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Abstract: This paper presents a causal simulation method for incompletely known dynamic
systems in process engineering. The causal model of a process is represented as both a causal
network of interacting elementary dynamic systems, called qualitative automata, influencing one
another, and a set of qualitative constraints linking possibly several of such automata. Associated
with each influence is a weight which expresses its sensitivity. A procedure is presented which
allows us to generate fuzzy weights from the relative order of magnitude relations between them.
Formulae preserving non-linearities and fulfilling some relevant requirements are provided to com-
pute net influences on extensive variables as well as on intensive ones. Finally an algorithm is
given for simulating the causal model, and an example application to a fed-batch fermentation
process is presented.

1 Introduction

One of the most difficult tasks to deal with while controlling and monitoring a dynamic process
is to predict its behavior. The problem is that some of the process variables may be difficult
to measure on-line, or are not measured at all (e.g. simply because appropriate sensors are
not available). Control theories provide tools for state prediction and estimation when precise
quantitative models in terms of equations and functions are available. Meanwhile in process
engineering, accurate equational and functional quantitative models are not often available because
of the complexity of the systems to cope with. For instance in biotechnology, 1) the processes
usually contain variables varying rapidly in time, 2) the process dynamics is non-linear and not
reproducible, 3) the interactions between the process variables and parameters are not all known,
4) the processes are subject to permanent inner disturbances. Therefore, most of engineering
processes are incompletely known.

To endow computer systems with abilities to reason about qualitative models, work in Qual-
itative Physics (QP) [16] has focused on qualitative simulation [6,9] of dynamic systems, that is,
qualitative differential equation (QDE) based reasoning. The advantage of QDE-based simulators
is the ability to yield all the possible qualitative behaviors of any incompletely known, or de-
scribed, dynamic system using much less computational intensive algorithms than those required
by numerical simulation. However, they suffer from some limitations mainly related to the weak-
ness of their expressive power, the time-scale abstraction they bear in themselves, and to the fact
that they are only concerned with real-valued variables and remain silent about pure symbolic
variables. Causal reasoning - reasoning based on the causal interactions between the variables
and parameters of a system - may be seen as a way to overcome some of the shortcomings of
QDE-based systems in that 1) it does not require having differential equations, 2) it deals with
directed relationships, 3) it may cope with time explicitly which makes it possible to take into ac-
count influence delays and durations, 4) it can provide a framework for knowledge elicitation since
experts and engineers use concepts of causality for the interpretation, prediction and explanation
of dynamic systems.

Causal simulation (i.e. the simulation of dynamic systems based on the causal relationships
among their variables and parameters) is necessary for reasoning about non mathematically for-
malized dynamic processes such as those often encountered in biotechnology, chemistry, ecology,
physiology etc... and in which causality is the guideline. Meanwhile, attention has only been
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paid to it episodically. Guerrin (7] proposes ways to combine states of variables influencing a
single one using qualitative operators. Leyval and Gentil [10], Vescovi [15], and Djerroud et al.
[4] combine the trends of variables using classical summation operator thus neglecting the use of
influence weights and the capability to approximate non-linear relationships. Schmoldt [13] has
built a causal simulation formalism which seems to be too specific for ecophysiological processes;
furthermore, although he associates weights to influences and takes into account non-linearities,
the computational complexity of his method makes it cumbersome for real-time applications in
process engineering. D’Ambrosio (3] has proposed an algorithm for reducing the undecidability
during influence combination in qualitative process theory [6] using linguistic descriptions of in-
fluence sensitivities; but his method requires having the necessary problem specific information to
combine influences properly, and like Schmoldt, he neither provides any formal means to determine
influence weights of variables, nor to check the consistency of a set of influences weights when they
are given by experts. Another aspect which has been neglected in previous approaches is that
they do not distinguish extensive variables from intensive ones. Assume the marginal influences
of two variables on the length (an eztensive variable) of a metal bar to be respective increases of
its value by 1 em and 2 em with the same influence weight, then the net (total) influence of those
variables on the length is 3 em. On the contrary, if the marginal influences of the two variables on
the temperature (which is an intensive variable) of the metal bar are increases by 1°F and 2°F,
then the net influence will never be 3°F, but less, whatever the influence weights are. Hence, the
net influence on an extensive variable is the algebraic weighted sum of the individual influences
whereas the net influence on an intensive variable is a mean of the individual influences.

