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Abstract
In real-time monitoring situations, more informa-
tion is not necessarily better. When faced with
complex emergency situations, operators can expe-
rience information overload and a compromising
of their ability to react quickly and correctly. We
describe an approach to focusing operator attention
in real-time systems monitoring based on a set of
empirical and model-based measures for detecting
different kinds of anomalies and for determining the
relative importance of sensor data . This approach
has been evaluated on data from the life support
system testbed of Space Station Freedom .
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Introduction : Sensor Selection
Mission Operations personnel within NASA have the task
of determining, from moment to moment, whether a space
platform is exhibiting behavior which is any way anomalous,
which could disrupt the operation of the platform, and in
the worst case, represent a loss of ability to achieve mission
goals . A traditional technique for assisting mission operators
in space platform health analysis is the establishment of alarm
thresholds for sensors, typically indexed by operating mode,
which summarize which ranges of sensor values imply the
existence of anomalies . However, experienced mission op-
erators reason about more than alarm threshold crossings to
detect anomalies : they may ask whether a sensor is behaving
differently than in the past, whether a current behavior may
lead to a global perturbation or whether a current behavior
may lead to - the particular bane of operators - a rapidly
developing alarm sequence .
A fault which propagates through a system faster than the

sensor polling rate can create a situation where, between one
sampling and the next, the number of sensors in alarm goes
from zero to tens or more . Information about the ordering of
events is lost . In this kind of emergency situation, operators
can experience information overload and a compromising of
their ability to interpret sensor data .
Our approach to introducing automation into real-time sys-

tems monitoring is based on two observations : 1) mission
operators employ multiple methods for recognizing anoma-
lies, and 2) mission operators do not and should not interpret
all sensor data all of the time . The subject of this paper is an
approach to determining from moment to moment which sub-
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set ofthe available sensor data for a system is most informative
about the presence of, or potential for, anomalies occurring
within the system . We term this process sensor selection and
we have implemented a prototype selective monitoring sys-
tem called SELMON [Doyle et al 89, Doyle et al 92a, Doyle
et al 92b] .
The SELMON system has its origins in a sensor planning

system called GRIPE [Doyle et al 86] which plans informa-
tion gathering activities to verify the execution or robot task
plans . Other model-based monitoring systems include Dvo-
rak's MIMIC, which performs robust discrepancy detection
for continuous dynamic systems [Dvorak & Kuipers 89, Dvo-
rak 92], and DeCoste's DATMI, which infers system! states
from incomplete sensor data [DeCoste 90] . The SELMON
work complements other work within NASA which has fo-
cused on empirical and model-based methods for fault diag-
nosis of aerospace platforms [Abbott 88, Muratore et al 89,
Scarl et al 88] .
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Approach : Sensor Ordering
How does an intelligent agent, observing a complex system,
decide when something went wrong? To quantify this notion,
we have developed an approach to focusing operator attention
in real-time monitoring . This approach involves defining a
set of sensor importance measures . Each of these measures
embodies a different viewpoint on why, at a particular mo-
ment, one sensor may be more worthy of operator attention
than others . The measures are based on concepts from model-
based reasoning, statistics, and information theory. Some of
the measures utilize sensor value predictions generated by
simulating a causal model of the system being monitored .
During each timestep all sensors are scored according to

these measures . The scores are used as a basis for an ordering
on the sensors . See Figure 1 . These scoring measures are di-
vided into two categories . The first set-empirical methods-
rely upon current and historical data to determine importance .
These measures include surprise, alarm, anticipate alarm,
and value change . The second set uses a causal model of the
system and a simulation capability to reason about expected
current and future system performance to determine sensor
importance . These methods include deviation, sensitivity,
and cascading alarms .

