
Automatic Selection of Bounding Abstractions

Daniel S. We1d~

Departmentof ComputerScienceand Engineering,FR-35
University of Washington

Seattle,WA 98195
weld~cs.washinton.edu

Abstract
Since the complexity of model-basedreasoningin-
creasesdrastically with the model size, automated
modelinghasbecomean active researcharea. How-
ever, unlike humanengineers,few modelingprograms
introduceapproximationsthat are customizedto the
questionat hand. In this paper, we focus on a sin-
gle aspectof automatedmodel management:shifting
model accuracy. We describea domain-independent
theoryof query-directedmodel simplification thatuses
bounding abstractionsto guaranteethe accuracyof the
simplifications introduced. We have tested our the-
ory by implementingthe SUPprogramwhich evaluates
inequality relationsin an approximatemodel without
sacrificingaccuracy.Thesetechniquesare basedon our
previouslyreportedwork on model sensitivity analyszs
(MSA) and fitting approximations. SUP uses MSA,
the subtaskof predictinghow a changein modelswill
affect the resulting predictedbehavior,to determineif
onemodel is aboundingabstractionof another.When-
ever two modelsare relatedby fitting approximations,
the MSA computationreducesso the simpleproblem
of computing the sign of partial derivatives in a single
model,a task which is easilyperformedby Mathemat-

Introduction
A centralproblemin automatedreasoningaboutphys-
ical systemsis that the complexity of reasoningin-
creasesdrasticallywith the size of the systemdescrip-
tion. However,while automatedmodelinghas become
an active researcharea,manyapproachesassumethat
ahierarchyof modelsis providedasinput. Also, few of
the modelingprogramsintroduceapproximationsthat
are custom generatedfor the questionat hand, even
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though this is a crucial aspect of a humanexpert’s
modelingchoices.

In this paper,we focus on asingle aspectof auto-
mated model management:shifting model accuracy.
We suggestthat changesof accuracycan be usefully
decomposedinto shifts that simplify and those that
refine the model. We argue that model simplifica-
tion shouldbe donein the contextof a particulargoal
andthat simplificationoperatorsshould providesome
sort of guaranteeon the accuracy of the simplified
model. Our approachis basedon our previously re-
ported work on model sens~tiv2tyanalysis (MSA) —

the problemof predictinghow a changein modelswill
affect the resulting predicted behaviorover time [16,
181. We explore the classof model relationscalledfit-
ling approxzmations’ for which the problem of model
sensitivity analysisis reducedto oneof computingthe
sign of partial derivativesin a singlemodel.

In summary,this paperdescribesan implemented,
domain-independenttheory of query-directed model
simplification that uses bounding abstractionsto pro-
vide a guaranteeon the answersto ordinal queriespro-
ducedusing an approximatemodel. Model sensitivity
analysisis used to computethe boundingabstractions
whenevermodelsare relatedby fitting approximations.

Reasoningabout Model Accuracy

The system dynamicsview of a MODEL is a finite de-
scription of reality, constructedfor the purposeof an-
sweringparticularquestions.As a first step in building
programsthat can choosethe most useful model for a
given question, it is essentialto understandthe space
of posszblemodels. In [18], we arguethat this space
hasseveral independentdimensions:scope, domain of
applicability, resolution, and accuracy. For example,
a model of a refrigerator has larger scopethan oneof

‘In [16] model-sensitivity analysiswas termed “inter-
model comparativeanalysis,” a term we haveabandoned.
Also in [16] the treatmentof fitting approximationsincor-
poratedan arbitraryvocabularyreformulation(algebraicly~
a shift of basis) under thename “approximation reformu-
lation.” We believethe terminology in this paper, which
agreeswith [18], is mucheasierto understandanduse.

ica.
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the refrigerator’scompressor.We say that one model
hasgreaterdomain of applicability thananotherif the
first is usefully predictivefor a wider set of input values
for the exogenousparameters.Resolutionrefersto the
precisionof the model’s output; for example,a quali-
tative model has lower resolution than a quantitative
description. Finally, the accuracyof a model gauges
how closely the model’s predictionsmatch the reality
beingmodeled.