This paper proposes a method for causal simulation of incompletely known dynamic processes
which addresses most of the limitations of the existing ones. The method describes a part of
the CA-EN (CAusal ENgine) system which is aimed at supervising incompletely known dynamic
engineering processes. Section 2 presents an insight into the modeling formalism which is com-
pletely described in [1]; Section 3 proposes a method for computing fuzzy influence weights from
linguistic description of their relative orders of magnitude; section 4 is concerned with weighted
influence combination, and an algorithm for propagating influences through the causal network
of the process variables, section 5 presents an example application of the method to a fed-batch
fermentation process, and the last section concerns a discussion of the method.

2 The modeling formalism

The process variables are either numeric (real-valued) or symbolic-valued. The value set of a
numeric variable is a real interval or the whole real line; that of a symbolic variable is assumed
to contain a finite number of elements. Whilst numeric variables are measured when there are
appropriate sensors, and that their respective value sets are partitioned into finite numbers of
intervals according to the context of use, symbolic variables are observed. We refer to guality
space for a numeric variable, the partition of its value set; the quality space of a symbolic variable
equals its value set. The variation space of a numeric variable is the partition of its change value
set (i.e. the set of all the possible change values during a temporal unit) into a finite number of
intervals. Symbolic variables have no variation spaces. Qualitatively, the behavior of a process
variable is a sequence of discrete states which are either real intervals (if the variable is real-valued)
or symbolic values. Therefore, the commonsense perception of a process variable is on one hand
that of an automaton moving from an interval or a discrete value to another, and on the other
hand the knowledge that is necessary to reason about its behavior with regard to its interactions
with other variables. That suggests that we assign an elementary dynamic system, a qualitative
automaton (or g-automaton for short), to each process variable and to the knowledge which is
needed to reason about the behavior of the variable.

Conceptually, a g-automaton consists of a quality space, a variation space and an influence
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combining function if the g-automaton is numeric, a transition function that represents the dy-
namics of the gq-automaton in the absence of any external effect, an output function, and a state
updating function.

A process is represented as two levels of constraints: local constraints and global constraints.
Local constraints are causal relations involving two g-automata. There are two kinds of causal
relations: one is concerned with cause-effect interactions among numeric q-automata only (e.g. if
the amount of liquid in the tank increases then the pressure at the bottom of the tank increases as
well) and the other is concerned with information about g-automata (e.g. the color of the liquid
informs us about the concentration rate of a certain chemical product in it, but the influence
rather goes from the concentration rate to the color). We refer to the former relations as influence-
based relations, and the latter as information-based relations. A global constraint is a numeric or
qualitative equation involving possibly several q-automata.

O(M) relauon Verbal explananon J
<% - = = x* > A<<B A is much smaller than B
A-<B A is moderasely smaller than
.= A—=<B A is slightly smaller than B
Tt T T T LR Al A is exactly equal w B
€ € € & 1 €s €5 B & A>-B A is slighdy larger than B
A>B A is moderasely larger than B
Fig.1: Fuzzy extension to order of magnitude formalism. A>>B A is much Larger than B

e<0.4656; e =ei(l +e); cz#h-z}‘z; e3=(1 +erl;

+ Privm ; the order of magnimde formalism
ei=lley; es=liey; eg=l'e. €= lle,. Table 1: Priminve relations of

An influence-based relation is described by means of predicate I}(X,Y,c,w,d,p), or
I7(X,Y,c,w,d,p), where: X is the influencing g-automaton; Y the influenced q-automaton; c the
activation precondition of the causal relation ( the influence from X to Y is said to be activated
whenever ¢ holds); w is the weight of the influence of X on Y d is a real number representing
the delay of the influence; p is a real number representing the influence duration, or equals oo if
the influence holds permanently. Actually, weight w is expressed by means of its relative orders of
magnitude with respect to other weights of influences on Y in the fuzzy counterpart of the O(M)
formalism (fig. 1 and table 1) (in the O(M) formalism, if r is an order of magnitude relation, and
a and b two quantities, then (a r b) if, and only if (a/b r 1)) [11]; that allows it to compute the
fuzzy value of w accordingly as presented in the next section.

With reference to fig. 1, consistency in the partitioning of the real-line requires satisfying the
constraint e < e, for e being the largest real supposed to be much smaller than 1, it must not be
slightly smaller than 1, hence e < e,. Satisfying the inequality e < e; leads to e < 0.4656.