After describing each of these measures, we describe how
these measures are combined into an overall importance score
for each sensor.
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Empirical Sensor Scoring

In this section, we describe the empirical measures that are
used in determining the overall importance score assigned to
each sensor. This part of the score is based on four measures :
surprise, alarm, anticipate alarm, and value change . These
measures use knowledge about each individual sensor, inde-
pendently of any knowledge about the interconnectedness of
the sensors .

Surprise

In order to obtain an ordering on the set of sensors, we need
to quantify the following notions : How reliable is a sensor?
How stable is it? How often does it go into an alarm state?
From an information theoretic point of view, a change in

the value of a sensor gives us a certain amount ofinformation
(usually measured in bits) about the system state . Assume
we have two sensors, SA and SB . Further assume that sen-
sor SA's value has been wildly changing over the last 100
readings, while sensor SB's value has been constant . If we
are told that according to the latest update, the values of both
sensors have increased by 25%, which do we consider a more
informative event? Clearly the fact that SB's value changed
is more informative since it is more unusual . Prior to the lat-
est reading, if we were asked to predict the values of SA and
SB, then based on previous data, we would naturally guess
that SA's value is likely to have changed while SB's value
is likely to have remained constant. Then the fact that SB
changed value tells us something that we did not know or
expect .

For each sensor, a cumulative histogram of its values is
maintained for each system operating mode. This is done by
dividing its range into a fixed number ofbins . The boundaries
between bins are determined through specific knowledge of
the sensor and of the "interesting" subranges in its range .
This histogram is then used to determine two measures of the
interestingness of the most recent value returned by a sensor .
Denote the range of sensor S by Range(S) .

	

If S is a
continuous-valued sensor, we can discretize its range into a set
of mutually exclusive ranges {R, (S), R_(S), . . . , RK(S)},
where

K
Range(S) = U R;(S)

=-t
With each range R,(S) we associate a frequency measure

Figure 1 : SELMON Architecture.
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fi (S) that gives the proportion of time that S's value has been
in this range . Thus fi (S) is an estimate of the probability of
the value of S falling in range R,(S) and

K

fi(S) = 1
i.1

To quantify the degree to which sensor S is stable in its
reading, we apply the notion of information entropy . The
entropy ofthe values of a sensor S, denoted by VEntropy(S),
is defined by

K
VEntropy(S) _ -

	

fi(S) - logfi(S)
i.1

where VEntropy(S) is maximum when all ranges of val-
ues of S are equally likely. It is minimum when the values
of S have all been in one range Ri(S), thus fi(S) = 1
(for some i, 1 <_ i <_ K) . It can easily be shown that
0 <_ VEntropy(S) <_ log K. We are now ready to de-
fine the average value informativeness of sensor S, denoted
by Vlnform(S), to be

Vlnform(S) = 1 -
V Entropy(S)

log K

where VInform(S) takes on values between 0 and 1 . A
value of 1 indicates that S normally rarely changes its value,
while a value of 0 indicates that S's value is equally likely to
be in any of its ranges .
On the other hand, the quantity

VUnusual(S) = 1 - fi(S)

gives the unusualness of sensor S's value being in the i-th
bin . VUnusual(S) is computed each time S reports a value,
and the i used is the index of the bin containing the reported
value . This measure can assign the same degree of unusu-
alness in fundamentally different situations . For instance, it
does not distinguish between a value having a probability of

K occurring when all other values have an equal probability

of - each, and a value with probability i when only one

other value has probability (1 - ic) with the remaining values
having probability 0 . In the first case, the value is just as likely
as any other. In the second case, the interesting event is that
the most likely value did not occur. To make this distinction



we combine the unusualness and value entropy measures to
obtain the surprise score :

Surprise(S) = Vlnform(S) -VUnusual(S) .

This measure takes on the maximum value of 1 when one bin
in the histogram has probability one and the sensor registers
a value in another bin . It has a minimum value of zero when
all bins in the histogram are equally likely .

