Automatic Selection of Bounding Abstractions

Daniel S. Weld~
Department of Computer Science and Engineering, FR-35
University of Washington
Seattle, WA 98195

weld@cs.washinton.edu

Abstract

Since the complexity of model-based reasoning in-
creases drastically with the model size, automated
modeling has become an active research area. How-
ever, unlike human engineers, few modeling programs
introduce approximations that are customized to the
question at hand. In this paper, we focus on a sin-
gle aspect of automated model management: shifting
model accuracy. We describe a domain-independent
theory of query-directed model simplification that uses
bounding abstractions to guarantee the accuracy of the
simplifications introduced. We have tested our the-
ory by implementing the SUP program which evaluates
inequality relations in an approximate model without
sacrificing accuracy. These techniques are based on our
previously reported work on model sensttivily analysis
(MSA) and fitting approzimations. SUP uses MSA,
the subtask of predicting how a change in models will
affect the resulting predicted behavior, to determine if
one model is a bounding abstraction of another. When-
ever two models are related by fitting approximations,
the MSA computation reduces so the simple problem
of computing the sign of partial derivatives in a single
model, a task which is easily performed by Mathemat-
ica.

Introduction

A central problem in automated reasoning about phys-
ical systems 1s that the complexity of reasoning in-
creases drastically with the size of the system descrip-
tion. However, while automated modeling has become
an active research area, many approaches assume that
a hierarchy of models is provided as input. Also, few of
the modeling programs introduce approximations that
are custom generated for the question at hand, even

*This work benefited from conversations with (and com-
ments from) Mike Williamson, Ying Sun, J. Scott Pen-
berthy, Dorothy Neville, Pandu Nayak, Leo Joskowicz,
Steve Hanks, Oren Etzioni, Tony Barrett, Franz Amador
and Sanjaya Addanki. The research was funded in part by
National Science Foundation Grants [R1-8902010 and IRI-
8957302, Office of Naval Research Grant 90-J-1904, and a
grant from the Xerox corporation.

36

though this is a crucial aspect of a human expert’s
modeling choices.

In this paper, we focus on a single aspect of auto-
mated model management: shifting model accuracy.
We suggest that changes of accuracy can be usefully
decomposed into shifts that simplify and those that
refine the model. We argue that model simplifica-
tion should be done in the context of a particular goal
and that simplification operators should provide some
sort of guarantee on the accuracy of the simplified
model. Our approach is based on our previously re-
ported work on model sensitivity analysis (MSA) —
the problem of predicting how a change in models will
affect the resulting predicted behavior over time (16,
18]. We explore the class of model relations called fit-
ting approrimations' for which the problem of model
sensitivity analysis is reduced to one of computing the
sign of partial derivatives in a single model.

In summary, this paper describes an implemented,
domain-independent theory of query-directed model
simplification that uses bounding abstractions to pro-
vide a guarantee on the answers to ordinal queries pro-
duced using an approximate model. Model sensitivity
analysis 1s used to compute the bounding abstractions
whenever models are related by fitting approximations.

Reasoning about Model Accuracy

The system dynamics view of a MODEL 1s a finite de-
scription of reality, constructed for the purpose of an-
swering particular questions. As a first step in building
programs that can choose the most useful model for a
given question, it is essential to understand the space
of possible models. In [18], we argue that this space
has several independent dimensions: scope, domain of
applicability, resolution, and accuracy. For example,
a model of a refrigerator has larger scope than one of

'In [16] model-sensitivity analysis was termed “inter-
model comparative analysis,” a term we have abandoned.
Also in [16] the treatment of fitting approximations incor-
porated an arbitrary vocabulary reformulation (algebraicly,
a shift of basis) under the name “approximation reformu-
lation.” We believe the terminology in this paper, which
agrees with [18], is much easier to understand and use.

the refrigerator’s compressor. We say that one model
has greater domain of applicability than another if the
first is usefully predictive for a wider set of input values
for the exogenous parameters. Resolution refers to the
precision of the model’s output; for example, a quali-
tative model has lower resolution than a quantitative
description. Finally, the accuracy of a model gauges
how closely the model’s predictions match the reality
being modeled.