Predicate I}(X,Y, ¢, w,d,p) (resp. I7(X,Y,c,w,d,p)) bolds if, and only if X influences posi-
tively (resp. negatively) Y, where o € {0, 1,2,3} is the relative variation rate; a = 0if Y increases
(resp. decreases) in the same proportion as X; a = 1 if Y increases (resp. decreases) slightly more
than X; @ = 2 if Y increases (resp. decreases) moderately more than X; @ = 3 if Y increases
(resp. decreases) much more than X. The relative order of magnitude of the variation of Y with
respect to that of X are phrased in the O(M) formalism.

An information-based relation is represented as I(X,Y) where X is the informing
q-automaton and Y a numeric q-automaton that X informs about. The description of such a
relation is expressed by means of a mapping from the quality space of X to that of Y. Whilst
influence-based relation only link numeric q-automata, information-based relations concern any
type of g-automata. Information-based relations take precedence over influence-based relations.

A global constraint is a functional numeric constraint relating possibly more than two process
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variables associated with interval domains. In other words, a global constraint is any numeric
equation (in the classical sense) in which each unkown is supposed to take on interval values.

3 Generating fuzzy weights of influences

Experience acquired through collaboration with process experts indicates that these experts esti-
mate net influences on variables using the relative orders of magnitude between individual influ-
ence weights rather than their pure numeric values; furthermore, they hesitate to provide numeric
weights to influences when they are asked to. However to automate the weighted influence compu-
tation, it is convenient that weights be numeric or numeric-like. The hesitation of experts stems
from the fact that weights may have hazy values. Hence, we propose a method to attribute fuzzy
values to weights from the linguistic description of their relative orders of magnitude.

Let Y be a g-automaton, and Xj, ..., X, be n numeric q-automata influencing Y with respective
influence weights w;, ..., w, through influence-based relations. The linguistic description of orders
of magnitude of the weights is a set of pairwise link between these weights (e.g. if the influence
weight w; of X; on Y is much smaller than the influence w; of X; on Y, we write w; < w;).
That gives rise to a graph whose nodes are weights, and edges are labeled by fuzzy O(M) relations
(because of the symmetry of O(M) relations, we only use relations €, — <, ~<, and ==
express relative orders of magnitude between weights). To compute the absolute values of the
weights we assume the graph to be connex and that there exists a weight wymq- such that for any
weight w;, there exists a path in the graph from w; to w,.;. Therefore the graph must be an
upper semi-lattice for which w.- 1s the greatest element. We term such a lattice as the weight
lattice associated with g-automaton Y.

Before we describe the influence weights generation process we set an axiom:

Marginal influence axiom: The marginal influence of a g-automaton X on another g¢-
automaton Y is the highest influence that X can ezert on Y when combined with other influences.

In other words, when g-automata Xi,..., X, impart influences on a given one, say Y, the
contribution of any X; remains weaker than the influence that it individually exerts on Y assuming
all the other influences inexistant. Therefore, the maximum influence weight equals 1 (or the 4-uple
(1111) as fuzzy number) 1.

The algorithm for generating the fuzzy weights of the influences impinging on a given g-
automaton consists in exploring the weight lattice associated with that g-automaton from the top
(i.e. the node having the maximum weight) to the bottom of the lattice in a breadth-first manner:

(1) Set Wpmaz = (111 1)
(2) For each node:

(2.1) Intersect the supports of its fuzzy values corresponding to its parents’ values and the
underlying fuzzy O(M) relations. Stop the generation process if the intersection is
empty.

(2.2) Intersect the cores of its fuzzy values corresponding to its parents’ values and the
underlying fuzzy O(M) relations. Stop the generation process if the intersection is
empty.

/* If one of the above intersections is empty, that means the weight lattice is (partially)
inconsistent. */

I We represent a fuzzy number as a 4-uple (a; a2 a3 a4) where a; < a; < a3 < ay; the intervals [a;, a4 and
[a2, as] are respectively the support and the core of the so designated fuzzy number.
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(2.3) If [a, b] and [c, d] are the respective non-empty intersections computed in steps 2.1 and
2.2, then the fuzzy weight corresponding to the node is (a ¢ d b).