This paper is just about model accuracy— it de-
scribesalgorithmsforselecting,evaluating,andswitch-
ing modelingapproximations,but saysnothingabout
how a programmightswitch scope,domain,or resolu-
tion. We believethat it is appropriateto considereach
of thesedimensionsin isolation. Any complexmodel-
ing switch can be broken up into smaller shifts along
eachof the independentdimensions. To gain insight
into the overall processof automatedmodel manage-
ment,we suggestfocusingattentionon eachdimension
in turn.

We preferthe GRAPH OF MODELS (GoM) framework
of Addanki et al. [8, 1, 2] to analyzethe dimension
of model accuracy. A GoM is a directed graph in
which nodesrepresentmodels of the systemat hand
and edgesare labeled with the set of simplifying as-
sumptions(i.e. approximations)that distinguish the
two models. Given this conceptualframework,reason-
ing aboutmodel accuracycan be analyzedas a search
throughthe graph (figure 1).

simplify

refine

Figure 1: Navigationin a Graphof Models

The primitive operationsin the searchare the intro-
duction and retraction of approximations. Theseop-
erators, which we term SIMPLIFICATION and REFINE-
MENT can be visualized as moving upwards (towards
one of the simplestmodelsin the graph) and down-
wards (towardsa maximally complexmodel) respec-
tively.

When a model is too inaccurate, it mustbe refined.
The objective, then, is to navigate downward in the
GoM — i.e. to determinewhich assumptionsto re-
tract. To solve this task, the PROMPT system [ii
introduced the methodologyof discrepancy-drivenre-
finement: using discrepanciesbetweenobservationsof
the system’sreal-world behaviorand the model’spre-
dictionsto select which approximationsto retract. Our
work on SAM [16] provided a domain-independentex-
tensionof this techniqueusing model sensitivity anal-
ysis over fitting approximations.

When a model is too complex, it must be simpli-

fled. Here, the objective is to move upward in the
GoM, and the danger is that the resulting approxi-
mate model might be useless.To avoid shifting to a
tractable but worthlessmodel, it is necessaryto con-
sider the task at handwhen performingsimplification.
Put anotherway, the simplification processshouldbe
query-directedand should providea guaranteeon the
usefulnessof the resultingmodel. This paperdescribes
an implementedway to do exactly this: we simplify
the model while providing a query-specificguarantee,
boundingabstractions,by exploiting model sensitivity
analysis.

Model Sensitivity Analysis

Whetherone is trying to evaluatethe effect of simpli-
fying amodel by including an approximationor of re-
fining a model by retractinga simplifying assumption,
it is essentialto know the effect of the modelingshift
on the behavior predicted. We refer to this key sub-
routine as MODEL SENSITIVITY ANALYSIS or MSA for
short. MSA has threeinputs: asource model,a desti-
nation model, anda variableof interest;asoutput the
subroutinereturns a descriptionof the difference be-
tween the sourceand destinationmodel’s predictions
of the variable’s time-varying behavior. In general,
performing MSA is very difficult; however, we have
identified aclassof modelingrelations,called FITTING

APPROXIMATIONS, for which the problem of MSA is
tractable. Before defining fitting approximationsfor-
mally, we clarify our terminology.

We considersystemsthat canbe modeledwith a set
of algebraic and ordinary differential equations,their
“dynamical constraints.” We distinguishbetweenin-
dependent(and assumedconstant),boundaryandde-
pendentvariablesof a model and use the functions
INDEP, BOUND, and DEPEND to specify them given a
model as argument. We use the function RANGE to
specify the rangeof possiblevaluesof a variable. We
assumethat a set of initial valuesfor the independent
and boundaryvariablescompletelyspecifiesthe values
for the dependentvariablesoverall time. We call such
a solution to the model’s dynamical constraintsthe
behaviorof the variable; the completesolution to the
model’s constraintsfor all variablesis called the be-
haviorof the model. If 7’ is a modelwith rn variables,
and v~is an initial value for variablep~(or the null
value if the ~th variableis dependent),then we denote
the behaviorofl’ with BEHAV(7~,V~,...,V~)= P<
Pi Pm> Note that we usescript letters to denote
models,lowercaselettersto describeboth variablesand
values, and capital letters to denote behaviors. Thus
P~denotesthe behaviorof variable Pj as specifiedby
model 7’ given the initial values -<v1,. . . , v~>-.