This paper 1s just about model accuracy — 1t de-
scribes algorithms for selecting, evaluating, and switch-
ing modeling approximations, but says nothing about
how a program might switch scope, domain, or resolu-
tion. We believe that it is appropriate to consider each
of these dimensions in isolation. Any complex model-
ing switch can be broken up into smaller shifts along
each of the independent dimensions. To gain insight
into the overall process of automated model manage-
ment, we suggest focusing attention on each dimension
in turn.

We prefer the GRAPH OF MODELS (GoM) framework
of Addanki et al. [8, 1, 2] to analyze the dimension
of model accuracy. A GoM is a directed graph in
which nodes represent models of the system at hand
and edges are labeled with the set of simplifying as-
sumptions (i.e. approximations) that distinguish the
two models. Given this conceptual framework, reason-
ing about model accuracy can be analyzed as a search
through the graph (figure 1).

simplify

refine
Figure 1: Navigation in a Graph of Models

The primitive operations in the search are the intro-
duction and retraction of approximations. These op-
erators, which we term SIMPLIFICATION and REFINE-
MENT can be visualized as moving upwards (towards
one of the simplest models in the graph) and down-
wards (towards a maximally complex model) respec-
tively.

When a model is too inaccurate, it must be refined.
The objective, then, is to navigate downward in the
GoM — i.e. to determine which assumptions to re-
tract. To solve this task, the PROMPT system [1]
introduced the methodology of discrepancy-driven re-
finement: using discrepancies between observations of
the system’s real-world behavior and the model’s pre-
dictions to select which approximations to retract. Qur
work on SAM [16] provided a domain-independent ex-
tension of this technique using model sensitivity anal-
vsis over fitting approximations.

When a model is too complex, it must be simpli-

37

fied. Here, the objective is to move upward in the
GoM, and the danger is that the resulting approxi-
mate model might be useless. To avoid shifting to a
tractable but worthless model, it is necessary to con-
sider the task at hand when performing simplification.
Put another way, the simplification process should be
query-directed and should provide a guarantee on the
usefulness of the resulting model. This paper describes
an implemented way to do exactly this: we simplify
the model while providing a query-specific guarantee,
bounding abstractions, by exploiting model sensitivity
analysis. '

Model Sensitivity Analysis

Whether one is trying to evaluate the effect of simpli-
fying a model by including an approximation or of re-
fining a model by retracting a simplifying assumption,
it 1s essential to know the effect of the modeling shift
on the behavior predicted. We refer to this key sub-
routine as MODEL SENSITIVITY ANALYSIS or MSA for
short. MSA has three inputs: a source model, a desti-
nation model, and a variable of interest; as output the
subroutine returns a description of the difference be-
tween the source and destination model’s predictions
of the variable’s time-varying behavior. In general,
performing MSA is very difficult; however, we have
identified a class of modeling relations, called FITTING
APPROXIMATIONS, for which the problem of MSA is
tractable. Before defining fitting approximations for-
mally, we clarify our terminology.

We consider systems that can be modeled with a set
of algebraic and ordinary differential equations, their
“dynamical constraints.” We distinguish between in-
dependent (and assumed constant), boundary and de-
pendent variables of a model and use the functions
INDEP, BOUND, and DEPEND to specify them given a
model as argument. We use the function RANGE to
specify the range of possible values of a variable. We
assume that a set of initial values for the independent
and boundary variables completely specifies the values
for the dependent variables over all time. We call such
a solution to the model’s dynamical constraints the
behavior of the variable; the complete solution to the
model’s constraints for all variables is called the be-
havior of the model. If P is a model with m variables,
and v; 1s an initial value for variable p; (or the null
value if the 1,;, variable is dependent), then we denote
the behavior of P with BEHAV(P,v1,...,0m) = P =<
Py, ..., Pn> Note that we use script letters to denote
models, lowercase letters to describe both variables and
values, and capital letters to denote behaviors. Thus
P; denotes the behavior of variable p; as specified by
model P given the initial values <vy, ..., vm>.

Fitting Approximations

Since fitting approximations make it easy to compute
MSA, they are quite important. Intuitively, one model

is a fitting approximation of another when the behav-
iors they predict can be brought arbitrarily close to
zero. Thus the first step in defining fitting approxima-
tions is making clear the idea of behavior difference.