Since the weight of an influence cannot be equal to zero, when the weight lattice is consistent,
the algorithm yields n fuzzy weights w;, w,, ..., w, in ]0,1].

Example: During a fed-batch fermentation process, the antifoam (AM), the pressure in the
fermentor (P), the agitation speed (AG) of the fermentation liquid, the oxygen inflow rate (O)
and the gaz inflow rate (Q,) influence the dissolved oxygen (DO) in the fermentor. Let us
denote the weight of X by Wx. The weight lattice associated with the dissolved oxygen is (fig.2):
(Wag ~< Wan; Wo,— < Wan; Wy, ~< Wyg; Wp ~< Wy,; Wp— < Wyg; Wo, ~< Whp;
Wo,— < Wag). Applying the procedure above to that weight lattice where W4z is the maximum
weight, the following fuzzy weights are generated: Wyy = 1, Wye = (0.59 0.77 1 1), W, =
(0.35 0.59 0.59 0.77), Wp = (0.21 0.45 0.59 0.77) and Wp, = (0.14 0.35 0.59 0.77).

WaAM

Fig.2: Weight lattice associated with the dissolved
oxygen in a fed-batch fermentation process.

4 Simulation

We start this section with a definition that we shall use next. Let S = (a,b) be a real interval.
We call fuzzy truncature relative to S the mapping denoted by T'° defined from the set of fuzzy
numbers to the set of fuzzy numbers in S such that, for any fuzzy number r = (r; r; r3 ry):
TS(r) = (r} r4 r4 7,), where for each i, ! = maz(a, min(r;, b)),ie. ri=aifr; <a,r.=r;if
ri€S,orri=bifr; > b.

4.1 Combining influences

Consider numeric q-automata X;,X5,...,X, influencing another numeric q-automaton Y
through influence-based relations. We denote the variation space of Y by AY, and the variation
(change) of X; on a relatively small time-interval 7 by 8z;, for each i. Let 8y; be the marginal
influence of X; on Y (i.e. the influence of X; on Y assuming that there is no other influence on
Y) when the variation of X is éz;. The problem of combining influences of Xi, X3,...,X,on Y is
to describe the influence combining function of g-automaton Y which yields the weighted effects
of the variations of X;, X3,...,X, on Y.

The influence combining function of q-automaton Y is a mapping (© : AY™ — AY, which
should meet the following conditions:

(i) Consistency: ©)(0,...,0,6y;,0, ...,0) = dy;
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(ii) n-symmetry:
©(6y1’ 59’2, weey Eyt'a wrey ‘Syj-: weey 53;‘-;) e ©(6y1s 692: seey Eyi'! veey ‘Syis ey Syﬂ)

Consistency ensures no contradiction with regard to the concept of marginal influence; one
of its consequences is (©)(0,0,...,0) = 0, that is, no change occurs in a q-automaton as long as
no influence exerts on it. The n-symmetry condition ensures the unicity of the net influence
underlying a set of marginal influences.

To compute the net influence, we must only consider activated influences. If I C {1,2,...,n} is
the subscript set of all the activated influences during the time-interval 7, then for j ¢ I, éy; = 0.
In such a case, combining the effects of X;, X3,..., X, on Y reduces to the combination of the
effects of (X;)ier on Y. That suggests that we tune the weight of each activated influence to the
overall set of activated influences while computing the net influence. The general form of the
combining function we consider is:

©(‘syls6y2s '"163)"?-) == Zw:éy! (1)

i€l

where I is the subscript set of the activated influences, and w/ is the weight of the influence of
X; on Y tuned to the activated influence set. Thus, if all the influences intended to impinge on
Y are activated, then w! = w;. (Eq.1) fulfils the condition of n-symmetry. To meet the condition
of consistency, we impose that in the case where only one influence is activated, the net influence
equals that one. Therefore, weight tuning is only required when more than one influence are
activated whereas all the influences are not. The w!s depend on the w;s, ¢ € I, and on whether
the process variable underlying g-automaton Y is an extensive variable or an intensive one. We
call ertensive (resp. intensive) influences, influences on a g-automaton assigned to an extensive
(resp. intensive) variable. '

Case of extensive influences: When the influences of (X;);c; on Y are extensive, we set,
for each i € I:

w) = T (w;/max w;) (2)

where max is the fuzzy maximum operation [5], U denotes the unit interval [0,1], and TV the
fuzzy truncature relative to U. The truncature operation guarantees that w} takes on values from
10, 1].