Fitting Approximations

Sincefitting approximationsmake it easyto compute
MSA, they are quite important. Intuitively, onemodel
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is afitting approximationof anotherwhen the behav-
iors they predict can be brought arbitrarily close to
zero. Thus the first step in defining fitting approxima-
tions is making clear the ideaof behaviordifference.

Definition 1 Let P =< P
1

,. ~ > and Q =<

Qi, . . . ,Qr~> be behaviorswhere ni < n. Define the
BEHAVIOR DIFFERENCE BETWEEN P AND Q OVER THE
TIME INTERVAL [t

5
,tf] as

BDIFF(P,Q,t
3

,tj) = max ( sup jP1(t) — Q~(t)j
1 �~~m

In other words, for each parameterin the smaller
model, we comparecorrespondingvalues in the com-
plex modelfor all timesand takethe supremum(least
upperbound) of the absolutedifferences.The behav-
ior difference is simply the L~ norm from functional
analysis,i.e. the maximumvalueof the suprema. We
are now ready to definefitting approximation.

Definition 2 Let 7’ and Q be models with in and
ii parameters respectively where in < n. We say
that 7~is a FITTING APPROXIMATION of Q if there
exists an independent parameter qj of Q such that
in < f < n, and there exists an endpoint I of the clo-
sure of RANGE(q/) such that forall times t, andfor all
initial values -<v1, . . ., v,,>- where BEHAV(Q, v

1
, . . . , v

0
)

is defined, BEHAV(P, v
1

, . . . , v~)is also defined, and

lim~1~.,BDIFF((BEHAV(7’, V1, . . . * Vm),

BEHAV(Q,vm, . . .,v~,),0,t)= 0
In this case, the parameterqj is called the FITTING
PARAMETER of the approximation and 1 is called its
APPROXIMATION LIMIT.

In other words, model 7’ approximates model Q
if the difference between the predicted behaviors
squeezesto zero as the initial value of the fitting pa-
rametergoesto the approximationlimit. The natural
way to think of thefitting parameteris asanexogenous
input to the complex model, Q, thatspecifiesadegree
of freedomby which the two modelscan be madeto
produce similar predictions. Figure 2 illustrates this
abstractly.

P1 is a simple function of time, decreasingfrom
P1(0) = p to P1(t1) = 0. Since all variablesin the
simple model are unaffectedby the valueof the fitting
parameter,P1 can be viewed asa fiat plane — move-
ment along the fitting parameteraxis doesnot change
its value. The value of Qt, however, is affected by
the valueof the fitting parameterso it defines amore
complex,curvedsurface(shaded).As the fitting value
approxesthe approximationlimit, 1, Q~actsmore and
more like P

1
. But whenthe valueof the fitting param-

eteris far from 1, sayvf = k, then Q1 is initially higher
Q(0, k) = q andfurthermoreQ1 takes longer (t

2
— t,)

to reachzero.
As a simple example, supposeP is a set of equa-

tions modelinga kinematiclinkage andQ containsthe

sameequationswith the addition of a frictional co-
efficient, p, and frictional forces. 7’ is a fitting ap-
proximationof Q becauseas Q’s parameter~i tends
to zero, the difference betweenthe two model’s pre-
dictions vanishes. Unfortunately, the previousexam-
ple is misleadingsince it makesthe conceptof fitting
approximation seemtrivial. In particular, it mightap-
pearthat there is no needto talk about limits since
one could simply set p to zero and convert Q to P
with algebraic simplification. However, in a number of
fitting approximations the differencesin predicted be-
havior only vanish when the fitting parameter reaches
a limit of infinity; substitution is clearly impossible in
thesecases. In fact infinite approximation limits are
actually quite common. For example, the model of a
uniform gravitational field is a fitting approximationof
the ~. law of gravity — as r goesto infinity thefield be-
comesuniform. Economicsprovidesanotherexample:
perfect competition approximates Cournot’s theory of
market as the numberof firms approachesinfinity. As
demonstratedwith table3, fitting approximationsare
ubiquitous.