Accounting for Alarm Thresholds
Alarm thresholds for sensors, indexed by operating mode,

typicallyare established through an off line analysis of system
design . SELMON makes use of alarm threshold information
in the following way : A sensor whose value traverses the
safety threshold is said to go into a state of alarm . The predi-
cate In-Alarm(S) captures this notion :

In-Alarm(S)

	

I

	

ifS is outside its safety range
- {

	

0

	

ifS is within its safety range

We compute the value of an alarm score for S as follows :

Al-Score(S) = In-Mann(S) - [1 + Trav(S)] .

where Trav(S) is the proportion of the alarm range traversed .
We consider alarms as interesting events whose importance

decreases with time. Thus a sensor that persists in alarm state
for prolonged periods of time should gradually fade from our
attention . To achieve this we add an exponential decay factor.
Let tA(S) be the time at which sensor S last entered into
alarm . At any time t, the alarm score is computed as follows :

Alarm-Score(S) = IAlScore(S)e -P(t-tA(S))

where /3 > 0 is the time decay constant . Q is chosen small so
the decay will not be too fast ; typicallyQ < 0.1/second .

Given the recent values of S, one may conduct a simple
form oftrend analysis to decide whether or not sensor S is an-
ticipated to be in alarm soon . The measure Predict-Alarm(S)
is a curve-fitting prediction of when the sensor will enter
alarm . This measure has a minimum of 1 and a maximum of
infinity ifthe curve fit indicates that the sensor will never enter
alarm . If the sensor is currently in alarm, Predict-Alarm(S)
measures when the sensor is predicted to leave alarm . This
measure is used to compute a score Anticipate Alarm as fol-
lows :

1/Predict-AlarmAnticipate-Alarm(S)

	

1=

	

I _ 1/Predict-Alarm

The first case applies when S is within its safety range . The
second case applies when S is outside its safety range.
By examining this definition, the reader may determine how

the boundary cases of immediate alarm threshold crossings or
indefinite persistence in the nominal or an alarm range are
handled .

Quantifying Value Change
A change in the value ofa sensor is considered to bean event

of interest . The surprise measure described above measures
the degree of interestingness of a sensor taking on a certain
value. Another aspect of sensor behavior to measure is the
most recent change in value of the sensor that brought it to
its current reading . However, absolute change magnitude is
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not interesting in and of itself. What is interesting is the
probability of the most recent change taking place . Hence we
need a scheme for normalizing the absolute change in value
of a sensor .

The scheme we use assigns a score to each change in the
value of a sensor that is an estimate of the proportion of all
previous value changes for that sensor that had value changes
strictly less than the change under consideration . Suppose we
get a change in value of the sensor equal to A . Furthermore,
suppose that 60% of the previous value changes for this sensor
in the current operating mode have been less than A . In this
case, we assign a score of 0.6 to the change A . Changes with
magnitude greater than A will get higher scores .

This scheme seems to require that we keep track of a sorted
sequence of all value changes of each sensor. This is neither
feasible nor necessary . An approximation of this value can
be obtained by keeping a constant number of values, say W,
in a sorted sequence . Let the total number of changes in the
values of a sensor so far be C(S) . Rather than storing all
C(S) values, we store only W < C(S) values . With the
arrival of a new change in value for sensor S, we increment
the count of changes C(S) and then we decide whether to
replace one of the W values we are storing or simply ignore
the current value change . The decision criterion is to generate
a random number in [0, 1] according to a uniform distribution,
and replace one of the W values if and only if that random
number is less than c(s) . It can be proven that this algorithm
is equivalent to one that stores all C(S) values, randomly
samples W of them, and returns as score the proportion of
the W elements that have value less than the change under
consideration .
We call this score the percentile value change score. It is

used to assign a normalized score in the range [0, 1] for each
change of value that occurs in each sensor. By definition, this
score is maximum when the change is the maximum change
of value seen so far for a particular sensor. It is minimum
when no change occurs in the value of a sensor. .