Proposition 4.1.1: If the influence having the mazimum weight (Wmaz = (1 11 1)) in the
weight lattice is activated, then for each: € I, w) = w;.

Case of intensive influences: That corresponds to averaging the influences of (X)ier, hence
we take for each 2 € I:

w; =T (wi/ ) wj), (3)

Jel

and we impose the w!s to be linked by the following equation since equation (1) should be a
mean:

Zwé: 1 (4)

iel

Computing (1) under constraint (4) is termed as fuzzy interactive summation, which is thor-
oughly studied by Dubois and Prade [5].

Proposition 4.1.1 holds for the intensive case too. Furthermore, a property mimicking idem-
potency is met:
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Proposition 4.1.2: Let the influences on Y be intensive. If all the influence weights are
identical, and so are the marginal influences, then the net influence on Y equals the common
value of the marginal influences.

4.2 Simulation Algorithm

The input data are the causal model - including initial conditions - and the evolution of the control
variables of the process over time which may be data acquired on-line, recorded data, or data
generated by mathematical functions. The output of the system is the behavior of each process
variable which is displayed as the process runs. The simulation starts with the compilation of the
causal model. The compilation consists in generating the fuzzy weights of influences, marginal
influence tables according to the relative variation rates in the influence-based relations and partial
description of these tables [2], tables containing influence delays and durations. The temporal unit
of the simulation is that of a logical clock that is set according to the swiftness of the process.

The simulation is based on the propagation of influences through the causal network describ-
ing the interactions among the process q-automata. At each clock tick, the following steps are
performed for each g-automaton starting from the control q-automata (i.e. q-automata associated
with the control variables) in a breadth-first exploration of the causal network:

(1) Update exogenous, and measured q-automata

/* That consists in reading a data file or acquiring on-line data and computing the qualitative
values (states) and variations for each erogenous, and measured g-automaton accordingly.
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(2) For each unmeasured q-automaton y do

(2.1) If (the g-automaton appears as the first argument of an information-based relation)
Then deduce its new state from the mapping describing that relation.

(2.2) Else

(2.2.1) Let éy(t) be the net influence at clock tick t. Compute the likeliest variation, that
is, the element of the variation space which is the closest to 6y(t) in the sense of
the Hamming distance. Denote the likeliest variation by §y*(t).

/* The likeliset variation is taken as the output influence of the g-automaton (i.e.
the influence that the g-automaton ezerts on other g-automata). */

(2.2.2) Set y(t) = y*(t — 1) + y*(t), where y*(t — 1) is the most recent state of the g-
automaton, + the sum operator among intervals, §y*(t) the likeliest variation at
t

/* The quantity y(t) is an interval which may encompass several subintervals of
the g-automaton’s quality space. */

(3) Determine the new state of each g-automaton y by filtering the ranges of possible states y(t)
(computed in step 2.2.2) out for consistency using the global (interval-based) constraints.
The result of the filtering gives rise to a new state y*(t) for each q-automaton (see hereafter
for more details).

Determining new states. Since the ranges of possible states may contain several possibles states,
there is a need to refine them. This is done in two steps. First, the global constraints are used to
restrict the extent of each interval y(¢) (computed in step 2.2.2) in doing a tolerance propagation
[8] on them (the new ranges may encompass more than one state too). Then, the new state is
computed for each non-measured g-automaton as the likeliest state in the sense of the Hamming
distance (similarly to the computation of likeliest variations). However the lower and the upper
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states may be optionally calculated. The above mentioned three states are computed for their
relevancy. Indeed, the upper (resp. lower) state corresponds to the most germane overestimation
(resp. underestimation) of the state of the g-automaton, the likeliest state is interpreted as its
most probable state. The simulation process retains (displays and records) all the three states but
the likeliest state is taken as the state for the current time-point.

5 Example application to fed-batch fermentation

Cultures in the biotechnological industry are based on the degradation of a substrate (S) by a
population of micro-organisms, the biomass (X), into metabolites. The type of fermentation in
biomass production depends on the way that fresh nutrients are fed into the fermentor. Fed-batch
fermentation is characterized by the fact that it starts with an initial volume of nutrients; then the
action variables (antifoam (AM), gas inflow rate (Q,), oxygen inflow rate (O,), agitation (AG),
pressure (P), etc...) are acted upon, and additional nutrients are brought during the fermentation
process if need be. A fermentation process aims to increase the concentration rate of biomass so
as to obtain the maximum concentration of product through the use of a suitable substrate and
oxygen feeding.