Fitting Approximations for MSA

While no algorithmis known for computingMSA in
the generalcase,it is both possibleandpracticalwhen
one model is a fitting approximationof the other. In
this case,model sensitivity analysisreducesto anordi-
narysensitivity analysiswith respectto the fitting pa-
rameterin the complexmodel. For example,the effect
of switchingfrom africtionlessmodel to one with fric-
tion is qualitatively equivalentto the effect of increas-
ing p in the complex model. In general,to compute
the difference in the behaviorpredicted by eliminat-
ing a fitting approximation,one cansimply follow the
partialderivativewith respectto the fitting parameter
away from the approximationlimit. The effect of the
oppositemodelshift (i.e. adding an approximation)is
calculatedby following the partial towards the limit
We expressthis formally with:

Proposition1 (MSA ReductionTheorem)

P(t) & 0 (t, v~)
q

Time

k

Velue, v~,of Fitting Per~meter

Figure 2: As Vj —~I, Q1 convergesto P1.
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Masslessobjects Zero momentof inertia Elasticcollisions
Inelasticstring Zero—radiuspulleys Rotation w/o slippage
Frictionless motion Zero gravity Uniform gravity
Nonrelativisticmotion Constantresistivity Momentumlessflow
Ideal thermal insulation Ideal electricalinsulation Idealgases
Incompressiblefluid Inviscid flow Carnot heatpump
Reversiblegasexpansion Infinite sourcesandsinks Perfect competition

Figure 3: Examplesof Fitting Approximations

Let P and Q be modelswith in and n parameters
respectively,such that in < f < n. Suppose that P is
a fitting approximation of Q with fitting parameterqj
and approximation limit 1. Let -<v1, . . ., V,~>- denote a
set of initial conditions for Q such that -<v

1
, . . . ,V~>—

are consistentinitial conditionsforP, and let P~(t)de-
note the time varifing behaviorof the j-th variable of P
given theseinitial conditions, and let Q~(t,v1) denote

the valueof the j-th variable of Q as afunction of time
and the initial valueof the fitting parameteras defined
by Qy(t,vj) = 7r~(BEHAv(Q,vi vj,...,v~)).2 For

any time t in a bounded interval [0, tel if

ÔQ-
lim—2.(t,vj)=p� 0

v
1

—.l ôv1
then there exists an e > 0 such that forall v satisfying
0 < v — l~< e if Q3(t,v) is defined, then the rela-

tion between
Q5(t,v) and Pj(i) is specified by the following table:

T = inf(RANGE(Q,)) I 1 = sup(RANGE(Q~)) I
p>O Q3(t,v)>P,(t) Q5(t,v)<P~(i)

p <0 Q5(t,v) < P,(t) Q3(t,v) > P~(t)

Proof: See [18].
For example, if the approximationlimit is at the

bottom of the range(as it is with p in the example
above)and thepartial derivativeof thej-th parameter
is negativewith respectto the fitting parameter(as
is ~), then the detailed model will predict a smaller

valuethan the simplemodel (e.g.,consideringfriction
will decreasevelocity). But if the limit of the partial
derivativewaspositive, then the detailedmodel would
predict a greatervaluethan the simple model. If the
approximationlimit is at the top of the range(e.g. the
approximation limit of k was no), then the situation
is reversed. Unfortunately, if the limit of the partial
derivative is zero, then one cannotconcludeanything
about the two models’ relative predictions.

In other words,to computethe difference in the be-
havior predicted by eliminating a fitting approxima-

2The obsessivereaderwill note that Q3(t,vf) is afunc-
tion of both time and the initial value of the fitting pa-
rameterwhileQ~(t)is simply afunction of time. Thus the
domainof is thecrossproduct of theset of timeswith

thepredeclaredrangeof Qj.

tion, one cansimply follow the partial derivativewith
respectto the fitting parameterawayfrom theapproxi-
mationlimit. Oneimportantlimitation of this theorem
results from the unspecifiedvalue of e. Although the
theoremguaranteesthat c exists, it does not provide
a way to calculateits value;yet thereductionof inter-
modelchangesto an intra-model testis only valid when
one evaluatesthe partial derivativeno farther than c
from the approximationlimit. In manycases,e is very
large;for example,in the friction examplethere is no
boundon e andonemayevaluatethepartial derivative
anywherefor a correctresult. However, in general,this
is not guaranteedto be true; developingtechniquesto
predict the maximum value of e is a very important
topic for future research.