2 .2

	

Model-Based Measures

SELMON also uses a model of the monitored system to de-
termine sensor importance . This model is used to compute
three scores : deviation, sensitivity, and cascading alarms .
This section describes how each of these scores is computed .
Simulation is performed by a discrete-event based simulator
which operates on causal models with quantitative behavior
models [Rouquette et al 92] .

Deviation
The deviation measure uses a model of the monitored sys-

tem to make predictions of expected current sensor readings .
The concept of the deviation score is that sensor readings de-
viating significantly from the predicted values are anomalous
and should be reported to the operator.
The deviation score is computed in the following manner.

First, the raw deviation is computed as the difference between
the predicted and observed sensor scores . This raw deviation
is entered into a normalization process identical to that used
for the value change score, and the resultant score in the range
[0,1] is the overall deviation score .
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Model-Based Analysis
The SELMON system also uses the causal model of the

monitored system to reason about future effects of current
quantity changes . These future effects are considered in two
causal-based measures . First, sensitivity measures the effect
of predicted changes in quantities on the overall state of the
system . This is done by projecting each predicted change in
a quantity individually forward as a_perturbation of the sys-
tem, and measuring the overall change in the system . Those
currently occurring changes which have a greater effect on
the future state of the system are likely to be more impor-
tant and thus receive high scores to be displayed to the op-
erators . The second causal reasoning measure is cascading
alarms, which measures the potential for observed changes
to result in rapidly developing alarm sequences . The cas-
cading alarms measure uses the same perturbation analysis
used in the sensitivity analysis and measures the number of
alarms triggered and how quickly alarms occur . Those pre-
dicted changes which are expected to trigger large numbers
of alarms are scored highly and thus will be selected to be
displayed to operators .

Sensitivity Analysis
Sensitivity analysis measures the sensitivity of other quan-

tities in the monitored system to changes in each quantity in
the model . This is performed as follows . Beginning with a
simulation of the system in its current state and time Tcurrent,
simulate forward one timestep (i .e . until the next time sen-
sors are expected to be polled) . For each quantity Q, choose
OQp,ed as the current 50th percentile value change recorded
for the given sensor .

Then, for each quantity Q, run a simulation beginning again
with the current system state, perturbing Q by AQp,ed, propa-
gating this change to other quantities in All-Quantities (the
set of all quantities in the model) as dictated by the model.
For each such changed quantity Q' in All-Quantities, for
each time time that the quantity changes during the simula-
tion, collect a sensitivity score proportional to the amount of
change in Q' normalized to the size of the nominal range of
the sensor but also modified by a decreasing function of time .
This calculation captures the characteristic that delayed and
less direct effects are more likely to be controllable and less
likely to occur. Thus, a change which affected a quantity Q'
but occurred slowly is considered less important . This simu-
lation proceeds for apredetermined amount ofsimulated time .
Then, for each changed quantity Q', take the maximum of the
collected change-scores for that quantity. The sensitivity
score for Q is the sum of these maximums for all the Q's .
Thus, for each quantity Q, a simulated change produces a set
of change-scores for each other quantity in the model. The
sensitivity score for Q is the sum of the respective maximums
of each ofthese sets . If there are no changes to a quantity, this
set is empty and the quantity receives a zero score .

Cascading Alarms Analysis
Cascading alarms analysis measures the potential for

change in a single quantity to cause a large number of alarm
states to occur, thus causing information overload and confu-
sion for operators . In the cascading alarms score, the same
simulation used in the sensitivity score computation is used to
also determine the number of alarms triggered by the observed
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change . In the cascading alarms score, for each quantity Q,

the number of alarms triggered by a perturbation of Q by
AQpred is computed .
The alarm count is then normalized for the total number of

possible alarms and the weight ofeach alarm state triggered is
also decreased as a function of the time delay from the initial
change event to the alarm . This has the effect of focussing this
measure on quickly developing cascading alarm sequences
which are the most difficult to interpret and diagnose .

