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Abstract

A method which can qualitatively identify a dy-
namical system according to qualitative descrip-
tions about the behavior of the observed system
is proposed. The system identification problem
is well known especially in control theory. It in-
volves the identification of the causal structure of
systems according to observed behabvior.

We introduce a Qualitative System Identifi-
cation Method based on Qualitative Reasoning.
The proposed method determines the most likely
constraints that can satisfy a given observation
set.

Our approach takes an analytical approach to
the modeling process which generates a mathe-
matical model of an observed dynamical system
according to its behavior.

AT topic: qualitative system identification
identification of causal structure

Domain area: mathematical modeling

Language/Tool: CommonLisp / SparcStation

1 Introduction

The estimation of the behavior of a dynamical
system, namely simulation, requires the causal
structure of the system to described as differential
equations and by determing their numerical solu-
tions. System identification is the inverse problem
of such simulation process. It is the process of
identifying a causal structure between the vari-
ables that characterize the observed dvnamical
svstem, from observations about the behavior of
the variables. This paper discusses a qualitative
system identification method based on qualitative
reasoning.

The method proceeds in two steps, given the
situation in which a time series of characteristic
variables is observed.

1. Estimation of Qualitative States described
by Qualitative Values and Qualitative
Derivatives.

2. Identification of causal structure as Qualita-
tive Differential Equations.

Chapters 2 through 4 derive the basic mathemat-
ical relations. In order to estimate possible qual-
itative states, State Estimation Rules are derived
in chapter 5. A method to estimate the qualita-
tive differential equations is derived in chapters 6
through 7. An experimental result is presented in
chapter 8.

2 Quantization of Value

The qualitative description of a numeric value is
called its Qualitative Value. A qualitative Value
is a symbolic value which consists of several land-
marks and intervals in Euclid Space. The pro-
posed method employs several symbols in order
to develop our method in Qualitative Value Space
in which the only landmark 1s “ZERO”.

landmark 0 = [0]
interval (—o0, 0) = [-]
interval (0, +c0) = [+]
interval [0, +00) = [0+]
interval (—o0, 0] = [-0]
interval (—o0, +00) = [+0-]
interval (—o0,0) (0, +00) = [+-]

We define the basic operations of these Qualita-
tive Values in Table.1.

Here, “C” describes subsei. Therefore, the
following relations exist between the Qualitative
Values defined above.



Table 1: Addition and Multiplication of Qualitative Values

(A) Additive Operations

[+ T (0] 5 fer] [0 [+-] [+0-]]
+ [ [+ [+0-] [+ [+0-] [+0-] [+0-]
0] (0] (=] [o+] [-0] [+=] [+0-
-] = BO-] ] b0-] [0
[0+4] 0+] [+0-] [+0-] [+0-
[—0] [-0] [+0-] [+0-]
[+-] +0-] [+0—
[+0-] |.+0_
(B) Multiplication
[ X T (0] (5 for] (0 [+-] [+0-]]
[+ I+ (0] [-] [0+ [=0] [+=] [+0-]
0] 0] [0 _[0] _[0] _[0] _[0]
=] [+] —0] 0+]  [+-] [+0-]
0+] [0+ -0 [+0-] [+0—
=) 0+] [+0-] [+0—
[+-] =] 0
(+0-] [+0—
QiciH+ =I(Q]l=I[+ 3. Qualitative value passes through a landmark
QIcio] =[Q]=I[0] in an instant.
Qi) (0= (o] or Q)= 4
Q) C |0+ = = or = [+
tQ] c-0] =[Q=[0]or[Q =[] Value states can, accorldingly, be divided into
Qlc[+-] =[Q=[+or [Q] =[] two types,” namely, “Stat:'c S!{:te" and_ “Momen-
Q) c [+0-] =[Q = [+l or [Q] =[0]or [Q] = [-] ter¥ State”. Therefore, time is quantized. Cor-

A qualitative description about a derivative
value is called a Qualitative Derivative. Its mean-
ing is as follows.