The beautyof this result is that it doesnot commit
one to any particular method for computingthe sign
of the partial derivative.Thus onecouldperformcom-
parativeanalysis [171 on a qualitative model, or one
could use symbolic algebratechniqueson real-valued
equationsand take the sin at the lastminute, or use
numerical techniques. In fact, we have implemented
the first two of these techniquesand are considering
the third to handledifferential equations.

Simplification with Bounding

Abstractions
In this section we describethe details of our query-
directedmodel simplification algorithm andits imple-
mentation. A major featureof our algorithmis the
fact that it is provably sound: the answersproduced
by the simple, approximatemodel are guaranteedto
match thoseof that would havebeenproducedby the
complexmodel. The basisfor this property is best de-
scribedin termsof Giunchiglia and Walsh’stheory of
abstraction [6], which we review below.

Types of Abstraction

Initially, we considerabstraction from a logicist per-
spectivesince this is its context which hasbeenmost
fully explored. Unfortunately, in the study of logic,
the word modelis defined at variancewith the fields of
physics andsystemdynamics. What we refer to as a
model is called a theoryby logicians: loosely, a set of
axioms and theorems. There are two obvious choices
when defining theory Th(E~)to be more abstract
than theoryTh(E1): either Th(E~)should be satisfied
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by strictly more interpretations than Th(Eq) (which
means it will havefewer theorems)or Th(E~)should
contain strictly more theorems than Th(Eq)(in which
case it will have fewer interpretations). Giunchiglia
and Walsh call these two definitions TD-abstraction
(for “theorem decreasing”) andTI-abstraction(“theo-
rem increasing”) respectively [6]. TI-abstractions are
useful because they guarantee that the absenceof a
theorem in the abstract theory implies the absencein
the concrete theory. For example, considering the mu-
tilated checkerboard as 30 white and 32 black squares
is a TI-abstraction — since the abstract board is unti-
lable it follows that the concrete board also cannot be
tiled.

TD-abstractions provide the opposite guarantee,
which, surprisingly, is equally useful: a TD-abstraction
of a concrete theory has fewer theoremsand therefore
more interpretations than the concrete theory. For
example, the qualitative equation y = M+(x) is a
TD-abstraction of the real-valued equation y = x3 be-
causeevery solution of the real equation satisfies the
qualitative equation,but the converseis not true [7,
20].~

In summary, a TD-abstraction lets one conclude
less (but all the predictions are correct) while a TI-
abstraction lets one conclude more (but some of the
conclusionsmay be wrong). However, if one knows
which type of abstraction one has, then all errors can
be avoided by mapping down only proof failures for TI-
abstractions and only mapping down proof successes
for TD-abstractions.

TD-Abstractions from Approximations

Although approximations are commonly used in en-
gineering analyses, especially with respect to contin-
uous systems, there is no precise characterization of
what an approximation is. Common sensesuggests
that the approximation should be simple and that the
difference between original and approximation should
be “small,” but this informal description is insufficient
for automated reasoning. Typical strategies for cre-
ating approximations are replacing a complex curve
with a straight line and dropping low order terms.
For example, the real equation for the molar ideal
gas lawP = is an approximation (in fact a fit-
ting approximation) of the Van der Waals equation
P = — v~. Each equation allows the calculation
of pressure,but for nonzerovaluesof a and 6, the equa-
tions predict different values.

In certain cases,however, it is possibleto interpret
anapproximationasaTD-abstraction. In other words,
with extra information about an approximation,it is
possible to map an approximateresult into a guar-
anteedresult in the original model. Elevation of an

‘In the terminology of physics, modelingequationstake
the place of alogical theory andsolutionsto theequations
correspond to logical interpretations.

approximationto a TD-abstractionis possible in two
cases:

If the approximationalwaysoverestimatesor always

underestimates.

If the approximation’serror is bounded.