Definition 1 Let P =< P,...,Pn > and é =<
Q1,...,@n > be behaviors where m < n. Define the
BEHAVIOR DIFFERENCE BETWEEN P AND Q OVER THE
TIME INTERVAL [t,,1y] as

|Pi(t) — Q;(i)l)

BDIFF(P, Q. 1,,t;) = max. <t€?tupt]
- - sty

In other words, for each parameter in the smaller
model, we compare corresponding values in the com-
plex model for all times and take the supremum (least
upper bound) of the absolute differences. The behav-
ior difference is simply the Lo norm from functional
analysis, i.e. the maximum value of the suprema. We
are now ready to define fitting approximation.

Definition 2 Let P and Q be models with m and
n parameters respectively where m < n. We say
that P 1s a FITTING APPROXIMATION of @ if there
erists an independent parameter q; of Q such that
m < f < n, and there exisis an endpoini | of the clo-
sure of RANGE(qy) such that forall times t, and for el
wnitial values <vy, ..., va> where BEHAV(Q, vy, ..., v,)
is defined, BEHAV(P,v1,...,vm) 15 also defined, and

lim,,.; BDIFF((BEHAV(P,vy,...,vm),
BEHAV(Q,vy,...,1,),0,) =0

In this case, the parameter q; is called the FITTING
PARAMETER of the approrimation and | is called its
APPROXIMATION LIMIT.

In other words, model P approximates model Q
if the difference between the predicted behaviors
squeezes to zero as the initial value of the fitting pa-
rameter goes to the approximation limit. The natural
way to think of the fitting parameter is as an exogenous
input to the complex model, @, that specifies a degree
of freedom by which the two models can be made to
produce similar predictions. Figure 2 illustrates this
abstractly.

P; 1s a simple function of time, decreasing from
Pi(0) = p to Pi(t;) = 0. Since all variables in the
simple model are unaffected by the value of the fitting
parameter, P; can be viewed as a flat plane — move-
ment along the fitting parameter axis does not change
its value. The value of Qi, however, is affected by
the value of the fitting parameter so it defines a more
complex, curved surface (shaded). As the fitting value
approxes the approximation limit, [, Q; acts more and
more like P;. But when the value of the fitting param-
eter is far from [, say vy = k, then Q; is initially higher
Q:(0, k) = ¢ and furthermore Q; takes longer (t, — t;)
to reach zero.

As a simple example, suppose P is a set of equa-
tions modeling a kinematic linkage and Q contains the

38

P;(t) & Ql(t, Vf)

Value, v, of Fitting Parameter

Figure 2: As v; — [, Q; converges to F;.

same equations with the addition of a frictional co-
efficient, g, and frictional forces. P is a fitting ap-
proximation of Q because as Q’s parameter u tends
to zero, the difference between the two model’s pre-
dictions vanishes. Unfortunately, the previous exam-
ple is misleading since it makes the concept of fitting
approximation seem trivial. In particular, it might ap-
pear that there i1s no need to talk about limits since
one could simply set p to zero and convert Q to P
with algebraic simplification. However, in a number of
fitting approximations the differences in predicted be-
havior only vanish when the fitting parameter reaches
a limit of infinity; substitution is clearly impossible in
these cases. In fact infinite approximation limits are
actually quite common. For example, the model of a
uniform gravitational field is a fitting approximation of
the % law of gravity — as r goes to infinity the field be-
comes uniform. Economics provides another example:
perfect competition approximates Cournot’s theory of
market as the number of firms approaches infinity. As
demonstrated with table 3, fitting approximations are
ubiquitous.

Fitting Approximations for MSA

While no algorithm is known for computing MSA in
the general case, it is both possible and practical when
one model is a fitting approximation of the other. In
this case, model sensitivity analysis reduces to an ordi-
nary sensitivity analysis with respect to the fitting pa-
rameter in the complex model. For example, the effect
of switching from a frictionless model to one with fric-
tion is qualitatively equivalent to the effect of increas-
ing p in the complex model. In general, to compute
the difference in the behavior predicted by eliminai-
ing a fitting approximation, one can simply follow the
partial derivative with respect to the fitting parameter
awaey from the approximation limit. The effect of the
opposite model shift (i.e. adding an approximation) is
calculated by following the partial towards the limit.
We express this formally with:

Proposition 1 (MSA Reduction Theorem)

Massless objects
Inelastic string
Frictionless motion
Nonrelativistic motion
Ideal thermal insulation
Incompressible fluid
Reversible gas expansion

Zero moment of inertia
Zero-radius pulleys

Zero gravity

Constant resistivity
Ideal electrical insulation
Inviscid flow

Infinite sources and sinks

Elastic collisions
Rotation w/o slippage
Uniform gravity
Momentumless flow
Ideal gases