8Q =[+] = Q isincreasing.
aQ = [0] = Q@ is steady.
8Q = [-] — ( is decreasing.

3 Quantization of Time

In this paper, characteristic values are assumed to
have continuous behavior. Therefore, they must
satisfy the following conditions[Nishida 89].

1. Once a Qualitative Value enters into an in-
terval, it must stay there for a while.

2. A Qualitative Value goes through a landmark
when it transfers from one interval to an-
other.

responding with these two state types, two types
of quantized time are defined, namely, “Time In-
terval’ and “Moment’. On the quantized time
axis, Time Intervals and Momenis appear alter-
nately. Figure.l shows the continuous function
Q(t) and its qualitative description [Q(t,)] on the
quantized time axis Z,.

4 Basic Mathematical Rela-
tions

4.1 Assumption of Continuous Be-

havior

As assumed in the previous chapter, the Qualita-
tive Value [Q(t)] can not transit by jumping over
any landmark nor any interval from quantized
time t to t/. Therefore. in the Qualitative Value
Space, which has arbitrary n landmarks and n+1
intervals,



Figure 1: Continuous function Q(t) and its qual-
itative interpretation [Q(t,)] on Quantized Time
Azis t,
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Qualitative Value [Q(t)] must satisfy the fol-
lowing relations.

e Prohibition of jumping over landmark

{([RM)] - L) - ([Q(z")) = Ls) C [0,+20)}

i=1---n

e Prohibition of jumping over interval

TTIT4Q®] - L) + (1@ - L)} # [0]

i=1j#i

In the Qualitative Value Space that has only
landmark “ZEROQO”, the next relation must be sat-
isfied. (In this case “Prohibition of jumping over
interval” need not be considered.)

[Q()] - [Q(t')] C [04] (1)

4.2 Rules to Distinguish Time In-
terval or Moment

Assuming a differentiable function Q(t) defined in
Euclid Space, Q(t) satisfies the next relation.

dQ(§)
Q(t) + At - —=2=

E=t—t’

Q') =

At = t'—t
Quantizing this relation into the Qualitative
Value Space, the following relations are derived.

[RE)] C [RM)] +Q(t — t') - [At] (2)

[RE)] C [Q()] - 9Q(t — ¥') - [At] (3)

Here, [At] is a qualitative description of the tem-
poral length taken by qualitative state transition.

Now assume three continuous quantized time
torev = tnow — tnezt. “Moment” is a point on a
quantized time axis and has no length. Therefore,
the following relations must be satisfied.

({ When t,0, is a Moment ))

e Quantized time passes from #,4y O tneg: iD
an infinitesimal moment. Therefore, accord-
ing to formula (2), [Q()] satisfies the next
relation.

[Q(tﬂezt)] C [Q(tnaw )] + 9Q(thow — tnezt) £ (4)

¢ Quantized time goes back from t;ou 0 tpreo
in an infinitesimal moment. Therefore, ac-
cording to formula (3), [Q(t)] satisfies the
next relation.

[Q(tpfsu )] C [Qtnow )] = 8"?“?"9" — tnow) - €

When formulae (4) and (5) are satisfied, #0u
is judged to be a “Moment”.

({ When t,,y is a Time Interval ))

e Quantized time passes from Zpr.y t0 tpow in
an infinitesimal moment. Therefore, accord-

ing to formula (2), [Q(t)] satisfies the next
relation.

[Q(tnow)] < [Q(tprw )] b aQ(tprn.- =r tnow) -€

e Quantized time goes back from t,.z¢ t0 thow
in an infinitesimal moment. Therefore, ac-

cording to formula (3), [Q(t)] satisfies the
next relation.

[Q(tnow )] S [Q(tnez:)] g aQ(tnow - tne:t) £

(5)

(6)

(7)



Here, ¢ describes an infinitesimal moment. Ad-
ditive operation of a Qualitative Value with an-
other Qualitative Value multiplied by ¢ is effective
only when the Qualitative Value is on a landmark.
For example, the following relations are satisfied.