For example,comparedto the Van der Waalsequa-
tion the ideal gas law provides an upper bound for
pressure. If the GoM link betweenthe Van der Waals
model and the ideal gas approximationis annotated
with this information (or if that information is deriv-
able), then a program can reason in terms of the region
beneath the approximate curve, rather than in terms
of the curve itself. Since the solution to the original
equation is guaranteed to be in the region beneaththe
upper bound, we have satisfied the definition of a TD-
abstraction: a strict increase in the set of solutions.
Figure 4a illustrates the abstraction generated by an
upperbound approximation.Figure 4b shows the ab-
stractionproducedby intersectingthe upperandlower
bounding regions.4 Figure 4c illustrates the abstrac-
tion generatedby an approximationwith a percent-
bound guarantee.

Query-Directed Simplification

We now return to the problem of answeringquanti-
tative, analytic queries that might occur during the
verification of a proposed design. In particular, we
consider the most basic step in verification: solving
inequalities. Inequality reasoning is extremely com-
mon when ensuring that a design meets its specifica-
tion. For example, whether an aircraft wing is strong
enoughto resist shearingin turbulencecan be deter-
mined by solving as an inequality, as can the major-
ity of verification tasks. While the algorithms behind
inequality reasoners have been carefully analyzed [13,
10], the modelingquestionshavenot. Given that there
are anumber of models in which one could verify a de-
sign, there are major advantages in choosing one that
is a TD-abstraction. This strategyallows verification
in an inexpensive,approximatemodel with the guar-
anteedsameresultsas if the most complexmodelwere
used.

The trick is to use theinequality whosetruth is being
queriedto selectthe approximatemodel. Forexample,
if the query is “Necessarilyx > y?” then one attains
theguaranteeby choosingan approximatemodel that
underestimatesx and overestimatesp. If the approx-
imate answeris “Yes” then the detailedmodel would
certainlyagree,but if the answeris “No” thenno guar-
anteed information has beengainedand backtracking
must return reasoningto a more detailed model.

4The intersection, union or composition of two TD-
abstractionsis a TD-abstraction[18, proposition 2]. Note
that theshadedregionof the graph (representingtheun-
certainty inherent in theabstraction)hasshrunk.
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Figure 4: Approximationsconsideredas TD-abstractions.

Implementation

To test the practicality of query-directedsimplifica-
tion, we have used Mathematica [221 to build the SUP
program. To implementthe simplification algorithm,
we needed to commit to aspecific backtrackingstrat-
egy and also a methodfor computingMSA.

ImplementingModel Sensitivity Analysis

SUP uses MSA to determinewhen a model shift is
soundsrelative to a query. If a GoM link has not
been analyzed relative to any query before, SUP
checks if it is tagged as a fitting approximation
and usesMathematica’s symbolic partial derivative
primitive to compute an expression for the MSA.5

The resulting expression is simplified and cachedso
that subsequentcalls to MSA on this link with re-
spectto this parameter neednot recompute the par-
tial. Finally, the expression is coerced into a qual-
itative value by determining the range of possible
values it may take on given the range restriction on
exogenousparameters and any known values.6 We
note that this useof caching subsumesthe mecha-
nism behind parameterchangerules [1], since SUP
can reason about links in a GoM that do not cor-
respond to fitting approximations if a user prestores
values in the cache.

~ SearchStrategy
SUP performsa variant of depth-first searchas it
traversesthe GoM trying to provean inequality. If
a model hasa link to an approximatemodel which
is sound relative to the query, SUP pushesthe cur-
rent model on the stack and shifts to the approx-
imate model until there is no sound simplification.
If the algebraicsolver fails to prove the inequality
true in this minimal model, then SUP popsthe next
simplestmodel off the stack and calls the algebraic
solveron that model. This processcontinues until
the inequality is proven true, or the basemodel is
reached.Clearly, this simple strategyis suboptimal;

5Note that this approachdoesnot allow SUP to reason
aboutdifferential equations,although it can handle poly-
nomial andtranscendentalfunctions.6Although the best way to do this would be with the
BOUNDER inequality reasoner[io], the impossibility of
linking Lisp with Mathematicaversion 1.2, causedus to
usea simple stochasticbounderinstead.

section discussesdecision-theoreticcontrol of mod-
eling shifts.

