagnosis speed. We expect that
reasonable thresholds in QMI would still be
unsatisfactory for Boolean QMI or alarm thresholds.

Related Work and Current Research

QMI is similar to two other qualitative monitoring and
diagnosis systems: DATMI (DeCoste, 1990) and
MIMIC (Dvorak and Kuipers, 1991). Like them, QMI -
attempis to use qualitative models to determine the
underlying behavior of a system based on information
provided by its sensors. DATMI and MIMIC are in




several ways more sophisticated than QMI: both those
systems are better than QMI 2t using that fact that
instantaneous states sre often not observed.

Rather than predefining all possible fault models as in
QMI, MIMIC hypothesizes changes to the model when
it can no longer track observations. MIMIC allows only
single-change hypotheses, but subsequent discrepancies
between readings and predictions may cause MIMIC to
hypothesize more changes. Currently, these model
changes are only changes landmarks of operating
parameters with new quantitative ranges (i.c. change
inlet flow from "normal” at 9 to 10 gallons per minute
to "low" at 5 10 6 gpm). Each hypothesis generated in
this manner is simulated and compared to the current
observations, and those hypotheses that match become
the set of candidate models which are tracked by MIMIC.
The algorithm for MIMIC is shown in Figure 6.

QMI simulates the entire behavior tree, but MIMIC
simulates behaviors on-line in a step-by-step fashion.
This allows the above fanlt generation method to be used
as well as providing an efficient way to incorporate
quantitative information into the qualitative models for
use with semi-quantitative simulation (Kuipers and
Berleant, 1988). Semi-quantitative simulation uses
ranges around the variables and envelopes around
proportional constraints, providing a prediction of the
possible quantitative range of values for variables as well
as the usual prediction of qualitative direction provided
by QSIM. This allows MIMIC to beiter compare

predictions to observations, providing faster detection of
changes in the behavior of the plant.

QMI and MIMIC both use a membership function to
calculate the degree of belief that a state matches the
readings. In QMI only the slope of the reading is
examined, whereas MIMIC looks at both the reading and
its slope. The current implementation of MIMIC is
unable to handle noise because the readings are assumed
to be perfect measurements of the plant.

The key feature of QMI which is lacking in DATMI and
MIMIC is the explicit recognition that processes and
sensors have noise and that this noise obeys statistical
laws which allow one to ascribe probabilities to beliefs
in interpretations of both individual sensor readings and
complete qualitative states. The QMI work described
above uses an ad hoc interpretation inspired by fuzzy
logic and the notion of a "soft threshold” dividing
different qualitative regions. We are now moving toward
the use of more rigorous statistics to handle noise. This
will be particularly important as we increasingly use
semi-quantitative simulation to aid fault detection in
dynamic systems.

This comparison has led us to form QMIMIC, a hybrid
of QMI and MIMIC. The new system is called
QMIMIC and is being built to handle complex physical
systems such as the CSTR example of this paper.
QMIMIC retains the incremental simulation of MIMIC

operating inputs Physical observations
System I
Behavioral Model Incremental
Models Builder models Simulator predictions
hypotheses
simulation
control
Hypothesis \_ Discrepancy
Generator updates Detector
L unresolved Tracker J
discrepancies discrepancies

Fig. 6 Architecture of Mimic. The rectangular boxes represent processing elements and the labeled lines show
information flow
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for semi-quantitative prediction and fault generation
purposes. From QMI it borrows and enhances the
ability to deal with uncertainty in the observations.
Readings are now compared 0 semi-quantitative
predictions by statistical tests, rather than ad-hoc
measures of certainty. Also, QMIMIC does not lock
prematurely into 2 diagnoses caused by sensor noise, as
does MIMIC and the Boolean versions of QMI.

CONCLUSIONS

Qualitative Modelling and In ion provides an
interesting addition to the field of fault detection and
diagnosis. Sensor signals are individually translated into
a qualitative description with associated beliefs which are
then combined for an overall belief in the qualitative
state of the plant. Combining multiple sensors allows
QMI 1o set tighter thresholds on single sensors because
changes in sensors must correlate with each other to
produce a diagnosis of faults or process changes. QMI
performs better than either a single sensor alarm
detection method or a version of QMI with Boolean
belief functions in diagnosis time, false alarms and
missed diagnoses. We are currently augmenting QMI to
use probabilities of different failures.

A major goal of this work has been 1o integrate the
gualitative information available in the real world of
chemical plants and robots with qualitative models of
that world. In particular, we think that it is important o
explicitly model the noise that comes from disturbances
to these systems, as well as the noise and insccuracy that
come from the sensors used to measure variables such as
flow, terperature, concentration and pressure and to use
statistical characterizations of that noise in the diagnosis
process.
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