Carnot heat pump
Perfect competition

Figure 3: Examples of Fitting Approximations

Let P and Q be models with m and n paramelers
respectively, such that m < f < n. Suppose that P 1s
a fitting approzimation of Q@ with fitling parameter q;
and approrimalion limit . Lel <v;,...,v,> denote a
set of initial conditions for Q such that <vy,...,vm>
are consistent initial conditions for P, and let P;(t) de-
note the time varying behavior of the j-th variable of P
given these initial conditions, and let Qj(t, vy) denote
the value of the j-th variable of @ as a function of time
and the initial value of the fitting parameter as defined
by Qj(t,vj) = m;(BEHAV(Q, vy, ..., v, ... ,Un)).2 For
any time t in a bounded interval [0,t.] if

Q-
lim —2(¢ =
o, Gy (to)=p# 0
then there exists an € > 0 such that forall v satisfying
O< jv=1 < etf Qj(t,v) ts defined, then the rela-
tion between
Qj(t,v) and P;(t) is specified by the following table:

| || { = inf(RANGE(Q);)) | [= sup(RANGE(Q;)) |
p>0 Qj(t,v) > P;(1) Qj(t,v) < Pj(t)
p<0 1 Q;tv) <F() Q3(t, v) > P;(t)

Proof: See [18].

For example, if the approximation limit is at the
bottom of the range (as it is with g in the example
above) and the partial derivative of the j-th parameter
is negative with respect to the fitting parameter (as
is g%), then the detailed model will predict a smaller

value than the simple model (e.g., considering friction
will decrease velocity). But if the limit of the partial
derivative was positive, then the detailed model would
predict a greater value than the simple model. If the
approximation limit is at the top of the range (e.g. the
approximation limit of k£ was oo), then the situation
is reversed. Unfortunately, if the limit of the partial
derivative is zero, then one cannot conclude anything
about the two models’ relative predictions.

In other words, to compute the difference in the be-
havior predicted by eliminating a fitting approxima-

>The obsessive reader will note that Q:(t,vy) is a func-

tion of both time and the initial value of the fitting pa-
rameter while @;(t) is simply a function of time. Thus the
domain of Q]~ is the cross product of the set of times with

the predeclared range of Q.

39

tion, one can simply follow the partial derivative with
respect to the fitting parameter away from the approxi-
mation limit. One important limitation of this theorem
results from the unspecified value of €. Although the
theorem guarantees that € exists, it does not provide
a way to calculate its value; yet the reduction of inter-
model changes to an intra-model test is only valid when
one evaluates the partial derivative no farther than ¢
from the approximation limit. In many cases, € is very
large; for example, in the friction example there is no
bound on € and one may evaluate the partial derivative
anywhere for a correct result. However, in general, this
1s not guaranteed to be true; developing techniques to
predict the maximum value of ¢ is a very important
topic for future research.

The beauty of this result is that it does not commit
one to any particular method for computing the sign
of the partial derivative. Thus one could perform com-
parative analysis [17] on a qualitative model, or one
could use symbolic algebra techniques on real-valued
equations and take the sin at the last minute, or use
numerical techniques. In fact, we have implemented
the first two of these techniques and are considering
the third to handle differential equations.

Simplification with Bounding
Abstractions

In this section we describe the details of our query-
directed model simplification algorithm and its imple-
mentation. A major feature of our algorithm is the
fact that 1t is provably sound: the answers produced
by the simple, approximate model are guaranteed to
match those of that would have been produced by the
complex model. The basis for this property is best de-
scribed in terms of Giunchiglia and Walsh’s theory of
abstraction [6], which we review below.

Types of Abstraction

Initially, we consider abstraction from a logicist per-
spective since this is its context which has been most
fully explored. Unfortunately, in the study of logic,
the word model is defined at variance with the fields of
physics and system dynamics. What we refer to as a
model is called a theory by logicians: loosely, a set of
axioms and theorems. There are two obvious choices
when defining theory Th(Z,) to be more abstract
than theory Th(X,): either Th(E,) should be satisfied

by strictly more interpretations than Th(X,) (which
means it will have fewer theorems) or Th(Z,) should
contain strictly more theorems than Th(X,)(in which
case it will have fewer interpretations). Giunchiglia
and Walsh call these two definitions TD-abstraction
(for “theorem decreasing”) and TI-abstraction (“theo-
rem increasing”) respectively [6]. TI-abstractions are
useful because they guarantee that the absence of a
theorem in the abstract theory implies the absence in
the concrete theory. For example, considering the mu-
tilated checkerboard as 30 white and 32 black squares
is a TI-abstraction — since the abstract board is unti-
lable it follows that the concrete board also cannot be
tiled.

