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Abstract
Order (dimension of the state space) is a good
complexity measure for dynamic models, and
can be used in conjunction with a trace of dy-
namic behavior to determine model adequacy.
I show how to use the causal ordering of a dy-
namic model to upper-bound the order of the
entire model, and of a variable or variables in
the model . I also show how to use the order of
a variable to determine whether a model could
plausibly account for a given dynamic behavior
trace .

Modeling is arguably the central task of physical reason-
ing . Without a model, prediction, analysis, and diag-
nosis are difficult or impossible . The modeling problem
confronts us in many guises, but in the one I am con-
cerned with, the modeler has access to behavior traces of
the system to be modeled, perhaps in addition to other
information about the system. This is a common situ-
ation . It arises when modeling existing systems whose
outputs can be measured, and it occurs in design, where
the behavior traces represent the desired behavior of the
device . By a behavior trace I simply mean a plot of a
quantity over time, an innocuous enough definition but
one that carries the crucial assumption that dynamic (i .e .
time-varying) behavior is of interest . Indeed, the central
concept of this paper-model order-is important if and
only if one is concerned with dynamic behavior .
Given a behavior trace, a natural question to ask is :

what information can be extracted from the trace that
will aid in modeling? In some important cases, part of
the answer is that we can obtain the minimum order that
a model must have in order to account for the behavior .
This is a nice piece ofinformation to have, for several rea-
sons . First, it is non-parameric-it doesn't depend on
the form of the potential models . In particular, it doesn't
assume linearity. Second, it can often be obtained even
from qualitative plots of behavior. Third, it provides the
most important single fact about a model's complexity.

'This research was conducted while the author was at the
MIT Laboratory for Artificial Intelligence . It has been sup-
ported in part by grant R01 LM 04493 from the National
Library of Medicine .
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An Example

Figure 1 : A battery, DC motor and flywheel

When dynamic behavior is the issue, the best measure
of model complexity is order . The general rule is : the
higher the order, the more complex the behavior . Other
complexity measures, like number of equations, number
of variables and so on, have no bearing whatever on dy-
namic behavior . Only order matters .

In this paper, I assume that the modeling process has
produced a set of candidate models, and the task now is
to compare each model to a given behavior trace to see if
it can produce the behavior . (Alternatively, the modeler
may interleave generation and testing .) Of course, simu-
lation is one way to carry out this test of model adequacy,
but simulation is expensive, it requires parameter-fitting
in the numerical case, and may give erroneous answers
in the qualitative case . The method I describe here is
less general, but considerably cheaper and easier . That
method is to estimate the order of the candidate model
and to determine whether the order is high enough to
generate the given behavior . The bulk of the paper de-
scribes how to estimate model order using a refinement of
the well-known causal ordering technique . The estimate
requires no algebra and can be done even if only qualita-
tive information about the model is available . Near the
end, I show how to use the estimated order to determine
if the model can account for the behavior .

Consider an ordinary DC motor powered by a battery
and attached to a flywheel (see Figure 1) . When the
battery is connected, the flywheel's speed might exhibit
any one of several behaviors, three of which are shown in
Figure 2 . In Behavior 0, the flywheel comes up to speed
instantaneously. In Behavior 1, the flywheel ramps up
to its final speed. In Behavior 2, the flywheel's velocity
overshoots its final value before settling down.
These three behaviors suggest three quite different

sorts of models for the system . The difference between
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Figure 2: Three possible behaviors of the motor-flywheel
system. V is battery voltage, wf is flywheel velocity.

battery supplies constant voltage
motor shaft velocity oc motor voltage
motor shaft torque oc motor current

-rf = JfGrf

	

flywheel torque vs . angular acceleration
V = v�+	batteryconnected to motor leads
m�, = wf

	

motor shaft connected to flywheel
r�, = rf

	

motor shaft connected to flywheel

V=c
41�+ - fl /(Vm)
rm - f2 (:n+)

Figure 3: Model 0 of motor-flywheel system

the first and the others is most significant . Behavior 0
has no time-dependent element; the velocity is (as far as
we can tell from the given information) a function solely
of the input voltage andnot, as with the other two behav-
iors, a function of both input and time . The difference
between Behaviors 1 and 2 is a little more subtle ; I will
return to it later.