Acaan B AM : antfoam

it varables AG : agitation

Qg : gas inflow rate

P : pressure in the fermentor

02 : oxygen inflow rate

Qs : substrate inflow rate

Qsalts : mineral salts inflow rate

Temp : temperature of the liquid in the fermentor
pH : pH of the liquid in the fermentor
DO : dissolved oxygen

color : color of the liquid in the fermentor
[CO2] : concentration rate of CO2

[S] : substrate concentration rate

[HAc] : acetic acid concentration rate
[salts] : mineral salts concentration rate

M : biomass specifc growth rate

[X] : biomass concentration rate

Fig.d Causal network of a fed-batch fermentation
process.
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Fig.3 depicts the network of causal influences among the relevant variables of the process. In our
process plant, dissolved oxygen (DO) is the witness variable on which commonsense interpretations
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of the process behavior rely as studied by Steyer [14]. To show what kind of information we can get
from the simulation based on the method presented above, the behaviors of dissolved oxygen and
substrate resulting from the simulation of the causal network are presented in fig.4, for 7 = 0 to 20,
i.e during 60 seconds. The quality spaces of DO and S are respectively {[0, 20[; [20,80[; [80,100]}
and {[0,2[; [2,4[; [4,5]} as provided by the process experts; interval [20, 80[ is the nominal range
of DO. The initial conditions for these variables have been taken equal to 40 and 4.5 respectively,
and we assume that no more substrate is fed then. The temporal unit considered is three seconds.

Fig.4 shows that the likeliest state of DO is normal (falls into the nominal range) till 7 = 20,
but the lower state remains in interval [0, 20[ till 7 = 17 then it goes up to interval [20,80[. The
increase of the lower state is interpreted as a possible increase of the dissolved oxygen although
its actual value remains qualitatively unchanged. That increase in DO can be explained by the
fact that the bacteria consume less oxygen than fed into the fermentor because of the metabolites
slowness at the beginning of the fermentation process. In fact, ten to fifteen minutes after the
start of the process, the dissolved oxygen begins to decrease. The lower state, likeliest and upper
state of substrate are the interval [4,5] from 7 = 0 to 7 = 13, then the likeliest and lower states
decrease to interval [2,4[. That means the substrate concentration rate decreases, which is quite
normal, since no more substrate is fed into the fermentor whilst the bacteria grow and consume
the initial substrate.

The simulation of the causal network allows to continuously estimate the state of non-sensored
variables (such as substrate in our process plant) during the proces life-time. It is also a means to
detect possible misbehaviors beforehand so as corrective actions can be taken to keep the process
in suitable conditions.

6 Discussion and Perspectives

This paper presents a causal simulation method for incompletely known dynamic systems in
process engineering. The causal model of a process is represented as both a causal network of
interacting elementary dynamic systems, called qualitative automata, influencing one another,
and a set of qualitative constraints linking possibly several of such automata. Associated with
each influence is a weight which expresses its sensitivity. A procedure is presented which allows us
to generate fuzzy weights from the relative order of magnitude relations between them. Formulae
preserving non-linearities and fulfilling some relevant requirements are provided to compute net
influences on extensive variables as well as on intensive ones. Finally an algorithm is given for
simulating the causal model.

The advantages of the proposed approach over existing ones are : 1) the consistency checking
of relative weights provided by experts and the generation of fuzzy weights from their relative
description, 2) the computation of net influences takes into account non-linearities and the fact
that the influences can be extensive or intensive, 3) the simulation algorithm has been devised so
as it can be used for real-time applications in process engineering, because instead of generating
all the possible behaviors - which may make it burst - it focuses on the relevant behaviors (i.e.
upper, lower and likeliest states). However, the patent shortcomings of the approach are that
1) it does not account for numerical equations which may be accurately known and useful for
some processes, 2) it relies on the causal network provided by an expert and has no means to
perform causal analysis of the process at hand. The former drawback can be solved by performing
a causal analysis of equations as studied by Rose and Kramer [12], and then using the results of
that analysis to build the causal chart, the latter is a major challenge in Qualitative Physics.
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