TD-abstractions provide the opposite guarantee,
which, surprisingly, is equally useful: a TD-abstraction
of a concrete theory has fewer theorems and therefore
more interpretations than the concrete theory. For
example, the qualitative equation y = M¥(z) is a
TD-abstraction of the real-valued equation y = z3 be-
cause every solution of the real equatlon satisfies the
qu]ahtatlve equatlon but the converse is not true [7,
20].3

In summary, a TD-abstraction lets one conclude
less (but all the predictions are correct) while a TI-
abstraction lets one conclude more (but some of the
conclusions may be wrong). However, if one knows
which type of abstraction one has, then all errors can
be avoided by mapping down only proof failures for TI-
abstractions and only mapping down proof successes
for TD-abstractions.

TD-Abstractions from Approximations

Although approximations are commonly used in en-
gineering analyses, especxally with respect to contin-
uous systems, there is no precise characterization of
what an approximation is. Common sense suggests
that the approximation should be simple and that the
difference between original and approximation should
be “small,” but this informal description is insufficient
for automated reasoning. Typical strategies for cre-
ating approximations are replacing a complex curve
with a straight line and dropping low order terms.
For example, the real equation for the molar ideal
gas lawP = I%/_T i1s an approximation (in fact a fit-
ting approximation) of the Van der Waals equation
P= v b 7z- Each equation allows the calculation
of pressure, but for nonzero values of a and b, the equa-
tions predict different values.

In certain cases, however, it is possible to interpret
an approximation as a TD-abstraction. In other words,
with extra information about an approximation, it is
possible to map an approximate result into a guar-
anteed result in the original model. Elevation of an

®In the terminology of physics, modeling equations take
the place of a logical theory and solutions to the equations
correspond to logical interpretations.

40

approximation to a TD-abstraction is possible in two
cases:

e If the approximation always overestimates or always
underestimates.

e If the approximation’s error 1s bounded.

For example, compared to the Van der Waals equa-
tion the 1deal gas law provides an upper bound for
pressure. If the GoM link between the Van der Waals
model and the ideal gas approximation is annotated
with this information (or if that information is deriv-
able), then a program can reason in terms of the region
beneath the approximate curve, rather than in terms
of the curve itself. Since the solution to the original
equation is guaranteed to be in the region beneath the
upper bound, we have satisfied the definition of a TD-
abstraction: a strict increase in the set of solutions.
Figure 4a illustrates the abstraction generated by an
upper bound approximation. Figure 4b shows the ab-
straction produced by intersecting the upper and lower
bounding regions.* Figure 4c illustrates the abstrac-
tion generated by an approximation with a percent-
bound guarantee.

Query-Directed Simplification

We now return to the problem of answering quanti-
tative, analytic queries that might occur during the
verification of a proposed design. In particular, we
consider the most basic step in verification: solving
inequalities. Inequality reasoning is extremely com-
mon when ensuring that a design meets its specifica-
tion. For example, whether an aircraft wing is strong
enough to resist shearing in turbulence can be deter-
mined by solving as an inequality, as can the major-
ity of verification tasks. While the algorithms behind
inequality reasoners have been carefully analyzed [13,
10], the modeling questions have not. Given that there
are a number of models in which one could verify a de-
sign, there are major advantages in choosing one that
i1s a TD-abstraction. This strategy allows verification
in an inexpensive, approximate model with the guar-
anteed same results as if the most complex model were
used.

The trick is to use the inequality whose truth is being
queried to select the approximate model. For example,
if the query is “Necessarily z > y?” then one attains
the guarantee by choosing an approximate model that
underestimates z and overestimates y. If the approx-
imate answer is “Yes” then the detailed model would
certainly agree, but if the answer is “No” then no guar-
anteed information has been gained and backtracking
must return reasoning to a more detailed model.

*The intersection, union or composition of two TD-
abstractions is 2 TD-abstraction [18, proposition 2]. Note
that the shaded region of the graph (representing the un-
certainty inherent in the abstraction) has shrunk.