2.3

	

Computing a Total Sensor Score
We use the surprise score to modulate the percentile value
change associated with a sensor . This accounts for the unusu-
alness of a sensor value as well as the change in the sensor
value that brought it to its current reading . The percentile
value change score is also used to modulate the scores ob-
tained by the causal analysis of the system : the sensitivity
score and the cascading alarms score . These are modulated
by the percentile value change because they are computed
based on an analysis of the effect of a perturbation in the
value of the sensor on the overall system . The remainder of
the score combinations are simple sums . See Figure 2 .

3

	

Application Domain
Our application domain is the hardware testbed of the wa-
ter side of the Environmental Control and Life Support Sys-
tem (ECLSS) for Space Station Freedom . The water side
of ECLSS consists of three principal systems : Multifiltra-
tion (MF), Vapor Compression and Distillation (VCD), and
the Volatile Removal Assembly (VRA) . Using a combina-
tion of analysis of system description documents, consultation
with testbed engineers, and actual hardware testbed data, we
have constructed models of these subsystems . Each subsys-
tem model contains 30-50 quantities and 15-30 mechanisms .
Work in elaborating fault models is ongoing . This model has
been validated by comparison against actual data fromthe sub-
system testbed at the Marshall Space Flight Center (MSFC) in
Huntsville, Alabama . We are also in the process of extending
our model to cover the ECLSS air side subsystems .
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Performance Evaluation
The output of the SELMON algorithms is dynamically com-
puted each time the sensors are polled . SELMON produces
a total ordering on the set of sensors according to the sen-
sor importance measures outlined above. In order to assess
whether SELMON usefully focuses operator attention, we
assessed SELMON sensor ordering in the light of critical sen-
sor subsets specified by an ECLSS domain expert as useful
in understanding episodes of anomalous behavior in actual
historical data from ECLSS testbed operations .

In one experiment, we asked the specific question : How
often did SELMON place a "critical" sensor in the top half
of the sensor ordering? The performance of a random sensor
selection algorithm would be expected to be 50.0% . Table I
shows the results of our experiment . The first column iden-
tifies one of the episodes specified by the domain expert .
The second column identifies the number of timesteps in the
episode . The third column shows the overall "hit" rate for that
episode : the percentage of time SELMON placed the given
sensor in the top half of the sensor ordering based on the total



NORMALIZED
PERCENT

VALUE CHANGE

sensor score . The fourth column reports performance using
the alarm score component only. Finally, the fifth column
reports performance based on using the maximum SELMON
sensor score component only .

Table I : Performance at selecting critical sensor data .

These results suggest that SELMON performs much better
than random at replicating the attention focusing ofan ECLSS
domain expert . In addition, when only the maximum score
component is reported, SELMON performs significantly bet-
ter than random and considerably better than alarm thresholds
only . This result suggests that the most effective monitoring
system is one which incorporates several models of anoma-
lous behavior . This supports our approach of taking multiple
views of sensor importance .
SELMON is intended to assist operators in efficient

anomaly detection - the first step towards diagnosis . Another
planned experiment will investigate how sensor selection sup-
ports diagnostic reasoning . In addition to the ECLSS subsys-
tem models which describe nominal behavior, a number of
ECLSS fault models have been developed . After implement-
ing a diagnostic reasoning algorithm, we will determine how
this algorithm performs at correctly diagnosing faults from
behavior traces resulting from simulation of these fault mod-
els . We will then test the performance of the diagnostic rea-
soning algorithm when it is given SELMON-selected . sensor
data . Finally, we will test the performance of this algorithm
when it is given the same number of sensor data randomly
selected .

	

Some degradation of performance may occur in
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5 Discussion

Figure 2 : SELMON Sensor Scoring Algorithm .

the diagnostic reasoning algorithm using SELMON-selected
data . A measure of success will be a significantly greater
loss of performance with randomly selected data . Such a re-
sult will suggest that SELMON selects sensor data relevant to
diagnostic reasoning .