Figures 3 and 4 present two models (henceforth Model
0 and Model 1) of the motor-flywheel system . (Monoton-
ically increasing functions are written as f+ .) They differ
only in that Model 0 treats the battery as an ideal volt-
age source, while Model 1 treats it as having resistance,
which will result in its voltage falling off for high loads.
For both models, there is a path in the causal ordering
from the input voltage V to the flywheel speed wf, so
one might say (as Nayak [7] does) that in both models V
"causes" wf . Yet the models predict different dynamic
behaviors. In particular, Model 0 predicts Behavior 0
and Model 1 predicts Behavior 1.
In what follows, I explain how to use the causal or-

dering to distinguish between the two models, based on
information in the observed behavior of the system, with-

V=C

	

battery nominal voltage is constant
v* = fa (i*)

	

battery internal resistance
vb =V- v,.

	

battery output voltage reduced by resistance
w�+ = f+(v�,,)

	

motor shaft velocity oc motor voltage
r�+ - f2 (i~)

	

motor shaft torque oc motor current
rf = Jf,~f

	

flywheel torque vs . angular acceleration
vb = v,n

	

battery connected to motor leads
i~ = i~

	

battery connected to motor leads
w�+ = wf

	

motor shaft connected to flywheel
r�+ = rf

	

motor shaft connected to flywheel

Figure 4: Model 1 of motor-flywheel system
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out resorting to simulation or algebraic manipulation .
The method can also be used to determine that neither
model is capable of accounting for Behavior 2 .

3 Order

If we consider models that consist of a finite set of ordi-
nary differential equations, then at any point in time, a
state-a finite set of values-suffices to describe all that
is relevant about the model. The entire future and past
of the model's behavior can be predicted from its state.
The order of a model is the number of values needed
to describe its state. These values are called state vari-
ables. Typically (and hopefully) one can write the set of
equations in the form

x = F(x, u(t))

where x is the state vector, the vector of state variables,
and u(t) is the system input. This form, which I will
call the explicit form, admits of relatively easy computer
simulation using a variety of techniques, and also pro-
vides one motivation for the causal ordering process I
will discuss in the next section.
One way to find the order of model is to place its equa-

tions in explicit form and determine the size of the state
vector . But the symbolic math required to do this may be
difficult or time-consuming, or the full equations maynot
be available the model might be described qualitatively.
If an energy-based modeling framework is adopted (see,
e.g . [5]) and the energy-storage elements ofthe model can
be found, then a quick upper bound on the order can be
obtained, because the order cannot be greater than the
number of energy-storage elements . In general, we can
obtain aset of candidate state variables directly from the
equations, and the size of this set is an upper bound on
the order. But we can improve that upper bound in two
ways .

First, we can get a better upperboundby trying to find
dependencies among the candidate state variables. We
know that the order of Model 0 is at most one, because
it has only one energy-storage element (the flywheel, an
inertia) . In fact, however, its order is zero . The order of
Model 1 is indeed one, but if we added a second flywheel
next to the first on the motor's rigid shaft, we would still
have a first-order model despite having two inertias . We
can detect both of these problems, and others, without
doing any algebra.
A second improvement is to ask (and answer) a more

focused question : we would like, not the order of the en-
tire model, but only that of the variable of interest .' The
model order is the amount of state required to determine
all the model's variables throughout time, but some of
those variables might require less state to predict. For
instance, if an ideal voltage source (like the battery of
Model 0) were driving two loads in parallel, then the or-

'I assume throughout that the output variable of interest
is one of the variables in the model's equations. If not, the
model is patently inadequate .



der of the overall model might be higher than necessary
to predict the complete behavior of one of the loads .
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Causal Ordering
The causal ordering of a set of equations is a graph of
the computational dependencies between variables in the
equations . The graph's nodes are the variables, and there
is a directed arc from vi to v2 if vi is used to compute
v2 .

In [3], causal ordering is defined in terms of subsets of
solvable equations . Nayak [7] defines it as a 1-1 function
from equations to the variables they casually determine .
I prefer the constraint-propagation method of [2], which
brings out the computational nature of causal ordering .