(8)

Implementation

To test the practicality of query-directed simplifica-
tion, we have used Mathematica [22] to build the SUP
program. To implement the simplification algorithm,
we needed to commit to a specific backtracking strat-
egy and also a method for computing MSA.

¢ Implementing Model Sensitivity Analysis

SUP uses MSA to determine when a model shift is
sounds relative to a query. If a GoM link has not
been analyzed relative to any query before, SUP
checks if it is tagged as a fitting approximation
and uses Mathematica’s symbolic partial derivative
primitive to compute an expression for the MSA °
The resulting expression is simplified and cached so
that subsequent calls to MSA on this link with re-
spect to this parameter need not recompute the par-
tial. Finally, the expression is coerced into a qual-
itative value by determining the range of possible
values it may take on given the range restriction on
exogenous parameters and any known values.® We
note that this use of caching subsumes the mecha-
nism behind parameter change rules [1], since SUP
can reason about links in a GoM that do not cor-
respond to fitting approximations if a user prestores
values in the cache.

¢ Search Strategy

SUP performs a variant of depth-first search as it
traverses the GoM trying to prove an inequality. If
a model has a link to an approximate model which
1s sound relative to the query, SUP pushes the cur-
rent model on the stack and shifts to the approx-
imate model until there is no sound simplification.
If the algebraic solver fails to prove the inequality
true in this minimal model, then SUP pops the next
simplest model off the stack and calls the algebraic
solver on that model. This process continues until
the inequality is proven true, or the base model is
reached. Clearly, this simple strategy is suboptimal;

®Note that this approach does not allow SUP to reason
about differential equations, although it can handle poly-
nomial and transcendental functions.

S Although the best way to do this would be with the
BOUNDER inequality reasoner [10], the impossibility of
linking Lisp with Mathematica version 1.2, caused us to
use a simple stochastic bounder instead.

(h)

Figure 4: Approximations considered as TD-abstractions.

41

section discusses decision-theoretic control of mod-
eling shifts.

Example

To illustrate SUP’s behavior, consider the analysis of
a hypothetical chemical reactor (figure 5) which calls
for a positive displacement pump to maintain extreme
pressure and temperature of the reactant gas, ammo-
nia, as it flows through the catalytic bed (4]. The de-
sign verification step must determine whether the pro-
posed lobe pump will be able to achieve the necessary
temperature and pressure to enable the catalytic pro-
cess. To verify that the design meets the specifications
involves a choice of models for gas thermodynamics,
pump performance, and load across the catalytic bed.
In particular, when modeling gas behavior, one has a
choice (14] of the ideal gas law, the Van der Waals
equation, or the more complex Redlich / Kwong equa-
tion: P = %—m Similarly, there are several

ossible models for the pump: an idealized PDP model
15], a detailed second-order polynomial model relating
backflow to pressure and fluid viscosity, and a simple
linear lower bound. Even if we assume a fixed equa-
tion for load, the GoM for this example contains six
models.

Figure 5: Simple design for verification

SUP is given constants for the maximum RPM for
the pump, the volume of the reactor, the necessary
temperature for catalysis, the real gas constant, and
parameters of the gas: critical temperature, critical
pressure, and viscosity.” With these values, SUP has
enough information to evaluate the inequality “Can the
pump produce enough pressure to enable catalysis in
the gas?” in the most detailed model. However, SUP
instead first simplifies the models.

"The GoM would be even bigger if equations encoding
the temperature dependence of viscosity were included.

First SUP notices that the ideal gas law is a fitting
approximation of the Redlich / Kwong equation with
two fitting parameters, a and b.8 Computation of MSA
shows that the ideal gas law provides an upper bound
on the pressure required to reach a given temperature
so that approximation is made. Next, SUP notes that a
prestored cache entry marks the linear pump model as
a lower bound,® so that approximation is made as well.
At this point SUP has reached the simplest model, so it
proceeds to calculate the achievable and required pres-
sures. Since the results are 47.3197 and 46.6624 bar re-
spectively, the inequality is guaranteed true, not only
in this model but in the more detailed models as well
and the analysis is complete. For example, if SUP had
performed the analysis with the most detailed equa-
tions it would have estimated achieveable pressure at
48.3099 and the catalysis threshold as 44.4865. We can
verify the use of a bounding abstraction by observing:
48.3099 > 47.3197 > 46.6624 > 44.4865.