Example

To illustrate SUP’sbehavior, considerthe analysisof
a hypothetical chemical reactor (figure 5) which calls
for a positivedisplacementpumpto maintainextreme
pressure and temperature of the reactant gas, ammo-
nia, as it flows through the catalyticbed [4]. The de-
sign verificationstepmust determinewhether the pro-
posedlobe pump will be able to achievethe necessary
temperatureand pressureto enablethe catalyticpro-
cess.To verify that the design meetsthe specifications
involves a choice of modelsfor gas thermodynamics,
pumpperformance,andload acrossthe catalyticbed.
In particular, when modeling gasbehavior, one has a
choice [14] of the ideal gas law, the Van der Waals
equation, or the more complex Redlich / Kwongequa-
tion: P = ~-— ‘~ . Similarly, thereareseveral

—b T~V(V+b)
possiblemodelsfor the pump: an idealized PDP model
[15], a detailedsecond-orderpolynomialmodel relating
backfiow to pressureand fluid viscosity, and a simple
linear lower bound. Even if we assumea fixed equa-
tion for load, the GoM for this examplecontainssix
models.

Figure5: Simple designfor verification

SUP is given constantsfor the maximum RPM for
the pump, the volume of the reactor, the necessary
temperaturefor catalysis,the real gas constant, and
parametersof the gas: critical temperature, critical
pressure,and viscosity.7 With thesevalues, SUP has
enoughinformation to evaluatethe inequality “Can the
pump produceenough pressureto enable catalysisin
the gas?” in the most detailed model. However, SUP
insteadfirst simplifies the models.

7The CoM would be evenbigger if equationsencoding
the temperaturedependenceof viscosity were included.

(~
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First SUP notices that the ideal gaslaw is a fitting
approximationof the Redlich / Kwong equation with
two fitting parameters,a and b.8 Computation of MSA
showsthat the ideal gaslaw providesan upperbound
on the pressurerequired to reacha given temperature
sothat approximation is made. Next, SUP notesthat a
prestoredcacheentry marksthe linearpumpmodel as
a lower bound,9so that approximation is made as well.
At this pointSUP hasreachedthesimplestmodel,so it
proceedsto calculate the achievableand required pres-
sures. Sincethe results are 47.3197and 46.6624bar re-
spectively, the inequality is guaranteedtrue, not only
in this model but in the more detailedmodelsas well
and the analysisis complete. For example,if SUP had
performedthe analysiswith the most detailed equa-
tions it would have estimated achieveablepressure at
48.3099andthe catalysisthresholdas44.4865.Wecan
verify the useof aboundingabstractionby observing:
48.3099� 47.3197> 46.6624> 44.4865.

In addition to the example above, SUP has been
tested on several dozen problems using five different
GoMs. In all cases,SUP performedboth MSA and
the eventualcalculations in a matter of seconds. How-
ever, as discussed below, more work is necessary to
transform SUP into a practical tool.

The Cost of Model Shifting

One issuethat is conspicuouslyneglectedin the design
of SUP is consideration for the cost of shifting models.
Yet an intelligent modeling systemshould evaluatethe
computational tradeoff betweentime spentanalyzing a
model and time spent reasoningabout which model to
analyze. Decision theory is the natural framework for
sucha system,but severalproblems must be addressed
to make this practical, chief among them is a means
for cheaply estimating run time.

Note that since bounding abstractionsprovide a
guaranteeof correctness,there is no needto decidebe-
tweenthe relativeworth of an extrapercenterror vs an
extra unit of CPU time. Utility can be simply defined
asthe multiplicative inverseof run time. The expected
cost, C~,of trying to shift from the basemodel, Q, to
a simpler model,7’, along a link Q—~Pwhen analyz-
ing thequery Q~<Q~given initial conditions~ can be
written as:’0

8The quantitiesa andb arepositive constantsthat can
be computedfrom the critical temperatureand pressure

using a = .4274SR~T~2.5)and6 = O8664RT,~
9The polynomial viscosity model does not havea fit-

ting approximationlowerbound, but it doeshavean upper
bound which is a fitting approximation.

iOFollowing [18] we use “M5A(Q, 7’, i)” to denote the
processof computing thechangein the ith parameter(i.e.