[+]+ [} e = [+]
(0]+[-]-e=[-]

When formula (6) and (7) are satisfied, tpow is
judged to be a “Time Interval”. When all of these
four formulae are satisfied, ¢,y is judged to be
either “Moment” or “Time Interval”.

Here, in each formula, the term 8Q(t — t') is
unknown. Therefore, this term is assumed to be
as follows.

nn

0Q(t — t') C [+0-]

4.3 Qualitative Integration Rule

Qualitative analysis of the behavior of a vari-
able Q(t) is performed using the following
relation[de Kleer 84].

[R(")] C [Q()] +9Q(2) (8)

This relation is called the “Qualitative Integration
Rule”. This rule was derived from the following
mean value theorem defined in Euclid Space.

I e(t,t) Vit
Q) =Q)+ (' —1)- Q) (9)

However, formula (8) is derived from formula (9)
only under the condition that Q(f;) is a strictly
monotone funciion at t; € (t,t') ,namely, Q(%;)
does not change. Therefore, formula (8) can not
describe the following transition.

[Q(t)] = [0], 8Q(t) =[0]
When 8°Q(t) = [+]
h
RN =[+], 9Q(t) = [+]

We derived a new “Qualitative Iniegration Rule”
using the next relation defined in Euclid Space.

Q') = Q) + f Q(e)d (10)

Quantizing formula (10) into Qualitative Value
Space, the next relation is derived.

[Q(")] C [Q()] +0Q(t) - 6t + 8Q(t') - 6t'  (11)

Here, 6t and 6t' are qualitative descriptions of
the temporal length of each quantized time ¢ and

¢ t!. Therefore, defining [At] as a temporal length

needed for state transition, the next relation is
satisfied.

[af] ¥

[t'—t] =dt+ 6t

State transition from Momentary State to
Static State takes an infinitesimal moment, that
is, [At] = e. Moreover, t is Moment. Therefore,
the next two relations are satisfied.

§t=1[0], 6t'=¢

State transition from Static Staie to Momen-
tary State takes a finite time, that is, [At] = [+].
Moreover, t' is Moment. Therefore, the next two
relations are satisfied.

st =[+], &' =[0]

We call formula (11) the new Qualitative Integra-
tion Rule.

5 Estimation of Qualitative
States

Estimation of possible qualitative states is per-
formed by estimating the possible Qualitative
Derivatives 8Q(t) according to the observed time
series of Qualitative Values [Q(t)]. We defined
the following two rules in order to estimate possi-
ble Qualitative States, asuming three continuous
quantized time fprev — tnow — tnezt- These rules
were derived using the basic mathematical rela-
tions derived in the previous chapter.

5.1 State Estimation Rules
({ State Estimation Rule.1 })

When tp.y is a Momeni. The Qualitative
State, ([Q(tnow)], dQ(tnow)) is estimated in the
following manner.

Given the sequence tprey(Time Interval) —
tnow(Moment) — tnert(Time Interval), the fol-
lowing relations are derived using the Qualitative
Integration Rule (11).

[Q(tnow)] C [Q(tprev)] + 0Q(tprev) (12)

[Q(tnsﬂ )] C [Q(tnow )] o aQ(tnezi) - E (13)

Substituting the observed values [Q(fpres)] ,
[Q(tnow)] » [@(tnest)] into these formulae, yields
{aQ(tpreu)g aQ(tngzt)}. In a.ddition, 3Q(i) must



satisfy the Assumption of Continuous Behavior
(1).
aQ(tprsv) H 3Q(tnow) C [U'f‘}
3Q(tn0‘w) : BQ(tnczt) C [U+] (14)
Moreover, considering i,y is 2 Moment, accord-
ing to formulae (4) (5).
BQ(tﬂut) C 3Q(tnow) -+ [+0_] i
3Q(tprev) C 8Q(tnow) — [+0—] - € (15)
and 8Q(tnon) which satisfies these formulae (14)
(15) can be derived. Now, we have the relations
possible when t,,,, is a Moment , as listed in Ta-

ble.2. We call these relations the State Estimation
Rule. 1.