In addition to the example above, SUP has been
tested on several dozen problems using five different
GoMs. In all cases, SUP performed both MSA and
the eventual calculations in a matter of seconds. How-
ever, as discussed below, more work is necessary to
transform SUP into a practical tool.

The Cost of Model Shifting

One issue that is conspicuously neglected in the design
of SUP is consideration for the cost of shifting models.
Yet an intelligent modeling system should evaluate the
computational tradeoff between time spent analyzinga
model and time spent reasoning about which model to
analyze. Decision theory is the natural framework for
such a system, but several problems must be addressed
to make this practical, chief among them is a means
for cheaply estimating run time.

Note that since bounding abstractions provide a
guarantee of correctness, there is no need to decide be-
tween the relative worth of an extra percent error vs an
extra unit of CPU time. Utility can be simply defined
as the multiplicative inverse of run time. The expected
cost, C., of trying to shift from the base model, @, to
a simpler model, P, along a link @ —P when analyz-
ing the query (J; <Q; given initial conditions ¥ can be
written as:'?

8The quantities a and b are positive constants that can
be computed from the critical temperature and pressure

: 42148 2T 2 5
using ¢ = ___;r_;l and b = .086(}:RT:'

®The polynon;ia.l viscosity model ‘does not have a fit-
ting approximation lower bound, but it does have an upper
bound which is a fitting approximation.

% Following [18] we use “Msa(Q, P, i)” to denote the
process of computing the change in the ith parameter (i.e.
Qi — Pi) when shifting from model Q to P. At the expense
of extra complexity, the cost equation can be extended to
cover the case in which @ has multiple approximation links,
and the possibility that P might be simplified as well.

42

C(Q—P,Qi<Q;,7) = Ce(MSA(Q,P,1)) +
Ce(Msa(Q, P, 1))+
aC.(ANAL(P, P; < P;, 7)) +

(1-aB)C.(aANAL(Q, Qi < Qj, 7))

whether P is sound relative to @ and the query. The
third term of the equation represents the cost of ana-
lyzing the inequality in the approximate model, and is
only performed some of the time: « denoting the prob-
ability that P 1s an appropriate bounding abstraction.
The fourth term accounts for the cost of analyzing the
inequality in the original detailed model; this happens
when P is not the desired bounding abstraction (with
probability 1 —«) or when the approximate model fails
to prove the inequality (with probability (1 — 3) of the
times the model is tried, i.e. a(1—/)) and backtracking
1s necessary. It only makes sense to try and shift mod-
els when this total expected cost is less than the cost
of simply analyzing the inequality in the base model:

C.(ANAL(Q, Q: < Qj, 7))

Thus the SUP approach makes good sense if a and 3
are high (1.e. there is a good chance of finding a bound-
ing abstraction that is unambiguous on the query), if
the cost of analysis in the simple model is much less
than that of the complex model and if the cost of com-
puting MSA is less than the cost of analysis. We be-
lieve that compositional modeling (section) will ensure
this latter condition, but runtime evaluation of the cost
equation is likely to be difficult until a means is found
for estimating the computational savings of an approx-
imation.

Compositional Modeling

Throughout this paper we have talked in terms of a
graph of models because 1t affords a clean conceptual
foundation. On pragmatic grounds, however, the GoM
approach is problematic (e.g., a space requirement that
1s exponential in the number of assumptions). The ob-
vious solution is to represent a GoM implicitly and
to dynamically instantiate only the models that are
actually useful for analysis. Pioneering work on this
approach, termed compositional modeling, suggests its
substantial promise [5]. Query-directed approximation
with bounding abstractions and MSA computation via
fitting approximations fit perfectly into the composi-
tional modeling framework. Since MSA can be com-
puted on model fragments as easily as on complete
GoM models, one can reason about bounding abstrac-
tions, fragment by model fragment. This is almost
certain to make the expected cost of MSA negligible
compared to that of model analysis. We are working
on implementing a compositional modeling successor
to the SUP program using a variant of the QPC algo-
rithm [3].