— .P,) when shifting from model Q to P. At theexpense
of extracomplexity, thecost equationcan be extendedto
coverthecasein which Q hasmultiple approximationlinks,
andthepossibility that P might be simplified as well.

Ce(QP,Qi<Qj,i~) = Ce(MSA(Q,P,i))+

Ce(MSA(Q,P,j)) +

aC~(ANAL(P,P
1

<P~,i7))+

(1o-/3)Ce(ANAL(Q, Q~<Q~,f~))

whether P is sound relative to Q and the query. The
third term of the equation represents the cost of ana-
lyzing the inequality in the approximatemodel,and is
only performedsomeof thetime: a denotingthe prob-
ability thatP is an appropriateboundingabstraction.
Thefourth term accountsfor the costof analyzingthe
inequality in the original detailed model; this happens
when P is not the desired bounding abstraction (with
probability 1— a) or whenthe approximatemodelfails
to prove the inequality (with probability (1 — /3) of the
times the model is tried, i.e. a(1—/3))and backtracking
is necessary.It only makessenseto try andshift mod-
els when this total expectedcost is less than the cost
of simply analyzingthe inequality in the basemodel:

C~(ANAL(Q, Q1 <Q, * ii))

Thus the SUP approach makes good senseif a and /3
are high (i.e. there is a good chanceof finding a bound-
ing abstractionthat is unambiguouson the query), if
the cost of analysisin the simple model is much less
than that of the complex model and if the cost of com-
puting MSA is less than the cost of analysis. We be-
lieve that compositional modeling (section ) will ensure
this latter condition, but runtime evaluation of the cost
equation is likely to be difficult until a means is found
for estimatingthe computationalsavingsof an approx-
imation.

Compositional Modeling

Throughoutthis paperwe have talked in terms of a
graph of modelsbecauseit affords a clean conceptual
foundation. On pragmatic grounds,however, the GoM
approachis problematic(e.g.,a spacerequirementthat
is exponentialin thenumberof assumptions).The ob-
vious solution is to representa GoM implicitly and
to dynamically instantiateonly the modelsthat are
actually useful for analysis. Pioneeringwork on this
approach,termedcompositionalmodeling,suggestsits
substantialpromise [5]. Query-directedapproximation
with boundingabstractionsand MSA computationvia
fitting approximationsfit perfectly into the composi-
tional modeling framework. Since MSA can be com-
puted on model fragments as easily as on complete
GoM models,onecan reasonaboutboundingabstrac-
tions, fragment by model fragment. This is almost
certain to make the expectedcost of MSA negligible
comparedto that of model analysis. We are working
on implementing a compositionalmodelingsuccessor
to the SUP program using a variant of the QPC algo-
rithm [3].
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Related Work & Conclusions

ShirleyandFalkenhainer[12] suggestreasoningabout
the percenterror of an approximationand Nayak [9]
shows how it can be performedusing the less expen-
sive of a pair of model fragments in certain cases. In-
terestingly, Nayak concludes that MSA is necessary
even when calculating the percent error of a modeling
shift. Selmanand Kautz [ii] describealgorithms that
computethe equivalentof bounding abstractionsfor
theories in propositional logic. Williams [21] defines
the critical abstractionof a quantitative component-
connectionmodel with respect to a query to be the
maximallysimplemodelthat still is capableof answer-
ing the query. Castin Williams’ terminology,the SUP
program’s boundingabstractionscould be considered
to be “critical approximations”— maximal upperand
lower bounds. Unlike Williams’ program,SUP does
not need to do a full analysisin the detailed model
beforesimplification.

Our motivating goal is to build programsthat can
reasonefficiently aboutcomplex systemsby dynam-
ically choosingsimplifying assumptionsand perspec-
tives that areappropriateto the taskat hand. This pa-
per presenteda frameworkfor reasoningaboutmodel
accuracy in terms of simplification and refinement that
is basedon model sensitivity analysis. Our main result
is the notion of bounding abstraction, and a sound,
MSA-based algorithm for performing query-directed
model simplification when analyzinginequality rela-
tions.
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