Begin with constants and variables whose values are
determined exogenously (e.g. inputs to the model) . If
there is an equation all but one of whose values are
among these known quantities, and if the unknown can
be computed from the knowns, then draw arcs from each
known to the unknown, and add the unknown to the set
of knowws . Continue in this fashion . If none of the re-
maining equations are usable because they each contain
more than one unknown, choose ("plunk" in deKleer and
Brown's terminology) a variable, assume it is known and
continue constructing the graph. Eventually, this chosen
variable should be determined by some other equation,
forming a cycle in the graph; this cycle indicates a set of
simultaneous equations .
An important constraint on the process is that each

variable can be determined by only one equation . If this
constraint is violated, the causal ordering is inconsistent .
If variables have been plunked in order to break cycles, a
consistent ordering may still be possible by making differ-
ent choices . Backtracking or some other search technique
is necessary here .

For dynamic models, assume equations of the form
v = d: v for each variable whose derivative also occurs
in the model . We will call the arc arising from this equa-
tion a d-arc. In a proper causal ordering, the equation
should be ordered from v to v; the resulting arc is called
an integration arc. I will also call an integration arc an
integral d-arc ; in the other direction it is called a deriva-
tive d-arc .

If all equations are used and some non-exogenous vari-
ables are still undetermined (have no incoming arcs),
then the model is underspecified : the equations are in-
sufficient to determine all the variables. Otherwise, the
causal ordering is complete .

If a complete causal ordering has no cycles, then it is
easy to solve for all the variables by repeated substitu-
tion . A cycle with no integration arcs indicates a set of
simultaneous algebraic equations . There is no guarantee
that they can be solved to obtain unique values for all
their variables . But for the rest of the paper, we will
assume that they can be solved .

Here is the relationship among causal ordering, the ex-
plicit form i = F(x, u(t)), computation, and numerical
simulation . Numerical simulators assume the equations

2 2

can be put in explicit form and require that the user write
the state function, F, which computes the state variable
derivatives in terms of the state variables and the in-
put . Because state variables and model inputs are the
arguments to F, they need have no antecedents in the
causal ordering . The numerical simulator itself imple-
ments the integration arcs, supplying, at the next time
step, new values of the state variables computed using
their derivatives.
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Estimating Model Order
Estimating the order of a variable of interest is a two-step
process . First, we upper-bound the model order by find-
ing dependencies among candidate state variables . Then
we use the causal ordering to determine the variable's
order . This section discusses the first step . First some
definitions .

Definition 1 A variable is a root in a causal ordering
if it has no incoming arcs, except possibly an integration
arc .

Definition 2 The algebraic support of a variable v in a
causal ordering is the set of roots r such that there is a
path from r to v that contains no d- arcs .

The algebraic support of a root is the singleton set con-
taining itself.

Definition 3 A variable is dependent if its algebraic
support does not contain itself.

If all algebraic cycles are solvable, a dependent variable
can be computed algebraically from other given quanti-
ties .

Definition 4 A variable is a candidate state variable if
both it and its derivative appear in the model equations .

5 .1 Eliminating Candidate State
Variables

Some candidate state variables may not, in fact, be state
variables . There is a two-step procedure for finding these
impostors . The first step has a clear intuition : we will try
to detect candidate state variables that can be computed
from other variables .

Begin by constructing a causal ordering for the model,
starting from the inputs and the model parameters .
When and if a variable needs to be plunked, choose a
derivative of a candidate state variable if any remain un-
determined . Note that this will force the d-arc of the
variable to be integral. The intuition behind determin-
ing candidate state variables by integration comes from
the fact that state variables as well as model inputs are
included in the inputs to the state function .
When the complete causal ordering has been con-

structed, look for candidate state variables whose d-arcs
point in the derivative direction (from the variable to its
derivative) . Such a candidate state variable is dependent :
it must have algebraic support, because it must have an



incoming arc; and that support cannot include the vari-
able itself, because if such a cycle were present, it would
have been broken by plunking the variable's derivative,
which would have resulted in an integral d-arc. Any de-
pendent candidate state variables are not, in fact, state
variables. They can be computed from other quantities,
so they contribute nothing to the computation of the
model's state.