Related Work & Conclusions

Shirley and Falkenhainer [12] suggest reasoning about
the percent error of an approximation and Nayak [9]
shows how it can be performed using the less expen-
sive of a pair of model fragments in certain cases. In-
terestingly, Nayak concludes that MSA is necessary
even when calculating the percent error of a modeling
shift. Selman and Kautz [11] describe algorithms that
compute the equivalent of bounding abstractions for
theories in propositional logic. Williams [21] defines
the critical abstraction of a quantitative component-
connection model with respect to a query to be the
maximally simple model that still is capable of answer-
ing the query. Cast in Williams’ terminology, the SUP
program’s bounding abstractions could be considered
to be “critical approximations” — maximal upper and
lower bounds. Unlike Williams’ program, SUP does
not need to do a full analysis in the detailed model
before simplification.

Our motivating goal is to build programs that can
reason efficiently about complex systems by dynam-
ically choosing simplifying assumptions and perspec-
tives that are appropriate to the task at hand. This pa-
per presented a framework for reasoning about model
accuracy in terms of simplification and refinement that
1s based on model sensitivity analysis. Our main result
is the notion of bounding abstraction, and a sound,
MSA-based algorithm for performing query-directed
model simplification when analyzing inequality rela-
tions.

References

S. Addanki, R. Cremonini, and J. S. Penberthy.
Reasoning about Assumptions in Graphs of Mod-
els. In Proceedings of IJCAI-89, August 1989.
Reprinted in [19].

S. Addanki, R. Cremonini, and J. S. Penberthy.
Graphs of Models. Artificial Intelligence, 51(1-
3):145-178, October 1991.

J. Crawiord, A. Farquhar, and B. Kuipers. QPC:
A Compiler from Physical Models into Qualitative
Differential Equations. In Proceedings of AAAI-
90, pages 365-372, August 1990.

K. Denbigh and J. Turner. Chemical Reactor The-
ory. Cambridge University Press, 1984.

B. Falkenhainer and K. Forbus. Compositional
Modeling: Finding the Right Model for the Job.
Artificial Intelligence, 51(1-3):95-144, October
1991.

F. Giunchiglia and T. Walsh. Abstract Theorem
Proving. In Proceedings [JCAI-89, pages 372-377,
August 1989.

(1]

B. Kuipers. Qualitative Simulation. Artificial In-
telligence, 29, September 1986. Reprinted in [19].

43

(8] s. Murthy and S. Addanki. PROMPT: An Inno-
vative Design Tool. In Proceedings of AAAI-87,

pages 637-642, August 1987.

P. Pandurang Nayak. Validating Approximate
Equilibrium Models. In Proceedings of the 1991
AAAI Model-Based Reasoning Workshop, July
1991.

E. Sacks. Hierarchical Reasoning about Inequal-
ities. In Proceedings of AAAI-87, pages 649-654,
August 1987. Reprinted in [19].

[11) Selman, B. and Kautz, H. Knowledge Compila-

tion using Horn Approximations. In Proceedings
of AAAI-91, 1991.

M. Shirley and B. Falhenhainer. Explicit Reason-
ing about Accuracy for Approximating Physical
Systems. In Proceedings of the AAAI workshop
on Automalic Generation of Approzimations and
Abstractions, July 1990.

R. Simmons. “Commonsense” Arithmetic Rea-
soning. In Proceedings of AAAI-86, pages 118~
124, August 1986. Reprinted in {19).

J. M. Smith and H. C. Van Ness. Introduction io
Chemical Engineering Thermodynamics, fth ed.
McGraw-Hill, 1987.

J. Thorpe. Mechanical System Components. Si-
mon and Schuster, Needham Heights, MA, 1989.

D. Weld. Approximation Reformulations. In
Proceedings of AAAI-90, pages 407-412, August
1990.

D. Weld. Theortes of Comparative Analysis. MIT
Press, Cambridge, MA, May 1990.

D. Weld. Reasoning about Model Accuracy. Ar-
tificial Intelligence, To Appear 1992.

D. Weld and J. de Kleer, editors. Readings
in Qualitative Reasoning about Physical Systems.
Morgan Kaufmann, San Mateo, CA, August 1989.

M. Wellman. Qualitative simulation with multi-
variate constraints. In Proceedings of the Second
International Conference on Knowledge Represen-
tation, May 1991.

B. Williams. Capturing How Things Work: Con-
structing Critical Abstractions of Local Interac-
tions. In Proceedings of the AAAI workshop on
Automatic Generation of Approrimations and Ab-
stractions, July 1990.

S. Wolfram. Mathematica: A System for Do-
ing Methematics by Computer. Addison-Westley,
Redwood City, CA, 1988.

(9]

(10]

12]

[22]