Table 2: State Estimation Rule.1

[Q(tpre)] [Qtnow)] [Qtnezt)] 9Q(tnow)
(+] (0] [+] [0]
[+] [0] [0] [0]
[+] (0] -] (-0]
(0] (0] [+] [0]
[0] (0] [0] [0]
(0] [0] [-] (0]
=1 [0] [+] [0+]
-] [0] [0] (0]
-] [0] by (0]
[+] [+] [+] [+0-]
=] (-] (-] (+0-]

({ State Estimation Rule.2 ))

When t,,,, is a Time Interval, we can not as-
sume 8Q(t) to be constant. Therefore, we assume
the interval {,., consists of several sub-intervals
as shown in Figure.2.

Figure 2: Division of 1,4, into Sub-Intervals

tp‘rw ( tnow ) tnezt
| —
e R ——
tnw.ps tnw..pc
( t'n.mu_.s )[ tnow..m ]( tnow..e )

Here, t,0u_s is defined as the interval immedi-
ately after t,r.y, tnow_ is defined as the interval
immediately before t,.-;- In these sub-intervals,
the qualitative states,

([Q(tfzm_s )] ) aQ(tnow_a ))
([Q(tnaw..s )] ' aQ(tﬂ ow _e)]

are estimated using the following relations derived
from formula (11).

[@(tnows)]) C [Q(tpren)] + 0Q(tnowos) € (16)

[Q(tnezt)] C [Qtnow-e)] + 8Q(tnowe)  (17)
Where [Q(tnous)] = [Q(tnow-e)] = [Qtnaow)]-

tnow_m is defined as the interval that includes Mo-
ments tnoy _ps and tnou_pe. That is,

Interval tnow_m : [tnow_p:)tnow.pe]

However, we can not say how many sub-intervals
tnow.m is divided into.

We discuss how to estimate the qualitative
states,

{[Q(tnaw_m__f )]: 3Q(tnow_m-j ))!

According to the mean value theorem (9), we
can define a state which must be in the inter-
val tnow_m. Such states can be estimated by as-
suming the strict monotony of function Q(t) in
the interval {05 _m. Assuming strict monotony
of Q(t) in tnow_m, OQ(tnow_m) can be estimated
using the next relation derived from the Assump-
tion of Continuous Behavior (1).

Q(tnow-s) - 0Q(tnow.m) C [0+]
3Q(tnow.m) - 0Q(tnow.e) C [0+]

However, care is needed here. When an observed
system has several variables {Q; : i = 1,...}, we
can not assume that {8Qi(thowm) : 1 = 1,...}
appear at the same quantized time (defining &;
for each variables using formula (9), we cannot
assume all {§ : 7 =1,...} appear at the same
time). Therefore, considering the quantized time
tnow.m.i at which each variable 8Q;(thow_m) is
assured to appear given monotony, we can state

an(tnow.m.i) C [+0—'] ) J # )

For example, consider the situation in which the
next time series was observed.

tpreu tnow tneﬂ
[Xi]: [0] [+ [0]
[X2]:  [0] [+] [0]

Possible Qualitative States are estimated as fol-
lows.



Quantized Possible States
Time ([X;],aX;,[Xg],BXg)
tnow_s ([+}l [+]l [+] L [+1)
tnow.m-1 ([+]1[0]1[+]=[+0_])
tnow.m.2 ([+]: £+0_]l [+]l [ U])
tnow.e ([+]1 [""]! [+1: [_D

We now have the relations for which the situation
tnow is a Time Interval These relations are given
as Table.3. We call these relations State Estima-
tion Rule.2.