5.1.1 Example
Before proceeding to the second step, let us apply the

first step to Model 0 to show that it is zeroth-order . Our
candidate state variable is the flywheel's angular velocity,
wf . We begin with the constant voltage V. It determines
v,n from the equation V = v,n. Then v�, determines w,n,
which determines wf, which determines wf .
We can stop here; our lone candidate state variable has

aderivative d-arc, so it is dependent. Thus the model has
no state variables; it is zeroth-order .

In this simple example it is easy enough to do the alge-
bra and obtain wf = fi (V), showing that the flywheel's
angular velocity is is function of the input voltage. But
in general the algebra may be harder than computing
the causal ordering, or there may be no closed-form alge-
braic solution, as might arise if one were confronted with
a set of simultaneous nonlinear equations, or there may
be insufficient information to do the algebra, as when the
model is qualitative.

5.1.2

	

The Second Step
With some additional work, we can eliminate more

candidate state variables. The idea is to look for de-
pendencies among derivatives of the candidate state vari-
ables. If for candidate state variables y, x1 , x2, . . . , xn we
can show that

n

where the ki are constant, then

y= Ekixi

	

(1)
i=1

n

y=Ekixi+c
i=1

so y is computable from the xi and thus is not needed
in the state vector . However, an initial condition for y
is still required, in order to determine the constant of
integration c.
The procedure begins analogously to that of the first

step, except that we prefer plunking the candidate state
variables, rather than their derivatives; this forces their
d-arcs to point in the derivative direction. (Before per-
forming this step, remove the dependent variables found
in the first step from the set of candidate state variables.)
When the causal ordering is complete, it is the integral d-
arcs that indicate potentially dependent candidate state
variables. Determine, via algebra, if the dependency is in
the form of Equation 1. If so, remove the variable from
the set of candidate state variables.
The remainingcandidate state variables are an accept-

able set of state variables that will allow the model to be

expressed in explicit form, and the size of the set is an
upper bound on the order of the model. But it is still
only an upper bound. I know of no substitute for do-
ing the algebra if we desire the exact order. As a trivial
example of how the causal ordering method is sensitive
to algebraic form, consider y = x - x . Here, though y
is constant, a causal ordering might have an arc from x
to y. Of course, less obvious examples involving multi-
ple equations are not hard to come by, and do arise in
practice .

In one case, we can be sure that the bound is tight:
when it is zero . This is also arguably the most important
case, because of the vastly different analysis techniques
for algebraic versus dynamic models .
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The Order of Variables

Now that we have identified the model's state variables,
we are in a position to determine the order of a particular
variable . As I mentioned earlier, this may be less than
the order of the entire model.

First it is necessary to define another kind of support.

Definition 5 The full support of a variable v in a causal
ordering is the set of roots r such that there is a path from
r to v .

Full support is just like algebraic support, except that
d-arcs are included .
To find the order of a variable in a model, construct a

complete causal ordering for the model, preferring deriva-
tives of state variables when plunking is required . (This
construction is like that of Section 5.1 .) The order of a
variable is the number of state variables in its full sup-
port . The algebraic support won't do : that would give
us the state variables needed to compute our variable of
interest v given the current state-variable values ; in other
words, it would tell us what we need to compute v for
one invocation of the state function F. The full support
includes the state variables necessary to compute, not
only v, but also those state variables' derivatives as well .
In effect, we have isolated a subset of our original model
sufficient to predict v for all time .
The order of a set of variables is the number of state

variables in the union of their full supports .