In this section, we elaborate on the experimental results re-
ported in the previous section by making general observations
about the utility ofthe SELMON approach while citing a spe-
cific example of how SELMON has reacted to anomalous
behavior episodes . We also discuss areas for improvement in
the current realization of the SELMON concept .
The best, most experienced mission operators are remark-

ably effective at knowing when something is going wrong
on a space platform using only traditional anomaly detection
techniques such as alarm thresholds . Our aim is to offer a
more complete, more robust set of techniques for anomaly
detection, based on multiple models of what constitutes an
anomaly. These techniques will make mission operators even
more effective, or can be the basis ofan automated monitoring
capability . The following example illustrates how SELMON
highlights a subtle manifestation of an anomaly which the
traditional alarm threshold approach fails to detect .

During an episode when the ECLSS pre-heater failed, sys-
tem pressure, which normally oscillates within a known range,
became more stable . This "abnormally normal" behavior is
not detected by alarm thresholds because the system pressure
remains firmly in the nominal range. However, the SELMON
informativeness measure rises during such an episode . Infor-
mativeness rises when the frequency distribution across the
range of values for a sensor departs from a fiat distribution . A
suddenly stable systempressure causes one of the value ranges
for system pressure to begin to dominate the frequency distri-
bution . See Figures 3 and 4 . SELMON provides the means of
detecting and reasoning about this kind of subtle anomaly.
SELMON will be brought closer to an operational monitor-

ing system by adopting known techniques for sensor data pre-
processing . Currently, we perform only the most rudimentary

EPISODE Timesteps Total Alarm Max
High Flow Rate 91 94.0 98.2 83 .8
Sensor Malfunction 80 100.0 100 .0 100.0
Unibed Loading 530 56.6 48.9 90.5
Pre-Heater Off 328 100.0 100.0 81 .1
Emergency Shutdown 9 100.0 100.0 100.0
Pressure Fluctuations 71 100.0 99.2 89 .8
High Pressure 67 95 .6 92.0 90.7
All 1176 79.7-- 76.3187 .9
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filtering of raw data . Since some of the ECLSS system pa-
rameters do display oscillatory behavior, proven techniques
for suppressing fluctuations in the time domain which are
manifestations of well-defined frequency components can be
applied .
An unresolved area in SELMON is developing a well-

founded method for utilizing all the individual sensor impor-
tance component scores . Our working concept is to compose
the individual measures into a total sensor importance score .
A theoretical or empirical analysis may provide insight as
to the most appropriate composition function and weighting
scheme .
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Future Work
We recognize that an important component of the SELMON
approach is the ability to provide explanations or interpre-
tations of why a particular sensor has been highlighted and
is worthy of operator attention . Future work in the SEL-
MON project will complement existing sensor ordering and
anomaly detection capabilities with model-based capabilities
for characterizing anomalies, partitioning sensors which are
causally related, and selecting sensors according to multiple
viewpoints (causal priority, proximity to control points, po-
tential for irreversible damage, and magnitude of anomaly) .

In related work, we are also investigating the problem of
sensor placement during design [Chien et al 91] .

7 Summary
We are developing techniques to support real-time monitor-
ing through sensor selection, the moment to moment focusing
of attention on a subset of the available sensor data . Sensor
selection is based on a set of importance criteria based on
different models of what constitutes an anomaly. The com-
putational realizations of these importance criteria draw on
concepts from model-based reasoning, statistics, and infor-
mation theory . Experimental results show that our sensor
selection techniques are effective at highlighting the sensors
deemed critical by a domain expert for understanding actual
anomalous episodes from the Space Station Freddom ECLSS
life support system testbed . These results also suggest that a
monitoring system which employs multiplemodels ofanoma-
lous behavior is more effective than one based on the concept
of alarm thresholds only.
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