5.2 Example of State Estimation

This section introduces an example of applying
the State Estimation Rules to a simple case. Con-
sider a dynamical system which has two charac-
teristic variables, namely, X; and X,. We assume
that a time series of Qualitative Values [X;] and
[X3] are observed as follows..

(X1 ()):[=] [0] [+] [+] [+] [0] [-] [-] [=] [0] [0]
[X2(1)):[+] [+] [+] [0] [-] (=] (=] [0] [+] [0] [0]
B>

Quantized Time

Applying State Estimation Rule.1 and Rule.2, the
possible qualitative states listed in Table.4 can be
estimated.

These Qualitative States should satisfy some
kinds of Constraints. We discuss how to estimate
the Constrainis in the next chapter.

6 Identification of Constraints

6.1 Constraint Identification Method

In Qualitative Reasoning, we describe the causal
structure between characteristic variables as Con-
straints. Qualitative Simulation[Kuipers 86] is
performed by finding possible state transitions be-
tween several Qualitative States which satisfy the
Constraints. Such Constraints describe a tempo-
ral causal structure of the dynamical system and
are in fact, Qualitative Differential Equations. In
this chapter, we discusse how to estimate Quali-
tative Differential Equations by finding causal re-
lations between characteristic variables and their
derivatives, namely,

{[Q:],0Q:}

In order to find these relations, we use the follow-
ing Polynomial.

3 t=1,2,...

order
[01c > [Chibmitaneen .]H[Q.]*‘HBQ s (18)
m=0 i=1

m=ki+- 4k +li+-+ln

Here, )  means an additive operation between
Qualitative Values and [] means qualitative mul-
tiplication. [Ck, ... kx,l,....1») aTe the coefficients of
the terms which forming the Polynomial. “order”
means the order of the Polynomial. Therefore,
when order = 1, formula (18) is a Linear Dif-
ferential Equation. By substituting Qualitative
States

([Qi]' ans ey [Qﬂ]: aQﬂ)

estimated by the Siate Estimation Rules into for-
mula (18), the estimation of Constraints is per-
formed by searching for possible sets of the co-
efficients [Ck,, .. kn1,..1.) Satisfying the relation
“C”-

In our method, we begin searching the coeffi-
cients with order = 1. When possible coefficients
can not be found, order is incremented.

6.2 Example of Identification of
Constraints

Using the example discussed in the previous chap-
ter, we estimated the Constraints. According to
this example, the following 18 Constraints are es-
timated.

[0] C [X1] + 80X, + [X2] + 8X,
[0] C[X1]+8X:+ [Xz] - 38X,
[0] C [Xy]+ 68X, + 30X,
[0] C [X1]+ 8X, — 09X
[0] C [X1] + 80X, — [Xz] + 8X,
(0] C [X1] + 86X — [X3]
[0] C [X1]+ 8X: — [X2] — X2
[0] C [X1] + [X2] + 80X,
[0] C [X] — 38X, + [X3] + 09X,
[0] C [X1] = 86X, + [X]
[0] = [X1] —-8X,+ [Xz] —-8Xs
[0] C [Xi] —8X,—-08X,
(0] C [X1] - 8X, — [X2] — 90X,
[0] C 8X; + [Xa2] + 8X2
[0]C 8X, + 90X,
[

0] C 80X, — [X5] + 0X2
[0] C 8X; — [Xa]
[0]coX, — [Xg] — X9

In this case, the possible coefficients are found
with polynomial of order = 1. Therefore, these
Constraints are Qualitative Linear Differential
Equations.



Moreover,

k
= > pe(si)logpe(s:) = —k - pi log pi
i=]1

= logk

H,

(22)
According to formulae (21) (22), Entropy reduc-

tion is rewritten as follows.

H. 1.0 log k
Hpmer  2nlog3

H.=10- (23)
According to formula (23), when the number of n
variables is fixed, H. depends only on the num-
ber of states k. Moreover, smaller numbers of k
indicate tmproved forcasting power.