6.1 Applications

I showed above that Model 0 is zeroth-order, so all its
variables are. The method of Section 5 determines that
Model 1 is first-order, and doing the algebra confirms
that . From its causal ordering, shown in Figure 5, it
is evident that every variable except for V, the nominal
battery voltage, contains the state variable wf in its full
support. Thus except for V, the variables of Model 1 are
first-order .
Now say we added the angular position af of the fly-

wheel to Model 1 . This is another state variable, and the
causal ordering of the resulting model is shown in Fig-
ure 6 . The model is now second-order because there are



V

V

Figure 5: Causal ordering for Model 1 (d-arc shown with
double arrow, state variables boxed)

wf

Figure 6: Causal ordering for Model 1 with flywheel po-
sition added

two state variables, but all variables except for of and V
are first-order .
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Using Order for Modeling

Order is a good measure of complexity for dynamic mod-
els, because it corresponds well to the complexity and
variety of behaviors a system can exhibit. The number
of model variables, or components, or processes, means
nothing when it comes to dynamic behavior; only the
number of state variables is important.
As I outlined at the beginning, order can be also used

to determine whether a model has the potential to ade-
quately describe a dynamic behavior .
The test for whether a zeroth-order model is adequate

is simple. Given a trace over time of an output and one
or more inputs, plot the output against the inputs. If
the result is a function, a model in which the output
variable is zeroth-order is indicated. If not, the system
exhibits dynamic behavior, and the output variable must
be at least first-order. This criterion admits Model 0 as a
possible modelof Behavior 0, but not of Behaviors 1 or 2,
because in these latter the single input value corresponds
to many output values .

Higher-order tests use the phase-space non-intersection
constraint, which says that a phase-space trajectory can-
not intersect itself (except to form a cycle) . The general
test for order n requires at least n output variables. Say
there are k inputs. Plot the trajectory of the (n -1- k)-
tuple of output variable and input values at successive
points in time. An intersection implies that the order of
the set of output variables exceeds n.
An important special case is the first-order test for au-

tonomous models . Say there are no inputs, or they are
all constant. Then if the output variable of the behavior
is (non-strictly) monotonic, either increasing or decreas-
ing, a model in which that variable is first-order could
account for the behavior . If the behavior ever changes
direction, the output variable must be at least second or-
der. The proof is simple : a first-order phase space is just

2 4

The first-order test rules out both Model 0 and Model
1 for Behavior 2. The input in Behavior 2 is constant, so
the test is applicable, and the output is non-monotonic,
so it must be at least a second-order variable . Note that
our inability to find the exact order for the models is no
hindrance here ; the upper bounds suffice .
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Related Work and Conclusion

Causal ordering has found avariety ofuses in the qualita-
tive reasoning community. Iwasaki [3] extended Simon's
[10] original conception of causal ordering to dynamic
and mixed systems. Williams [11] used causal ordering
to remove interactions superfluous to a query. Nayak [7]
used causality to formulate a modeling standard, a cri-
terion that an adequate model must meet. For a model
to have a shot at answering the question "Does quantity
ql cause quantity q2?" its causal ordering must have a
path from ql to q2 . My method can be view as an exten-
sion to Nayak's. He can determine whether a model pre-
dicts that one quantity causes another; I add information
about the dynamics of the quantities' causal connection .

The method for finding dependent state variables that
I presented in Section 5 is based on the bond graph
causality assignment procedure, first presented in [8] .
Bond graph texts such as [5] present the first step only ;
the second step appears first in [4] . The full procedure is
codified in [9]. Integral and derivative d-arcs correspond
to integral and derivative causality on energy-storage el-
ements. Bond graph causality uses a constraint that I
have not captured ; namely, asserting that a flow is deter-
mined in one direction along bond implies that an effort is
determined in the other direction. This constraint arises
from the energy-based semantics of bond graphs . The
ramifications of ignoring the constraint are not yet clear
to me. My method is more convenient in that it does not
require the model to be described as a bond graph (but
there are many advantages, not discussed here, to using
bond graphs for modeling physical systems; see [1]) .

Besides generalizing the bond graph causality tech-
nique, I have also shown how model order can aid in
finding an adequate model when traces of system behav-
ior are available. The idea is to estimate the order of
the output variable, and try to show whether the order
is high enough to produce the given dynamic behavior.
There are other methods for estimating order from be-
havior [6], but they assume linearity or a specific model
structure.

There is more to say about the interaction of order
and behavior . In future work, I hope to show how to use
the causal ordering to identify order-increasing modifica-
tions for models whose order is too low to account for a
behavior .
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