According to these relations, we chose the Si-
multaneous Constraints which are satisfied by the
smallest number of states, as appropriate models.

7.3 Example of Appropriate Simul-
taneous Differensial Equations

Using the example introduced in chapter 5, we es-
timated the most appropriate Simultaneous Dif-
ferential Equations. For the data given, the fol-
lowing 6 models are estimated.

({ Model No.1))
(0] C 8Xy - [X7]

(( Model No.2)) [0] C [X1] + 98Xy + X,

(0] c 8X; - [X,)

(( Model No.3)) [0] C [X;]+ [X2] +8X2

[0]CcaX,+8X,

(( Model No.4)) [0]C [Xi]+ [X2]+ 08X,

(0] c8X; - [X,]

(( Model No.5))

[0] C 8X;+ 08X,
(( Model No.6)) [0] C[X,]—38X)+[X,]
[0]C 8X, + 08X,

8 Experimental Results of
Qualitative Simulation

We can now show that the observed behav-
ior can be reproduced by Qualitative Simulation
(Kuipers 86] using the above mathematical mod-
els. Figure.3 shows qualitative simulation results

[0] C [X1]+3X1 + [Xg] +8X»

[0] C [X1] = 0X1 + [X2] + 8X2

from Model No.l ~ Model No.6. Here, Mod-
els No.1, No.2 and No.4 are qualitatively equiva-
lent. Moreover, Models No.3, No.5 and No.6 are
also qulaitatively equivalent. This figure shows
that the observed behavior is reproduced by each
model.

Figure 3: Results of Qualitative Simulation

({ Model No.1 (= No.2 = No.4) ))

[X1(2)]
[+ /7-=NN\N
[[]]/‘ ............... Ny oov e naivan s — =
(-] N= LA

[Xa(t)]
[ SN
[U] ...... \ ............... /‘ ......... ——
(-] N= LS

(( Model No.8 (= No.5 = No.6) ))

[(X1(2)]
+ /2//—=\
[[}]/" ............... Ny rrrrrremnnenns —_— =
(-] NN g =

[Xa(2)]
[+ NN

9 Conclusion

We have introduced a method that qualitatively
models dynamical systems using the qualitative
descriptions about the behavior of observed sys-
tems. Moreover, we showed experimental results
in this paper. We built an experimental system on
a SparkStation using the CommonLisp language.
Inputs of the experimental system are the name of
characteristic variables and the time series of the
variables. The appropriate models are calculated
automatically.

We discussed a development of our method in
Qualitative Value Space in which the only land-
mark is “ZERO”. However, Basic Mathematical
Relations derived in Chapter.4 are not depend on



the Qualitative Value Space. Therefore, the pro-
posed method can be extended to cases where the
Qualitative Value Space includes more than one
landmark value , by (1)defining new symbols for
the Qualitative Value Space , (2)defining the ba-
sic operations between these symbols and (3)de-
riving new Siate Estimation Rules from the Basic
Mathematical Relations.
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Table 3: State Estimation Rule.2

[Qtprev)] [Qtaow)] [Qnezt)] 8Q(nows) 0Q(nowm)™) 0Q(tnow.c)

[+] [+] [+] [+0-] [+0-] [+0-]
[+] [+] [0] [+0-] (-0] .
[0] [+] [+] [+] [0+] [+0-]
[0] [+] (0] [+] [0] -]
[0] i (0] -] (0] [+]
[0] ) (-] [-] [-0] (+0-]
(-] (-] (0] [+0-] [0+] [+]
(] (] [-] [+0-] [+0-] (+0-]

(*) : 8Q(tnow_m) assuming strict monoiony of Q(1) In {now_m

Table 4: Example of Applying State Estimation Rules

Observed Time Series Applied Rule Qualitative State
[X1][X2] ([X1),8X:,[X3],0X3)
R
[-1+]

[0][+] Y ¢ Rule.l — r([

(41
W YY) Rues - { TLEOA

(
\ | (0 [0, [+ ()
[400] b)) Ruler —  (0+),[+0-],[0],[0])
G
N N +], (=01, [-], [+0-

e I (], [+0-], (], [=0])
| (4, (=1, [0, 0]
(001 | t)  Rules —  ([0],[=0], (], [+0-]
(-9 o

3 — 5=V =] | FHV—
s ¢ ] ded (=], [+0-], (=], [o+])
1 | (=) -] [ )
0] J ) Rues —  (=],{+0-],{0),[04)

e

l

(6 u[]%[?])]
+], [+], [+0-])
FE ) R = () oo 0]
| (L HLELED
o)to] ) Rues — " (olfol {01, [0}
[o]fo]



7 Estimation of Appropriate
Models

When an observed system has n characteristic
variables, the system can be modeled by Simul-
taneous Differential Equations consisting n Con-
straints. In this section, we discuss a method to
find the combinations of Constraints that have
the strongest forecasting power{Cellier 91] as ap-
propriate Simultaneous Differential Equations.

7.1 Exclusion of Inconsistency

The Qualitative States estimated in chapter 5
satisfy each Constraint estimated in chapter 6.
However, there are the cases in which Qualitative
States can not satisfy the “Simultaneous” Con-
straints. These cases occur due to the uncertain-
ties of Qualitative Values in estimated Qualitative
States (ez: [0+],[-0],[+0—]). For example, con-
sider the next state (State 4) which consists of 4
variables.

State A !
([X1], 8X1,[X2],8X2) C (4], [-0].[-].[0+])

State A satisfies each of the next Constraints.

[0] C X, — [X3]
(0] C 8X; — 8X;

However, Qualitative States that satisfy these Si-
multaneous Constraints, that is,

() L LD ([+] [0],[0
([+]' ["']1 I_]l [_]) ' +]= [
((0],[0],[0],[0]) . I LI
(=L L ED . (ol (o]
(=)=}, =) =D

do not include any states which satisfy State A,
that is,

() =150 o (HLE=LEELED

((+), (0], [=].[0]) (). 00}, (=) [+D)
This means that State A does not satisfy the
Simultaneous Constraints. We call such cases
“Inconsistency’. Such Simultaneous Constraints

should be excluded as candidates for appropriate
models.

7.2 Searching Combinations
of Constraints with Strongest
Forecasting Power

Cellier[Cellier 91] introduced “Entropy Reduc-
tion” as a measure of the forecasting power of the

Constraints. In our case, “Entropy Reduciion” is
defined as follows. Considering probability p.(s)
of state s which satisfies the given Constraint Set
¢, the next relation is satisfied.

> _pels) =10
Vs

Entropy is defined as,

def

H.= =Y pe(s)logpe(s)

Vs

Entropy H. takes maximum value,

Hno_connraim = Hmu

when all of the states occur with the same prob-
ability. This occurs when no Constraint is given.
Moreover, when state occurence is deterministic,

H deterministic = 0

Using these values, Entropy Reduction H, is de-
fined as follows.

H.

Hf — 10_
HH'IGZ

(19)

H, is a real number in the range between 0.0 and
1.0, and higher values usually indicate itmproved
forecasting power.

Considering a dynamical system which has n
characteristic variables, Qualitative States s are
described as follows.

({[Qil,8Qi}) , i=1,...,n

In the Qualitative Value Space with 3 values (only
landmark “ZERQ?”), there exists 3°" states. Now
we assume k states satisfy Constraint ¢, and their
probability p.(s) are the same, namely, p;.

Pe(81) = pe(s2) =, -, = pe(s) P

Therefore,
> pe(s) =k-pe = 1.0 (20)
Vs

We rewrite pi as Pmas , in the case where k = 327,
According to formula (20),

Pmazr = 1/32"

Therefore,

Hmcx = - meax logpma: = 2n10g3 (21)
Ya



